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Abstract: The problem of determining whether a set of tasks can be assigned to a set of heterogeneous processors in general is 

NP-hard. Generating an efficient schedule of tasks for a given application is critical for achieving high performance in a 

heterogeneous computing environment. This paper presents a novel algorithm based on Ant Colony Optimization (ACO) for 

the scheduling problem. An attempt is made to arrive at a feasible schedule for a task set on heterogeneous processors 

ensuring fair load balancing across the processors within a reasonable amount of time. Three parameters: Average waiting 

time of tasks, utilization of individual processors and the scheduling time of tasks are computed. The results are compared with 

those of the First Come First Served (FCFS) algorithm and it is found that ACO performs better than FCFS with respect to the 

waiting time and individual processor utilization. On comparison with the FCFS approach, the ACO method balances the load 

fairly among the different processors with the standard deviation of processors utilization being 88.7% less than that of FCFS. 

The average waiting time of the tasks is also found to be 34.3% less than that of the FCFS algorithm. However, there is a 

35.5% increase in the scheduling time for the ACO algorithm.  
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1. Introduction 

The heterogeneous computing platform meets the 

computational demands of diverse tasks. One of the 

key challenges of such heterogeneous processor 

systems is effective task scheduling [9]. The task 

scheduling problem is generally NP-Complete. Some 

of the parameters used for identifying a good schedule 

are reducing the make span, reducing the waiting time 

of the tasks and achieving other goals such as power 

reduction [7]. An efficient task scheduling avoids the 

situation in which some of the processors are 

overloaded while some others are idle. 

Many real time applications are discrete 

optimization problems. For combinatorial optimization 

problems that are NP-hard, no polynomial time 

algorithm exists. This leads to computation time being 

too high for practical purposes. So, the development of 

approximate methods, in which the guarantee of 

finding optimal solutions is sacrificed for the sake of 

getting good solutions in a significantly reduced 

amount of time, has received more attention. 

Therefore, it seems reasonable looking for new 

computation paradigms that go beyond the limits of 

conventional computing. 

Section 2 deals with the related work and section 3 

discusses Ant Colony Optimization (ACO) based task 

scheduling algorithm. Section 4 deals with 

experimental illustration and section 5 show the 

conclusions.  

2. Related Works 

ACO has been formalized into a meta-heuristics for 

combinatorial optimization problems by Dorigo et al. 

[4, 5]. An approach based on ACO [1, 6] that explores 

different designs to determine an efficient hardware-

software partitioning, to decide the task allocation and 

to establish the execution order of the tasks, dealing 

with different design constraints imposed by a 

reconfigurable heterogeneous MPSoC is proposed in 

[8]. The methodology determines the mapping and 

scheduling of the input application on the target 

architecture minimizing its overall execution time.   

The work presented in [11] focuses on investigating 

multiprocessor system scheduling with precedence and 

resource constraints. A modified ACO approach called 

Dynamic Delay Ant Colony System (DDACS) is 

adopted for precedence and resource constraints 

multiprocessor scheduling problem. DDACS scheme 

provides an efficient method of finding the optimal 

schedule of the multi-constraints multiprocessor 

system.  A two dimension matrix graph is adopted to 

represent the assigning jobs on processors. This graph 

is deployed to resolve the minimum make span 

schedule. The processors are homogeneous. An 

artificial immune system for heterogeneous 

multiprocessor scheduling with task duplication known 

as the Artificial Immune System with Duplication 

(AISD) is proposed in [10]. It first generates and 

refines a set of schedules using a modified clonal 
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selection algorithm and then improves the schedules 

with task duplication. The AISD algorithm schedules 

the tasks in a task graph via three carefully designed 

phases: Clonal selection, task duplication and 

ineffectual task removal.  

An algorithm based on the ACO meta-heuristic is 

presented for solving the real time tasks scheduling in 

[2] using the task execution time and processor 

capacity. A local search heuristic is used in [3] in order 

to improve the assignment solution. The system 

assumes an arbitrary number of heterogeneous 

multiprocessors platforms with m pre-emptive 

processors. The task assignment problem addresses 

two objectives:  The resource objective which searches 

a solution in which each of the task is assigned to a 

specific processor in such a way that the cumulative 

utilization of any processor does not exceed the 

utilization bound and the energy objective which 

minimizes the cumulative energy consumption of all 

the assigned tasks in a solution. Srikanth et al. [12] 

studied the task scheduling problem using ACO 

framework. The framework is used to generate 

schedules for independent tasks on heterogeneous 

processors. The ACO algorithm converges only when 

all the ants come up with the same schedule. 

