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Abstract: Digital image segmentation based on Otsu’s method is one of the most widely used technique for threshold 

selection. With Otsu’s method, an optimum threshold is found by maximizing the between-class variance and the algorithm 

assumes that the image contains two classes of pixels or bi-modal histogram (e.g., foreground and background). It then 

calculates the optimal threshold value separating these two classes so that, their between class variance is maximal. The 

optimum threshold value is found by an exhaustive search among the full range of gray levels (e.g., 256 levels of intensity). The 

objective of this paper is to develop a fast algorithm for the Otsu method that reduces the number of search iterations. A new 

search technique is developed and compared with the original Otsu method. Experiments on several images show that the 

proposed Otsu-Checkpoints fast method give the same estimated threshold value with less number of iterations thus resulting 

in a much less computational complexity. 

 

Keywords: Image thresholding, otsu method, optimized search technique. 

Received April 23, 2013; accepted June 23, 2014; published online August 22, 2015 
 

1. Introduction 

Digital image segmentation is a fundamental step in 
many image analysis applications and is a very critical 
task. One can define image segmentation as a 
partitioning or clustering technique used for image 
analysis. In another words, it is a process of 
subdividing an image into its constituent regions or 
objects as part of the analysis process [4, 7, 15]. Image 
segmentation algorithms are generally based on one of 
two basic properties of intensity values: Discontinuity 
and similarity. In the first type, an image is partitioned 
based on sudden changes in intensity (e.g., gray level), 
while in the other type, an image is partitioned into 
regions that are considered to be similar based on 
certain criteria [7, 15]. Otsu method is one of the well-
known thresholding methods and involves an iterating 
process through all the possible threshold values and 
calculating a measure of spread for the pixel levels 
each side of the threshold, i.e., the pixels that fall in 
either foreground or background. The aim is to 
determine the threshold value where the sum of the 
foreground and background spreads is at its minimum 
since the threshold value having a maximum between-
class variance has also a minimum within-class 
variance. Therefore, it is a good alternative to use the 
between-class variance for finding optimum threshold 
since it requires less computational complexity [15, 16, 
18]. In addition, there does not exist a single image 
segmentation algorithm, which can give the best result 
for every digital image. Depending on to the type of 
the  given  image  application   the   most   appropriate 
 approach   is   to   be   chosen   to   achieve   the   best  

segmentation result. In some applications, the 

processing time (or computational complexity) is an 

essential issue. For example, in biometric 

authentication and verification systems this is a typical 

constraint in addition to an efficient segmentation.  

The method proposed in this paper is aimed to 

develop a faster method for estimating the optimal 

threshold value in Otsu method by minimizing the 

number of search iterations along possible threshold 

values. This is achieved by selecting a sub-range of 

gray levels around an initial estimated threshold value 

while still keeping the keeping the quality of the 

segmentation process intact. 

The paper is organized as follows: Section 2 

introduces the segmentation process in general and 

thresholding technique in particular. Section 3 presents 

a brief introduction on Otsu method of thresholding. 

The proposed technique is explained in section 4 while 

section 5 is concerned with the experimental results 

carried out. Section 6 concludes the paper. 

2. Image Thresholding 

Digital image segmentation has been a major research 

topic in digital image processing resulting a variety of 

methods and algorithms developed and improved for 

image segmentation ranging from general 

segmentation methods to tailored for certain image 

type or a certain application [2, 17]. Each method has a 

different approach in defining what characterizes a 

good segmentation and uses a different technique to 

find the optimal segmentation [13, 14]. Image 
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thresholding is one of the main approaches of 

segmentation and Otsu thresholding method is one 

well-known thresholding technique.  

Image thresholding is considered the easiest way to 

segment an image. Although, it seems simple the 

problem of choosing a good and an accurate threshold 

value is a difficult task. Thresholding is most 

commonly used for separating objects from the 

background [3, 9, 10, 11, 15]. The most widely used 

thresholding technique uses the gray level histogram. 

