
The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016 375

 Task Scheduling Using Probabilistic Ant Colony

Heuristics

Umarani Srikanth
1
, Uma Maheswari

2
, Shanthi Palaniswami

3
, and Arul Siromoney

3

1
Computer Science and Engineering Department, S.A. Engineering College, India
2
Department of Information Science and Technology, Anna University, India
3
Department of Computer Science and Engineering, Anna University, India

Abstract: The problem of determining whether a set of tasks can be assigned to a set of heterogeneous processors in general is

NP-hard. Generating an efficient schedule of tasks for a given application is critical for achieving high performance in a

heterogeneous computing environment. This paper presents a novel algorithm based on Ant Colony Optimization (ACO) for

the scheduling problem. An attempt is made to arrive at a feasible schedule for a task set on heterogeneous processors

ensuring fair load balancing across the processors within a reasonable amount of time. Three parameters: Average waiting

time of tasks, utilization of individual processors and the scheduling time of tasks are computed. The results are compared with

those of the First Come First Served (FCFS) algorithm and it is found that ACO performs better than FCFS with respect to the

waiting time and individual processor utilization. On comparison with the FCFS approach, the ACO method balances the load

fairly among the different processors with the standard deviation of processors utilization being 88.7% less than that of FCFS.

The average waiting time of the tasks is also found to be 34.3% less than that of the FCFS algorithm. However, there is a

35.5% increase in the scheduling time for the ACO algorithm.

Keywords: ACO, tasks scheduling problem, processor utilization, heterogeneous processors.

Received July 6, 2013; accepted September 19, 2013; published online August 22, 2015

1. Introduction

The heterogeneous computing platform meets the

computational demands of diverse tasks. One of the

key challenges of such heterogeneous processor

systems is effective task scheduling [9]. The task

scheduling problem is generally NP-Complete. Some

of the parameters used for identifying a good schedule

are reducing the make span, reducing the waiting time

of the tasks and achieving other goals such as power

reduction [7]. An efficient task scheduling avoids the

situation in which some of the processors are

overloaded while some others are idle.

Many real time applications are discrete

optimization problems. For combinatorial optimization

problems that are NP-hard, no polynomial time

algorithm exists. This leads to computation time being

too high for practical purposes. So, the development of

approximate methods, in which the guarantee of

finding optimal solutions is sacrificed for the sake of

getting good solutions in a significantly reduced

amount of time, has received more attention.

Therefore, it seems reasonable looking for new

computation paradigms that go beyond the limits of

conventional computing.

Section 2 deals with the related work and section 3

discusses Ant Colony Optimization (ACO) based task

scheduling algorithm. Section 4 deals with

experimental illustration and section 5 show the

conclusions.

2. Related Works

ACO has been formalized into a meta-heuristics for

combinatorial optimization problems by Dorigo et al.

[4, 5]. An approach based on ACO [1, 6] that explores

different designs to determine an efficient hardware-

software partitioning, to decide the task allocation and

to establish the execution order of the tasks, dealing

with different design constraints imposed by a

reconfigurable heterogeneous MPSoC is proposed in

[8]. The methodology determines the mapping and

scheduling of the input application on the target

architecture minimizing its overall execution time.

The work presented in [11] focuses on investigating

multiprocessor system scheduling with precedence and

resource constraints. A modified ACO approach called

Dynamic Delay Ant Colony System (DDACS) is

adopted for precedence and resource constraints

multiprocessor scheduling problem. DDACS scheme

provides an efficient method of finding the optimal

schedule of the multi-constraints multiprocessor

system. A two dimension matrix graph is adopted to

represent the assigning jobs on processors. This graph

is deployed to resolve the minimum make span

schedule. The processors are homogeneous. An

artificial immune system for heterogeneous

multiprocessor scheduling with task duplication known

as the Artificial Immune System with Duplication

(AISD) is proposed in [10]. It first generates and

refines a set of schedules using a modified clonal

376 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

selection algorithm and then improves the schedules

with task duplication. The AISD algorithm schedules

the tasks in a task graph via three carefully designed

phases: Clonal selection, task duplication and

ineffectual task removal.