3. Materials and Methods 

3.1. Ant Colony Optimization 

ACO takes inspiration from the foraging behaviour of 
some ant species. These ants deposit pheromone on the 
ground in order to mark some favourable path that 
should be followed by other members of the colony. 
The above behaviour of real ants has inspired Ant 
System (AS), an algorithm in which a set of artificial 
ants cooperate for solving optimization problems by 
exchanging information via pheromones deposited on 
edges of a construction graph, whose model depends 
on the problem to be solved. A major advantage of 
ACO over other meta-heuristic algorithms is that the 
problem instance may change dynamically.  
An algorithm based on ACO is proposed in this 

work. Here, an approximate solution is found out 
which allocates tasks to processors providing better 
load sharing among the processors in a reasonable 
amount of time. 

3.2. Task Scheduling Problem 

The characteristics of the processors and tasks assumed 

in the scheduling problem considered are given below: 

1. Processor Characteristics: 

• The processors are assumed to be heterogeneous. 

• The heterogeneity of the processors is modelled 
by the varied proportional utilization of the same 

task on different processors. 

• Many tasks can be scheduled on the same 
processor. 

2. Tasks Characteristics:  

• Tasks are assumed to be non-real time and 
independent.  

• There are no precedence constraints among them. 

• There is no inter-task communication.   

• The utilization of a processor by a task is known 
apriori and it does not change with time.   

• All the tasks are assumed to arrive at the same 
instant at 0 time units.  

• There is no task migration.  

Let the set P={P1, P2, …, Pm} denote m arbitrary 

heterogeneous processors with each Pj running at 

variable speed. Let the set T={T1, T2, …, Tn} denote n 

time tasks. Each task Ti is characterized by uij where uij 

is the worst case execution time of the task Ti on 

processor Pj. The worst case execution time of the 

tasks on the processors is given in a utilization matrix 

U. The number of rows of the matrix U equals the 

number of tasks and the number of columns equals the 

number of processors. In other words, the order of the 

matrix is n×m. The elements of U are real numbers in 

the range (0, 1) and they specify the maximum 

proportional time of the processors used by the tasks. 

In other words, a typical entry uij denotes the fraction 

of the computing capacity of Pj required executing Ti. 

uij is also referred as utilization of Ti on Pj. A sample 

utilization matrix is shown in Table 1. 

Table 1. Utilization matrix with 4 tasks and 3 processors. 

 P1 P2 P3 

T1 u11 u12 u13 

T2 u21 u22 u23 

T3 u31 u32 u33 

T4 u41 u42 u43 

The task scheduling problem can be formally stated 

as follows: Given T and P, determine a schedule that 

assigns each of the tasks in T to a specific processor in 

P, in such a way that the cumulative utilization of the 

tasks on any processor is not greater than the 

utilization bound of that processor which is 1.0. This 

problem is represented by a bipartite graph with the 

two classes of nodes, T and P. A task is mapped to a T 

node and a processor is mapped to a P node. The graph 

is a directed graph with the edges leaving from the set 

of tasks nodes to the set of processor nodes. There is a 

directed edge from a T node to a P node, if and only if 

the corresponding task can be assigned to that 

processor, without exceeding its available computing 

capacity.   

A schedule can be represented as an n×m binary 

matrix. A typical entry of this matrix is denoted as sij. 

The entry sij= 1 if task Ti is scheduled on processor Pj. 

It is noted that there are no two 1’s in the same row as 

a task is assigned to only one processor. A column can 

have many 1’s indicating that all the corresponding 

tasks are scheduled on that corresponding processor. 