When an image, f(x, y) is composed of dark objects on 

a light background, then the foreground is clearly 

distinguishable from the background. In this case, the 

image histogram will be bimodal so that, the threshold 

value will lie in the valley of the histogram ensuring 

that the objects can be extracted by comparing pixel 

values with a threshold T. If any pixel (x, y) for which 

f(x, y)≥T is considered as belonging to the object class, 

otherwise, it belongs to the background class [7, 8]. 

Unfortunately, this is not the case in most images. In 

addition to histogram based thresholding techniques, 

several techniques have been proposed, trying to find a 

way of choosing the best value of threshold T that will 

result in an accurate segmentation. Otsu method is one 

of the widely used thresholding methods; Otsu’s 

method involves iterating through all possible 

threshold values and calculating the weighted sum of 

within-class variances of the foreground and 

background pixels. The aim is to find the threshold 

value where the sum of within-class variances is at its 

minimum. 

3. The Otsu’s Method 

Let the pixels of a given picture be represented in L 

gray levels [1, 2, ..., L]. The number of pixels at level i 

is denoted by ni and the total number of pixels by 

N=n1+n2+...+nL. The probability distribution [8, 12, 

16]:  
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and C1 (background and objects) by a threshold at level 
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Where ωt and
 
µt are the 0

th
 and 1

st
 order cumulative 

moments of the histogram up to t
th
 level and are 

defined as follow: 
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And µt is the total mean level of the original image 
which is computed as: 
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For any t; the following relation is valid:  
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In order to evaluate the goodness of the threshold (at 
level t), within-class variance and between-class 
variance are used as measures of class separability. 
They are are defined, respectively as follows:  

                          
2 2 2
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The problem is then reduced to maximize one of these 

criterion measures. It is noticed that 
2

Bσ  is dependent 

on 1
st 

order statistics while 
2

W
σ  depends on the 2

nd
 order 

statistics. Therefore,
 

2

B
σ  is the simplest measure with 

respect to t. Thus, η(t) is adopted as the criterion 

measure to select the best threshold value (t) which is 

determined by a sequential search by using the 

following functions [12]: 
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Since, 
2

Tσ  is not a function of threshold (t), then the 

optimal threshold should be the value which 

maximizes 
2

)(B tσ . Thus the optimal value threshold (t*)  

is computed with the following equation [12]: 
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4. Proposed New Fast-Otsu Methods (Otsu

Checkpoints) 

In Otsu method the value of 
2

)(
B

tσ  is computed for 

each t, 0≤ t ≤ L. Once this done, the minimal value of
2

)(
B

tσ , say 
2 *)(
B

tσ  is selected from these 

is then considered as the optimal threshold value 

By using Equation 18, for each t the computational 

effort for calculating 
2

)(
B

tσ  is bounded by 

is constant. By considering the time complexity 

notation [6], let f(t) be the time complexity for 

calculate 
2

)(B tσ , therefore, f(t)≤ cL, i.e.

0≤ t ≤ L, it requires O(L
2
) cycles to calculate all 

[5]. Our aim is to speed up the process of Otsu 

thresholding by developing a fast iterative Otsu 

thresholding algorithm. We speed up the process by 

iteratively minimizing the range of possible threshold 

values until the range reaches its minimum length, 

which is 3 gray level.  

For a bimodal histogram, in most of the cases the 

optimal threshold estimated by Otsu method should not 

be far from image global mean muT. Figures 

show examples of an image and its

Considering this, we can narrow the search range to a 

certain distance around the local mean. However, since 

this is not the case in all images, instead of building the 

search range only around the global mean; we propose 

to set our initial search range to the full gray l

range. In that range we then set three checkpoints, 

choose the one with the maximum 

Variance (BCV) 
2

Bσ , then set it as the initial estimated 

threshold Tinit. Around this estimated threshold value, 

we will build the new search range and repeat the same 

process of setting checkpoints and narrowing the 

search range until we reach one of our stopping 

conditions: 

1. The BCV at the selected initial threshold 

BCV larger than the two gray levels around it

1, Tinit+1), in this case we will set optimal threshold 

to Tinit and exit our search process.  

2. The range become only three gray levels length

this point we will set the optimal threshold to the 

one of the 3 gray levels that has the 

between class variance BCV and exit our search 

process. 