An algorithm based on the ACO meta-heuristic is

presented for solving the real time tasks scheduling in

[2] using the task execution time and processor

capacity. A local search heuristic is used in [3] in order

to improve the assignment solution. The system

assumes an arbitrary number of heterogeneous

multiprocessors platforms with m pre-emptive

processors. The task assignment problem addresses

two objectives: The resource objective which searches

a solution in which each of the task is assigned to a

specific processor in such a way that the cumulative

utilization of any processor does not exceed the

utilization bound and the energy objective which

minimizes the cumulative energy consumption of all

the assigned tasks in a solution. Srikanth et al. [12]

studied the task scheduling problem using ACO

framework. The framework is used to generate

schedules for independent tasks on heterogeneous

processors. The ACO algorithm converges only when

all the ants come up with the same schedule.

3. Materials and Methods

3.1. Ant Colony Optimization

ACO takes inspiration from the foraging behaviour of
some ant species. These ants deposit pheromone on the
ground in order to mark some favourable path that
should be followed by other members of the colony.
The above behaviour of real ants has inspired Ant
System (AS), an algorithm in which a set of artificial
ants cooperate for solving optimization problems by
exchanging information via pheromones deposited on
edges of a construction graph, whose model depends
on the problem to be solved. A major advantage of
ACO over other meta-heuristic algorithms is that the
problem instance may change dynamically.
An algorithm based on ACO is proposed in this

work. Here, an approximate solution is found out
which allocates tasks to processors providing better
load sharing among the processors in a reasonable
amount of time.

3.2. Task Scheduling Problem

The characteristics of the processors and tasks assumed

in the scheduling problem considered are given below:

1. Processor Characteristics:

• The processors are assumed to be heterogeneous.

• The heterogeneity of the processors is modelled
by the varied proportional utilization of the same

task on different processors.

• Many tasks can be scheduled on the same
processor.

2. Tasks Characteristics:

• Tasks are assumed to be non-real time and
independent.

• There are no precedence constraints among them.

• There is no inter-task communication.

• The utilization of a processor by a task is known
apriori and it does not change with time.

• All the tasks are assumed to arrive at the same
instant at 0 time units.

• There is no task migration.

Let the set P={P1, P2, …, Pm} denote m arbitrary

heterogeneous processors with each Pj running at

variable speed. Let the set T={T1, T2, …, Tn} denote n

time tasks. Each task Ti is characterized by uij where uij

is the worst case execution time of the task Ti on

processor Pj. The worst case execution time of the

tasks on the processors is given in a utilization matrix

U. The number of rows of the matrix U equals the

number of tasks and the number of columns equals the

number of processors. In other words, the order of the

matrix is n×m. The elements of U are real numbers in

the range (0, 1) and they specify the maximum

proportional time of the processors used by the tasks.

In other words, a typical entry uij denotes the fraction

of the computing capacity of Pj required executing Ti.

uij is also referred as utilization of Ti on Pj. A sample

utilization matrix is shown in Table 1.

Table 1. Utilization matrix with 4 tasks and 3 processors.

 P1 P2 P3

T1 u11 u12 u13

T2 u21 u22 u23

T3 u31 u32 u33

T4 u41 u42 u43

The task scheduling problem can be formally stated

as follows: Given T and P, determine a schedule that

assigns each of the tasks in T to a specific processor in

P, in such a way that the cumulative utilization of the

tasks on any processor is not greater than the

utilization bound of that processor which is 1.0. This

problem is represented by a bipartite graph with the

two classes of nodes, T and P. A task is mapped to a T

node and a processor is mapped to a P node. The graph

is a directed graph with the edges leaving from the set

of tasks nodes to the set of processor nodes. There is a

directed edge from a T node to a P node, if and only if

the corresponding task can be assigned to that

processor, without exceeding its available computing

capacity.

A schedule can be represented as an n×m binary

matrix. A typical entry of this matrix is denoted as sij.

The entry sij= 1 if task Ti is scheduled on processor Pj.