But the proportional utilization of all the tasks on a 
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processor should not exceed 1, as shown in Equations 

1 and 2:  
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3.3. Task Scheduling Algorithm 

Given a set of T and P, the artificial ant stochastically 

assigns each task to one processor until each of the 

tasks is assigned to some specific processor. An 

artificial pheromone value τij is introduced with an 

edge between Ti and Pj that indicates the favorability of 

assigning the task Ti to the processor Pj. Initially τij= 

0.9 and is the same for all i, j. After each iteration, the 

pheromone value of each edge is reduced by a certain 

percentage to emulate the real-life behavior of 

evaporation of pheromone count over time. The 

fraction ρ= 0.7 specifies the percentage of the τ value 

after evaporation. i.e., 0.3 is the evaporation rate. The 

number of artificial ants is 30. Each ant behaves as 

follows:  From a node i in T an ant choose a node j in P 

with a probability as shown in the Equation 3.  
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After all the tasks are considered for scheduling by an 

ant, the feasibility of the schedule is verified using the 

total utilization of each individual processor. If any 

processor’s utilization exceeds 1.0, that schedule is 

infeasible. This procedure is repeated for all the ants. 

The quality q of a feasible schedule S generated by an 

ant in each iteration is computed by considering the 

total utilization of all the processors in that schedule. 

This quality is used in the pheromone update of the 

next iteration by all the ants. To begin with, the 

evaporation of the pheromones is taken care of, given 

in Equation 4.  

*ijτ ρ=  

Then, pheromone updating is done by all the ants that 

come up with feasible schedules in the following 

manner as shown in the Equation 5. 

 
( )     

     .  
ij ij i jq S if T is assigned to P

in the schedule S of an antk

τ τ= +
   

The iterations continue till the number of iterations 

exceed a particular predefined value or the standard 

deviation of the quality of the solutions obtained by the 

ants is less than a small threshold value which is 

computed based on the quality of the solutions 

obtained by the ants in the first iteration. If the number 

of iterations exceeds a threshold value, it is assumed 

that a feasible schedule is not obtained. This is 

basically to ensure that a schedule is arrived at, within 

a reasonable amount of time. If all the ants come up 

with the same schedule, the standard deviation is zero. 

If the standard deviation is non-zero, then it means that 

the ants have come up with schedules that 

approximately have the same quality and the iterations 

are terminated. i.e., the algorithm  is assumed to 

converge. In that case the schedule with the best 

quality is chosen as the approximate best schedule. 

The schedule with the maximum quality is chosen 

as the best approximate schedule and its parameters are 

computed. 

Chen and Cheng [2] have used the following 

heuristics: A task is assigned to a processor on which it 

has the least execution time; and task assignment is 

done to minimize the laxity in the computing capacity 

of processor. Chen et al. [3] have used Max-Min AS 

(MMAS) for updating the pheromone trails. They have 

used local search heuristics that starts off with an 

initial assignment solution and then tries to find better 

solutions using the following neighborhood operations: 

Remove a task from a processor and then assign it to a 

different processor called 1-Opt; and remove two tasks 

from two processors and then assign each of them to 

the processor that the other task is assigned to initially, 

called 2-Exchange. This algorithm is designed to 

optimize assignment solutions in terms of both 

resource utilization and energy consumption.  

In our work, we have used a model which is a 

combination of AS and ACS. We have not considered 

energy consumption. We have used the following 

heuristics: Negligible amount of pheromones deposited 

by ants is ignored to avoid the scattering of the solution 

trails generated by the ants; priority is given to arrive at 

feasible schedules within a reasonable amount of time; 

and approximation of the optimal schedule is 

admissible, which is decided by the quality of the 

solution based on the total utilization of the processors. 

4. Results 

Algorithm 1 is run for five problem sets with the 
number of tasks as 90, 100, 110, 120 and 130, number 
of processors as eight and the number of ants as 30. 
For the experiment, the utilization matrix is generated 
randomly for each problem set. The same utilization 
matrix is used for all the trials and the First Come First 
Served (FCFS) algorithm. The parameters considered 
in the experiment are the utilization of each processor, 
the average waiting time of all the tasks and the time 
taken for generating a feasible schedule. For each 
problem set, ten trials are run for ACO and the average 
values of the parameters are taken which are then 
compared with those of the FCFS scheduling algorithm 
and the results are tabulated.   

Algorithm 1: Task scheduling.  