Figure 3 depicts an example of an image and its 

histogram showing the phases of our search process. 

  

a) Original. b) Otsu-T=91. 

Figure 1. Original, histogram and segmented image
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is then considered as the optimal threshold value [12]. 

the computational 

is bounded by cL, where c 

the time complexity 

be the time complexity for t to 

i.e., f(t)=O(L). For 

cycles to calculate all 
2

( )
s

B
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Our aim is to speed up the process of Otsu 

thresholding by developing a fast iterative Otsu 

thresholding algorithm. We speed up the process by 

iteratively minimizing the range of possible threshold 

values until the range reaches its minimum length, 

For a bimodal histogram, in most of the cases the 

optimal threshold estimated by Otsu method should not 

Figures 1 and 2 

examples of an image and its histogram. 

, we can narrow the search range to a 

certain distance around the local mean. However, since 

this is not the case in all images, instead of building the 

search range only around the global mean; we propose 

to set our initial search range to the full gray level 

range. In that range we then set three checkpoints, 

choose the one with the maximum Between Class 

, then set it as the initial estimated 

. Around this estimated threshold value, 

we will build the new search range and repeat the same 

and narrowing the 

search range until we reach one of our stopping 

at the selected initial threshold Tinit has 

larger than the two gray levels around it (Tinit-

, in this case we will set optimal threshold 

gray levels length, at 

this point we will set the optimal threshold to the 

one of the 3 gray levels that has the maximum 

and exit our search 

Figure 3 depicts an example of an image and its 

histogram showing the phases of our search process.  

 

c) Histogram. 

image of skin cancer 5. 

 

a) Original. b) Otsu-

Figure 2. Original, histogram and segmented image of einstein

 

a) Original. 

 

c) Phase 2. 

Figure 3. Original image and stages for finding optimal threshold 

for image of einstein. 

Now, in our initial stage we set the initial check 

points to the global mean of the full histogram as the 

mid-checkpoint icp2 and two

parts of the histogram after splitting it into two parts on 

each side of this mid-checkpoint.

initial checkpoints (icp1, 

compute (
2

Bσ (icp1), 
2

Bσ (icp2

The three initial checkpoints are defined, respectively

as: 

2 T
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1

icp

j
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3
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These check points divide the 
image, f(x, y) into four initial sub

1 1
( (x, y)), ,iRange min f icp= …

2 1 2
iRange icp icp= …

3 2 3
iRange icp icp= …

4 3
, , ( ( , ))iRange icp max f x y= …

In our proposed optimized search techniques, we will 

choose the checkpoint with the maximum 

it as the initial estimated threshold 

narrow the search range for the next stage to one of the 

two initial sub-ranges bounded by this checkpoint 

(initial estimated threshold 

range, we will do the follow

1. Check BCV for the two gray levels around it 
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-T=90. c) Histogram. 

histogram and segmented image of einstein. 

 

b) Phase 1. 

 

d) Phase 3. 

Figure 3. Original image and stages for finding optimal threshold 

, in our initial stage we set the initial check 

points to the global mean of the full histogram as the 

and two local means of the two 

parts of the histogram after splitting it into two parts on 

checkpoint. This results in 3 

, icp2, icp3) for which we 

2),  
2
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These check points divide the image histogram of an 
initial sub-ranges, as follows: 

1 1
( (x, y)), ,iRange min f icp= …  

2 1 2
, ,iRange icp icp= …  

3 2 3
, ,iRange icp icp= …  

, , ( ( , ))iRange icp max f x y= …  

In our proposed optimized search techniques, we will 

choose the checkpoint with the maximum 
2

)(B tσ  and set 

it as the initial estimated threshold Tinit. Next, we will 

narrow the search range for the next stage to one of the 

ranges bounded by this checkpoint 

(initial estimated threshold Tinit). To select the sub-

range, we will do the following:   

for the two gray levels around it (Tinit-1, 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 



430                                                             The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016                                                             

 

Tinit+1) and compare it to BCV at this checkpoint. 
2. If max BCV is at (Tinit-1) we select the sub-range 

that ends at this checkpoint.  
3. If (Tinit+1) has max BCV, we select the sub-range 

that starts at this checkpoint.  
4. On the other hand, if Tinit itself has max BCV, we 

then will stop our search process and set the optimal 
threshold to Tinit.  