It is noted that there are no two 1’s in the same row as

a task is assigned to only one processor. A column can

have many 1’s indicating that all the corresponding

tasks are scheduled on that corresponding processor.

But the proportional utilization of all the tasks on a

Task Scheduling Using Probabilistic Ant Colony Heuristics 377

processor should not exceed 1, as shown in Equations

1 and 2:

 1

 1, 2, 1 ,
m

ij
j

for i ns
=

== …∑

*

1

 1 1, 2, ...,
n

ij
i

for j mu sij
=

∑ ≤ =

3.3. Task Scheduling Algorithm

Given a set of T and P, the artificial ant stochastically

assigns each task to one processor until each of the

tasks is assigned to some specific processor. An

artificial pheromone value τij is introduced with an

edge between Ti and Pj that indicates the favorability of

assigning the task Ti to the processor Pj. Initially τij=

0.9 and is the same for all i, j. After each iteration, the

pheromone value of each edge is reduced by a certain

percentage to emulate the real-life behavior of

evaporation of pheromone count over time. The

fraction ρ= 0.7 specifies the percentage of the τ value

after evaporation. i.e., 0.3 is the evaporation rate. The

number of artificial ants is 30. Each ant behaves as

follows: From a node i in T an ant choose a node j in P

with a probability as shown in the Equation 3.

1

(,)
(,)

(,)
m

j

i j
p i j

i j

τ

τ
=

=

∑

After all the tasks are considered for scheduling by an

ant, the feasibility of the schedule is verified using the

total utilization of each individual processor. If any

processor’s utilization exceeds 1.0, that schedule is

infeasible. This procedure is repeated for all the ants.

The quality q of a feasible schedule S generated by an

ant in each iteration is computed by considering the

total utilization of all the processors in that schedule.

This quality is used in the pheromone update of the

next iteration by all the ants. To begin with, the

evaporation of the pheromones is taken care of, given

in Equation 4.

*ijτ ρ=

Then, pheromone updating is done by all the ants that

come up with feasible schedules in the following

manner as shown in the Equation 5.

()

 .
ij ij i jq S if T is assigned to P

in the schedule S of an antk

τ τ= +

The iterations continue till the number of iterations

exceed a particular predefined value or the standard

deviation of the quality of the solutions obtained by the

ants is less than a small threshold value which is

computed based on the quality of the solutions

obtained by the ants in the first iteration. If the number

of iterations exceeds a threshold value, it is assumed

that a feasible schedule is not obtained. This is

basically to ensure that a schedule is arrived at, within

a reasonable amount of time. If all the ants come up

with the same schedule, the standard deviation is zero.

If the standard deviation is non-zero, then it means that

the ants have come up with schedules that

approximately have the same quality and the iterations

are terminated. i.e., the algorithm is assumed to

converge. In that case the schedule with the best

quality is chosen as the approximate best schedule.

The schedule with the maximum quality is chosen

as the best approximate schedule and its parameters are

computed.

Chen and Cheng [2] have used the following

heuristics: A task is assigned to a processor on which it

has the least execution time; and task assignment is

done to minimize the laxity in the computing capacity

of processor. Chen et al. [3] have used Max-Min AS

(MMAS) for updating the pheromone trails. They have

used local search heuristics that starts off with an

initial assignment solution and then tries to find better

solutions using the following neighborhood operations:

Remove a task from a processor and then assign it to a

different processor called 1-Opt; and remove two tasks

from two processors and then assign each of them to

the processor that the other task is assigned to initially,

called 2-Exchange. This algorithm is designed to

optimize assignment solutions in terms of both

resource utilization and energy consumption.

In our work, we have used a model which is a

combination of AS and ACS. We have not considered

energy consumption. We have used the following

heuristics: Negligible amount of pheromones deposited

by ants is ignored to avoid the scattering of the solution

trails generated by the ants; priority is given to arrive at

feasible schedules within a reasonable amount of time;

and approximation of the optimal schedule is

admissible, which is decided by the quality of the

solution based on the total utilization of the processors.