While ((iteration_no < max_iteration) and (std_dev (qual[] > 

threshold)) 

{ 

    for (k=1 to num_ants) 

       {  

           for (i=1 to num_tasks) 

(1)

(2)

(3) 

(4) 

(5) 
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                { 

              # select a processor stochastically   

              # using τ matrix 

                     sched[k][i]= stoch_val(τ) 

                 } 

           # compute quality of each schedule 

           qual[k]= calc_qual(sched[k][]) 

        } 

   # update τ using quality of each schedule 

   τ= update(τ, qual[]) 

}  

5. Discussions 

Table 2 presents the individual processor utilization 
and standard deviation of each of the eight processors 
using ACO algorithm. Table 3 shows the same 
parameters for the FCFS algorithm. It is observed from 
Table 3 that the number of processors not utilized by 
the FCFS scheduling algorithm varies from 1 to 4, 
whereas ACO uniformly uses all the processors. 
1 pictorially represents the individual processor 
utilization using ACO and FCFS algorithms for these 
five problem sets. Hence, it is proved that the ACO 
algorithm results in fair processor utilization than the 
FCFS algorithm.  

Table 2. Individual processor utilization for ACO for 5 problem 
sets. 

Processor Tasks=90 Tasks=100 Tasks=110 

1 0.676442 0.685348 0.720643 

2 0.703828 0.749016 0.650884 

3 0.513967 0.508955 0.750640 

4 0.562577 0.580108 0.649285 

5 0.686510 0.709957 0.680012 

6 0.603779 0.682561 0.681009 

7 0.545770 0.683775 0.647264 

8 0.575534 0.728833 0.677148 

Standard Deviation 0.071592 0.080867 0.036797 

Table 3. Individual processor utilization for FCFS for 5 problem 
sets. 

Processor Tasks=90 Tasks=100 Tasks=110 

1 0.999140 0.994333 0.997119 

2 0.999302 0.995411 0.998299 

3 0.993370 0.999633 0.998961 

4 0.964096 0.994504 0.999994 

5 0.000000 0.712981 0.978659 

6 0.000000 0.000000 0.216666 

7 0.000000 0.000000 0.000000 

8 0.000000 0.000000 0.000000 

Standard Deviation 0.528745 0.495497 0.482090 
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Figure 1. Comparison of the individual processor utilization using 

ACO and FCFS algorithms. 

On comparison with the FCFS approach, the ACO 
method balances the load fairly among the different 
processors with the standard deviation of processor 
utilization being 88.7% less than that of FCFS which is 
proved in Figure 2. Table 4 provides a comparison of 
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Tasks=120 Tasks=130 

0.604547 0.707257 

0.771987 0.759952 

0.739138 0.704041 

0.698303 0.690416 

0.664643 0.728576 

0.755928 0.707009 

0.678312 0.650390 

0.744772 0.730427 

0.056398 0.032173 

Table 3. Individual processor utilization for FCFS for 5 problem 

Tasks=120 Tasks=130 

0.999652 0.999192 

0.999039 0.999836 

0.999928 0.998118 

0.999764 0.999814 

0.993507 0.995617 

0.403263 0.971887 

0.000000 0.001559 

0.000000 0.000000 

0.464140 0.459901 
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claim. However, there is a 35.5% increase in the 
scheduling time for the ACO.
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Figure 2. Comparison of standard deviation of the processor 

utilization using ACO and FCFS algorithms.

Table 4. Comparison of the waiting and scheduling time of tasks 
using ACO and FCFS algorithms. 

Number of 

Tasks 

Average Waiting Time of Tasks 

(Secs) 

ACO FCFS

90 0.304094 0.507763

100 0.328272 0.464974

110 0.339830 0.526415

120 0.345808 0.512628

130 0.348974 0.528829
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Figure 3. Comparison of waiting 

using ACO and FCFS algorithms. 

6. Conclusions 

A variant of the ACO algorithm for the Task 
Scheduling Problem is given and the implementation 
results are presented. The algorithm finds a feasible 
task assignment with the objectives of keeping all the 
processors fairly loaded and obtaining the schedule 
within a reasonable amount of time. The parameters 
used for study are the average waiting time of the 
tasks, individual processor utilization and the time 
taken to arrive at a schedule. A comparative study is 
made with the FCFS scheduling algorithm and it is 
found that ACO performs better than the FCFS with 
respect to the waiting time and processor load 
balancing. But ACO method marginally takes more 
time to come up with a schedule compared to FCFS.
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