Now, in the following stages and in case we didn’t exit 
the search process, we will set our checkpoints 
differently. For the current sub-range Rc=[r1, r2], the 
three check points (cp1, cp2, cp3) are set as follows: 

2 1

2 1

( )

2

r r
cp r

−
= +  

2 1

1 1

2

cp r
cp r

−
= +  

2 2

3 1

2

r cp
cp cp

−
= +  

These check points will again divide the current 

histogram range into four new sub-ranges, as follows: 

1 1 1
,,Range r cp= …  

2 1 2
,,Range cp cp= …  

3 2 3
,,Range cp cp= …  

4 3 2
, ,Range cp r= …  

Once again, we will choose the checkpoint with the 

maximum 
2

)(
B

tσ , then we narrow the search range in 

the same way done in the initial stage; This process 

will keep repeated until the optimal threshold is found 

or the selected sub-range is small enough that is when 

the range is made of only 3 gray levels. 
The proposed search algorithm can be summarized 

in the following steps:  

1. Compute image histogram hist(f(x, y)) and 
probabilities of each intensity level Prop(f(x, y)).  

2. Find icp2, P1 and icp3 using Equations 19, 20, 21 
respectively. 

3. Compute (
2

Bσ (icp1), 
2

Bσ (icp2), 
2

Bσ (icp3)), using 

Equation 17.  

4. Find Maxj= 1:3(
2

Bσ (icpj)).  

5. Set initial threshold Tinit equals to selected 
checkpoint icpj.  

6. Using one of the ranges defined in Equations 22, 23, 
24, 25 set next search range Rc=[r1, r2] as follows:   

a. Check BCV for the two gray levels around it 
(Tinit-1, Tinit+1) and compare it to BCV at this 
checkpoint. 

b. If max BCV is at (Tinit-1) we select the sub-range 
that ends at this checkpoint. 

c. If has max BCV, we select the sub-range that 
starts at this checkpoint. 

d. On the other hand, if Tinit has max BCV, then 
optimal threshold t

* 
is found and set to Tinit and 

we stop our search process. 

7. While (size(Sub-range)> 3) and (optimal threshold 

is not found) do:   

a. Find P2, cp1 and cp3 using Equations 26, 27, 28 

respectively.  

b. Compute (
2

Bσ (cp1), 
2

Bσ (cp2), 
2

Bσ (cp3)), using 

Equation 17.  

c. Maxj= 1:3(
2

Bσ (cpj)).  

d. Using one of the ranges defined in Equations 29, 

30, 31 and 32, we check and set next search 

range Rc=[r1, r2] in the same manner described in 

step 6. 

8. If size(Sub-range)= 3, then ∀ t current sub-range 

Rc,  Compute 
2

)(
B

tσ , using Equation 18. 

9. Set optimal threshold t
*
 to t with Max

2
)(

B
tσ . 

Table 1 compares the pseudo code and performance for 
original Otsu and proposed Otsu-Checkpoints on a 
sample test image. 

Table 1. Pseudo code and sample result for original otsu and otsu-checkpoints methods on image (einstein). 

Otsu 

Steps Outcomes 

Set Range to all Gray Levels 0-255 

For all t in Range: {Calculate BCV} Bcv(0), Bcv(1), ..., Bcv(255) 

Find threshold tmax with max BCV tmax= 91 

Proposed Method: Otsu-Checkpoints 

Steps Phase 1 (Outcomes) Phase 2 (Outcomes) Phase 3 (Outcomes) 

Set Search Range 0-255 77-109 85-93 

Find checkpoints (cp1, cp2, cp3) 77, 109, 134 85 , 93, 101 87, 89, 91 

Define Sub-Ranges Formed by Checkpoint 
[0-77], [77-109] [109,134], 

[134,255] 

[77-85], [85-93] 

[93-101], [101,109] 

[85-87], [87-89] 

[89-91], [91-93] 