4. Results

Algorithm 1 is run for five problem sets with the
number of tasks as 90, 100, 110, 120 and 130, number
of processors as eight and the number of ants as 30.
For the experiment, the utilization matrix is generated
randomly for each problem set. The same utilization
matrix is used for all the trials and the First Come First
Served (FCFS) algorithm. The parameters considered
in the experiment are the utilization of each processor,
the average waiting time of all the tasks and the time
taken for generating a feasible schedule. For each
problem set, ten trials are run for ACO and the average
values of the parameters are taken which are then
compared with those of the FCFS scheduling algorithm
and the results are tabulated.

Algorithm 1: Task scheduling.

While ((iteration_no < max_iteration) and (std_dev (qual[] >

threshold))

{

 for (k=1 to num_ants)

 {

 for (i=1 to num_tasks)

(1)

(2)

(3)

(4)

(5)

378 The International Arab Journal of Information

 {

 # select a processor stochastically

 # using τ matrix

 sched[k][i]= stoch_val(τ)

 }

 # compute quality of each schedule

 qual[k]= calc_qual(sched[k][])

 }

 # update τ using quality of each schedule

 τ= update(τ, qual[])

}

5. Discussions

Table 2 presents the individual processor utilization
and standard deviation of each of the eight processors
using ACO algorithm. Table 3 shows the same
parameters for the FCFS algorithm. It is observed from
Table 3 that the number of processors not utilized by
the FCFS scheduling algorithm varies from 1 to 4,
whereas ACO uniformly uses all the processors.
1 pictorially represents the individual processor
utilization using ACO and FCFS algorithms for these
five problem sets. Hence, it is proved that the ACO
algorithm results in fair processor utilization than the
FCFS algorithm.

Table 2. Individual processor utilization for ACO for 5 problem
sets.

Processor Tasks=90 Tasks=100 Tasks=110

1 0.676442 0.685348 0.720643

2 0.703828 0.749016 0.650884

3 0.513967 0.508955 0.750640

4 0.562577 0.580108 0.649285

5 0.686510 0.709957 0.680012

6 0.603779 0.682561 0.681009

7 0.545770 0.683775 0.647264

8 0.575534 0.728833 0.677148

Standard Deviation 0.071592 0.080867 0.036797

Table 3. Individual processor utilization for FCFS for 5 problem
sets.

Processor Tasks=90 Tasks=100 Tasks=110

1 0.999140 0.994333 0.997119

2 0.999302 0.995411 0.998299

3 0.993370 0.999633 0.998961

4 0.964096 0.994504 0.999994

5 0.000000 0.712981 0.978659

6 0.000000 0.000000 0.216666

7 0.000000 0.000000 0.000000

8 0.000000 0.000000 0.000000

Standard Deviation 0.528745 0.495497 0.482090

In
d
iv
id
u
al
 P
ro
ce
ss
o
r
U
ti
li
za
ti
o
n

 Number of Tasks

Figure 1. Comparison of the individual processor utilization using

ACO and FCFS algorithms.

On comparison with the FCFS approach, the ACO
method balances the load fairly among the different
processors with the standard deviation of processor
utilization being 88.7% less than that of FCFS which is
proved in Figure 2. Table 4 provides a comparison of

The International Arab Journal of Information Technology,

select a processor stochastically

Table 2 presents the individual processor utilization
and standard deviation of each of the eight processors

Table 3 shows the same
parameters for the FCFS algorithm. It is observed from
Table 3 that the number of processors not utilized by
the FCFS scheduling algorithm varies from 1 to 4,

ormly uses all the processors. Figure
represents the individual processor

utilization using ACO and FCFS algorithms for these
five problem sets. Hence, it is proved that the ACO

processor utilization than the

tion for ACO for 5 problem

Tasks=120 Tasks=130

0.604547 0.707257

0.771987 0.759952

0.739138 0.704041

0.698303 0.690416

0.664643 0.728576

0.755928 0.707009

0.678312 0.650390

0.744772 0.730427

0.056398 0.032173

Table 3. Individual processor utilization for FCFS for 5 problem

Tasks=120 Tasks=130

0.999652 0.999192

0.999039 0.999836

0.999928 0.998118

0.999764 0.999814

0.993507 0.995617

0.403263 0.971887

0.000000 0.001559

0.000000 0.000000

0.464140 0.459901

Comparison of the individual processor utilization using

On comparison with the FCFS approach, the ACO
method balances the load fairly among the different
processors with the standard deviation of processor