Calculate BCV for 3 Checkpoints BCV(77), BCV(109), BCV(134) BCV(85), BCV(93), BCV(101) BCV(87), BCV(89), BCV(91) 

Find cpi with max BCV Cp1(77) Cp2(93) Cp3(91) 

Check Bcv around selected cp(cp-1, cp, cp+1) BCV(76) , BCV(77) , BCV(78) BCV(92), BCV(93), Bcv(94) BCV(90), BCV(91), BCV(92) 

If Bcv at cp is Greater than BCV at (cp-1, cp+1) Then exit loop. No No 
Yes, Exit Loop 

tmax = 91 

Else Set New Range to the Sub-Range that Cover Value with max Bcv 
Max Bcv at (78) 

New-Range [77, 109] 

Max Bcv at (92) 

New-Range [85-93] 
--- 

If new range is same as initial,Then exit loop No No --- 

Else Repeat Process Repeat Process Repeat Process --- 

Comparing Performance 

Variable/Method Otsu Proposed 

Number of Gray Levels Checked (Iterations): 256 15 

Computational Complexity: O(256
2
) O(15

2
) 

(26) 

(27)

(28) 

(29)

(30)

(31)

(32)
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5. Experimental Results 

The proposed method has been implemented and 

evaluated using 80 real images with different 

dimensions and gray levels. Those test images are from 

Gonzalez [4], which are widely used in research papers 

related to image segmentation with different types of 

methods and techniques. First the original Otsu method 

(Otsu) is applied on these 80 test images; then the same 

images are segmented using our proposed fast Otsu 

method (Otsu-checkpoints) and the results are shown 

in Tables 2 and 3. For evaluating the performance of 

the proposed method against original Otsu, we have 

used three measures: Number of iterations, 

computational complexity and the estimation of 

accuracy. With number of iterations, we refer to the 

size of gray level range, which has been tested for 

maximum between class variance. In the conventional 

Otsu, this is equal to the full gray level range. The 

second measure is the computational complexity and it 

is related to the number of iterations calculating 
2

( )
s

B tσ . 

Considering the time complexity notation [3], in the 

conventional Otsu method, forthe full range of gray 

levels [0, ..., L], it requires O(L
2
) cycles to calculate all 

2
( )

s

B tσ  [2]. In our optimized Otsu method, we do not 

calculate 
2

( )
s

B tσ  for the full range of gray levels but 

rather this is done for a subset of gray levels. The size 

of this subset, denoted as Ls, is not fixed and in the 

worst case it will be Ls< L/3, thus the computational 

complexity will be O(Ls
2
). We can clearly see that the 

computational complexity is related to the size of the 

tested gray levels, which is equivalent to number of 

iterations. For the third measure, we have computed 

the accuracy of our method by estimating the threshold 

values by comparing the estimated threshold to that 

found by the original Otsu and then compute the 

percentage of exact matches. We have evaluated the 

performance of our method in enhancing the 

conventional Otsu by the percentages of reduction in 

iterations and computational complexity. The 

percentage of computational complexity is computed 

based on the assumption that for each t the 

computational effort for calculating 
2

( )
s

B tσ  is bounded 

by cL, where c is constant. Since, c is a constant for 

any value t and the computational effort is affected by 

the number of iterations (value of L), then the 

percentage of reduction can be calculated as:  

2 2  

1

1
 . (   )

n

i
i

L Ls
n =

∑ −  

Where n is the number of test images. 

As shown in Tables 2 and 3 (Appendix 1), our 

method yields excellent results, this is demonstrated by 

the fact that we succeeded in estimating the same 

threshold value found by the original Otsu method with 

100% estimation accuracy, while reducing the 

computational complexity by an average of 99.10% 

and with 90.83% average reduction of the number of 

search iterations as shown in Table 3. As described 

earlier, the optimal threshold value does not always lie 

around the global mean; this can be clearly seen in 

Tables 2 and 3. For example, in 15% of the images the 

optimal threshold value does not occur in the area 

centered around the global mean. Our proposed 

technique has succeeded in selecting the correct area 

within which the exact threshold value is estimated by 

Otsu method. Theretofore, the results clearly show that 

our proposed method yields a high accuracy of 

threshold estimation with a significant reduction of the 

computational complexity when compared to original 

Otsu counterpart. 