less than that of FCFS which is
proved in Figure 2. Table 4 provides a comparison of

the parameters waiting time of tasks and scheduling
time of tasks for ACO and FCFS algorithms.
shows this comparison pictorially. It exhibits the fact
that the average waiting time of the tasks is found to be
34.3% less than that of the FCFS algorithm. The
tabulated experimental results in Table 4 prove our
claim. However, there is a 35.5% increase in the
scheduling time for the ACO.

S
ta
n
d
ar
d
 D
ev
ia
ti
o
n
 o
f

P
ro
ce
ss
o
r
U
ti
li
za
ti
o
n

 Number of Tasks

Figure 2. Comparison of standard deviation of the processor

utilization using ACO and FCFS algorithms.

Table 4. Comparison of the waiting and scheduling time of tasks
using ACO and FCFS algorithms.

Number of

Tasks

Average Waiting Time of Tasks

(Secs)

ACO FCFS

90 0.304094 0.507763

100 0.328272 0.464974

110 0.339830 0.526415

120 0.345808 0.512628

130 0.348974 0.528829

 T
im
e
in
 S
ec
s

 Number of Tasks

Figure 3. Comparison of waiting

using ACO and FCFS algorithms.

6. Conclusions

A variant of the ACO algorithm for the Task
Scheduling Problem is given and the implementation
results are presented. The algorithm finds a feasible
task assignment with the objectives of keeping all the
processors fairly loaded and obtaining the schedule
within a reasonable amount of time. The parameters
used for study are the average waiting time of the
tasks, individual processor utilization and the time
taken to arrive at a schedule. A comparative study is
made with the FCFS scheduling algorithm and it is
found that ACO performs better than the FCFS with
respect to the waiting time and processor load
balancing. But ACO method marginally takes more
time to come up with a schedule compared to FCFS.

References

[1] Blum C., “Ant Colony Optimization:

Introduction and Recent Trends,”

Reviews, vol. 2, no. 4, p

Technology, Vol. 13, No. 4, July 2016

the parameters waiting time of tasks and scheduling
time of tasks for ACO and FCFS algorithms. Figure 3
shows this comparison pictorially. It exhibits the fact

erage waiting time of the tasks is found to be
34.3% less than that of the FCFS algorithm. The
tabulated experimental results in Table 4 prove our
claim. However, there is a 35.5% increase in the
scheduling time for the ACO.

Number of Tasks

Figure 2. Comparison of standard deviation of the processor

utilization using ACO and FCFS algorithms.

of the waiting and scheduling time of tasks

Waiting Time of Tasks Average Scheduling Time of Tasks

(Secs)

FCFS ACO FCFS

0.507763 0.335165 0.274725

0.464974 0.373626 0.302198

0.526415 0.401099 0.329670

0.512628 0.456044 0.329670

0.528829 0.525900 0.329670

 Average waiting time(Secs) ACO

 Average waiting time(Secs) FCFS

 Average Scheduling time (Secs) ACO

 Average Scheduling time (Secs) FCFS

waiting time and Schedule time of tasks

A variant of the ACO algorithm for the Task
is given and the implementation

results are presented. The algorithm finds a feasible
task assignment with the objectives of keeping all the
processors fairly loaded and obtaining the schedule
within a reasonable amount of time. The parameters

udy are the average waiting time of the
tasks, individual processor utilization and the time
taken to arrive at a schedule. A comparative study is
made with the FCFS scheduling algorithm and it is
found that ACO performs better than the FCFS with

o the waiting time and processor load
balancing. But ACO method marginally takes more
time to come up with a schedule compared to FCFS.

Ant Colony Optimization:

Introduction and Recent Trends,” Physics of Life

4, pp. 353-373, 2005.