 

6. Conclusions 

Digital image segmentation is an essential task in many 

digital image-processing applications. Obtaining better 

and more efficient image segmentation is a critical 

issue in these applications while still reducing the 

computational complexity. This paper has proposed a 

fast Otsu thresholding technique. From the evaluation 

of the accuracy of threshold estimation, the reduction 

of the computational complexity, it can be concluded 

that our proposed method (Otsu-checkpoints) is able to 

produce the same threshold value compared to the 

original Otsu method but with a significant reduction 

of the computational complexity. Thus, making it 

useful in many applications where real (near) real time 

is required. 
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Appendix 1 

Table 2. Estimated thresholds and evaluation for methods: Otsu, proposed otsu-checkpoints (part-1). 

Image 
Threshold Global 

Mean 

Checkpoints Selected 

Cp 

No. of 

Itrs 

% 

Itrred 

% 

Cmplxred Otsu Proposed Cp1 Cp2 Cp3 

Chickenfilet with Bones 79 79 94 80 85 90 1 15 94.14 99.66 

Einstein 90 90 109 87 89 91 3 15 94.14 99.66 

MRI of Knee Univ Mich 121 121 142 121 122 123 2 25 90.23 99.05 

MRI Spine1 Vandy 108 108 68 108 109 110 2 25 90.23 99.05 

Skin Cancer 19 98 98 117 99 101 103 1 15 94.14 99.66 

Skin Cancer 4 112 112 124 113 114 115 1 20 92.19 99.39 

Skin Cancer 5 91 91 99 88 90 92 3 15 94.14 99.66 

Skin Cancer 7 74 74 94 75 76 77 1 20 92.19 99.39 

Skin Cancer 8 91 91 95 91 92 93 2 20 92.19 99.39 

Skin Cancer 9 74 74 78 74 75 76 2 20 92.19 99.39 

Washingtondc Band4 133 133 147 134 135 136 1 38 85.16 97.80 

Bacteria 98 98 96 97 99 101 2 15 94.14 99.66 

Blob Original 108 108 121 109 110 111 1 28 89.06 98.80 

Blobs 170 170 119 170 171 172 2 25 90.23 99.05 

Blobs In Circular Arrangement 142 142 156 143 145 147 1 20 92.19 99.39 

Boats 105 105 141 104 105 106 3 20 92.19 99.39 

Brain 46 46 49 43 45 47 3 15 94.14 99.66 

Brain Tomur (1) 77 77 50 78 84 90 1 15 94.14 99.66 

Brain Tomur (2) 69 69 50 70 72 74 1 20 92.19 99.39 

Brain Tomur (3) 59 59 31 60 61 62 1 20 92.19 99.39 

Brain Tomur (4) 81 81 30 74 78 82 3 15 94.14 99.66 

Bubbles 174 174 140 175 181 187 1 15 94.14 99.66 

Building Original 146 146 134 147 148 149 1 38 85.16 97.80 

Cameraman 88 88 120 89 91 93 1 20 92.19 99.39 

Chest Xray Vandy 103 103 143 100 102 104 3 20 92.19 99.39 

Columbia 100 100 82 99 100 101 3 20 92.19 99.39 

Crabpulsar Optical 131 131 104 132 133 134 1 33 87.11 98.34 

Ctskull 256 117 117 130 118 119 120 1 28 89.06 98.80 

Cygnusloop Xray Original 75 75 68 75 76 77 2 25 90.23 99.05 

Dark Blobs on Light Background 142 142 155 142 143 144 2 25 90.23 99.05 

Defective Weld 167 167 174 168 169 170 1 38 85.16 97.80 

Dental Xray 146 146 168 146 147 148 2 20 92.19 99.39 

Face 80 80 94 81 82 83 1 20 92.19 99.39 

Fb1 132 132 137 133 134 135 1 33 87.11 98.34 

Fb10 176 176 209 177 182 187 1 15 94.14 99.66 

Fb11 181 181 216 180 181 182 3 20 92.19 99.39 

Fb12 130 130 132 131 132 133 1 33 87.11 98.34 

Fb13 148 148 175 149 150 151 1 38 85.16 97.80 

Fb14 152 152 171 152 153 154 2 20 92.19 99.39 

Fb15 150 150 183 149 151 153 2 20 92.19 99.39 

Fb16 112 112 113 113 114 115 1 33 87.11 98.34 

Fb17 110 110 99 111 113 115 1 20 92.19 99.39 

Fb18 159 159 175 160 161 162 1 20 92.19 99.39 

Fb19 125 125 141 125 126 127 2 25 90.23 99.05 

Fb2 181 181 211 182 183 184 1 33 87.11 98.34 

Fb20 153 153 144 153 154 155 2 20 92.19 99.39 

Fb3 160 160 181 161 162 163 1 33 87.11 98.34 

Fb4 149 149 165 150 151 152 1 38 85.16 97.80 

Fb5 105 105 74 105 106 107 2 25 90.23 99.05 

Fb6 147 147 166 146 147 148 3 20 92.19 99.39 

Fb7 128 128 134 128 129 130 2 25 90.23 99.05 

Fb8 142 142 160 143 144 145 1 33 87.11 98.34 

Fb9 174 174 203 174 175 176 2 20 92.19 99.39 

Headct Vandy 90 90 81 91 92 93 1 33 87.11 98.34 

House 117 117 109 117 118 119 2 20 92.19 99.39 

Contd. In Tabel 3 

Table 3. Estimated thresholds and evaluation for methods: Otsu, proposed otsu-checkpoints (part-2). 

Image 
Threshold Global 

Mean 

Checkpoints Selected 

Cp 

No. of 

Itrs 

% 

ItrRed 

% 

Cmplxred Otsu Proposed Cp1 Cp2 Cp3 

Kidney 127 127 116 128 129 130 1 33 87.11 98.34 

Large Septagon 118 118 111 115 119 123 2 15 94.14 99.66 

Left Hand Xray 79 79 52 79 80 81 2 20 92.19 99.39 

Lena 101 101 107 101 102 103 2 20 92.19 99.39 

Lung 85 85 81 86 88 90 1 20 92.19 99.39 

Noisy Region 181 181 147 182 183 184 1 20 92.19 99.39 

Ordered Matches 143 143 114 139 144 149 2 15 94.14 99.66 

Orig Chest Xray 78 78 61 79 80 81 1 33 87.11 98.34 

Polymersomes 181 181 171 181 182 183 2 25 90.23 99.05 

Radar1 42 42 28 43 44 45 1 33 87.11 98.34 

Radar2 65 65 47 56 66 76 2 10 96.09 99.85 

Radar3 52 52 57 43 48 53 3 10 96.09 99.85 

Random Matches 143 143 111 143 144 145 2 25 90.23 99.05 

Rice Image with Intensity Gradient 134 134 117 134 135 136 2 20 92.19 99.39 

Scalp 52 52 52 52 53 54 2 20 92.19 99.39 

Skull 96 96 36 96 97 98 2 25 90.23 99.05 

Small Blobs Original 120 120 131 121 122 123 1 33 87.11 98.34 

Third from Top 111 111 114 112 113 114 1 28 89.06 98.80 

Tooth 109 109 147 109 110 111 2 25 90.23 99.05 

Tungsten Filament Shaded 75 75 94 68 72 76 3 15 94.14 99.66 

Tungsten Original 99 99 129 88 94 100 3 15 94.14 99.66 

Turbine Blade Black Dot 132 132 135 133 134 135 1 28 89.06 98.80 

Weld Original 167 167 174 168 169 170 1 38 85.16 97.80 

Wood Dowels 121 121 88 122 123 124 1 33 87.11 98.34 

Yeast USC 42 42 34 42 43 44 2 20 92.19 99.39 

Evaluation of Performance Among all Experiments (Tables 1, 2) For Proposed Method (Otsu-Checkpoints) 

Accuracy = 100% 

Percentage of Reduction in: 

1. No. Of Checked Gray Values = 90.83% 

2. Computational Complexity = 99.10% 

 