Task Scheduling Using Probabilistic Ant Colony Heuristics 379

[2] Chen H. and Cheng A., “Applying Ant Colony

Optimization to the Partitioned Scheduling

Problem for Heterogeneous Multiprocessors,”

ACM Special Interest Group on Embedded

Systems Review, vol. 2, no. 2, pp. 1-14, 2005.

[3] Chen H., Cheng A., and Kuo Y., “Assigning Real

Time Tasks to Heterogeneous Processors by

Applying Ant Colony Optimization,” Journal of

Parallel and Distributed Computing, vol. 7, no.

11, pp. 32-42, 2011.

[4] Dorigo M. and Blum C., “Ant Colony

Optimization Theory: A Survey,” Theoretical

Computer Science, vol. 344, no. 2, pp. 243-278,

2005.

[5] Dorigo M., Caro G., and Gambardella L., “Ant

Algorithms for Discrete Optimization,” the

Journal of Artificial Life, vol. 5, no. 2, pp. 137-

172, 1999.

[6] Dorigo M., Maniezzo V., and Colorni A., “Ant

System: Optimization by a Colony of

Cooperating Agents,” IEEE Transactions on

Systems, Man and Cybernetics, vol. 26, no. 1,

pp. 29-41, 1996.

[7] Elhossini A., Huissman J., Debowski B., Areibi

S., and Dony R., “Efficient Scheduling

Methodology for Heterogeneous Multi-core

Processor Systems,” in Proceedings of the

International Conference on Microelectronics,

Cairo, Egypt, pp. 475-478, 2010

[8] Ferrandi F., Pilato C., Tumeo A., and Sciuto D.,

“Mapping and Scheduling of Parallel C

Applications with Ant Colony Optimization onto

Heterogeneous Reconfigurable MPSoCs,” in

Proceedings of 15
th
 Asia and South Pacific

Design Automation Conference, Taipei, pp. 799-

804, 2010.

[9] Ijaz S., Munir E., Anwar W., and Nasir W.,

“Efficient Scheduling Strategy for Task Graphs

in Heterogeneous Computing Environment,” the

International Arab Journal of Information

Technology, vol. 10, no. 5, pp. 486-492, 2013.

[10] Lee Y. and Zomaya A., “An Artificial Immune

System for Heterogeneous Multiprocessor

Scheduling with Task Duplication,” in

Proceedings of IEEE International Parallel and

Distributed Processing Symposium, Long Beach,

USA, pp. 1-8, 2007.

[11] Lo S., Chen R., Huang Y., and Wu C.,

“Multiprocessor System Scheduling with

Precedence and Resource Constraints using an

Enhanced Ant Colony System,” Expert Systems

with Applications, vol. 34, no. 3, pp. 2071-2081,

2008.

[12] Srikanth U., Maheswari U., Shanthi P., and

Siromoney A., “Task Scheduling using Ant

Colony Optimization,” the Journal of Computer

Science, vol. 8, no. 8, pp. 1541-1546, 2012.

Umarani Srikanth is currently

working as an Associate Professor in

PG Studies in Engineering

Department, S.A. Engineering

College, India. She has 18 years of

teaching experience. Her areas of

interests include compilers, theory of

computation, data structures and soft computing.

Uma Maheswari is currently

working as an Associate Professor in

the Department of Information

Science and Technology, Anna

University, India. She has over 26

years of teaching experience. She

has several publications and has

served on several programme committees as reviewer.

Her main area of research is data structures and

algorithms, compilers, rough set theory, operating

systems and soft computing.

Shanthi Palaniswami is currently

working as an Associate Professor at

Department of Computer Science

and Engineering, Anna University,

India. She has over 25 years of

teaching experience. Her areas of

interest include computer

architecture, microprocessors, machine learning,

evolvable hardware and soft computing.

Arul Siromoney is currently

working as a Professor in the

Department of Computer Science

and Engineering, Anna University,

India. He has over 22 years of

teaching experience and 7 years of

Industry experience. He has several

publications and has served on several programme

committees as reviewer. His main area of research is

rough set theory and data mining. his interests include

mobile computing, operating systems and software

systems.

