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Abstract: eXtensible Markup Language (XML) is gaining popularity and is being used widely on internet for storing and 

exchanging data. Large XML files when transferred on network create bottleneck and also degrade the query performance. 

Therefore, efficient mechanisms of compression and decompression are applied to XML files. In this paper, an algorithm for 

performing XML compression and decompression is suggested. The suggested approach reads an XML file, removes tags, 

divides the XML file into different parts and then compresses each different part on a separate core for achieving efficiency. 

We compare performance results of the proposed algorithm with parallel compression and decompression of XML files using 

GZIP. The performance results show that the suggested algorithm performs 24%, 53% and 72% better than the parallel GZIP 

compression and decompression on Intel Xeon, Intel core i7 and Intel core i3 based architectures respectively.   
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1. Introduction 

eXtensible Markup Language (XML) [4] started 
almost one decade ago and was initially used by very 
few people. After some time it started to gain 
popularity, and nowadays it is being used everywhere 
on internet for storing and exchanging data [5, 6, 12, 
23]. XML has now become a common standard for 
exchanging data of heterogeneous systems. Its 
deployment exists in small as well as large groups and 
organizations e.g., in banks, sports, chemical, business 
reporting and healthcare etc.  
With the increase in data of an organization, the size 

of the XML files also increases. Since, XML files are 
transferred on a network to provide compatibility 
among several formats, the data traffic on the network 
also increases. Consequently, a bottleneck is created 
thereby degrading the performance of the network as 
well as associated queries. A natural solution is to 
compress and decompress XML files in order to be 
transferred on the network. There are different 
compression mechanisms such as GZIP [7], XMILL 
[11], XGRIND [21] etc., however, these mechanisms 
are not very efficient when working on text oriented 
XML files.  
In this paper, we suggest an algorithm for 

performing efficient XML compression and 
decompression. The suggested approach reads an XML 
file, removes tags and divides the XML file into 
different parts and then compresses each different part 
on separate core for achieving efficiency. We compare 
performance results of the proposed algorithm with 
parallel compression and decompression of XML files 
using GZIP.  
The remaining part of this paper is organized as 

follows: Section 2 describes XML compression. The 
optimized  algorithm  is  suggested  in  section  3.  The  

experimental setup and results are given in section 4, 
and last section provides conclusion and future work.  

2. XML Compression 

Compression [17] is a process of reducing large 
amount of data in to small size. There are different 
categories of compression mechanisms including 
lossless and lossy compression [3], symmetric and 
asymmetric compression [2], statistical and pattern 
model based compression [10] and adaptive and non-
adaptive [2] compression. By using compression, the 
storage space is saved and data transfer rate improves 
as well. In this regard, Run-Length Encoding (RLE), 
Lempel-Ziv-Welch (LZW), fractal ART, JBIG, 
Discrete Cosine Transform (DCT) and CCITT 
(variation of Huffman encoding) are widely used 
schemes of compression.  
We know that in XML files same tags and attributes 

are repeated again and again. Each data item has 
starting and as well as ending tags. Because of this, the 
size of file may increase many times. If this file is 
transferred over network, performance will degrade. 
Large XML file may create bottleneck on network and 
may also degrade query performance thereby requiring 
compression of XML documents. 
Figure 1 shows XML document that contains 

metadata with a total size of 177bytes. If the metadata 
is excluded, the file size becomes 29bytes. It means 
that original XML file size was almost six times larger 
than that without metadata. Furthermore, an XML file 
may contain lengthy tags and attributes that are 
repeated many times. Consequently, the XML file size 
increases, but the efficiency of transfer/processing 
decreases. Therefore, the XML files must be 
compressed.  
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Figure 1. XML file. 

The following algorithms are widely used while 
compressing data. 

2.1. LZ77 

LZ77 [24] is a general purpose algorithm and is used in 

different compression tools such as GZIP. LZ77 parses 

the input string and finds same pattern. It checks each 

symbol one by one and when the same symbol is 

repeated, it finds out the longest duplicate substring.  

2.2. Huffman Encoding 

In Huffman encoding [9, 15] scheme, the symbol with 

higher frequency is assigned short code and the symbol 

with lower frequency is assigned a longer code. An 

important thing is that, longer codes are constructed in 

such a way that shorter codes do not use as prefixes. In 

this coding, a Huffman tree is constructed, which is a 

binary tree. In binary tree, left branch represents 0 and 

the right branch represents 1.  

2.3. Arithmetic Encoding 

As in Huffman encoding, different number of bits are 

used for different symbols. But arithmetic coding uses 

a different approach [8, 15, 22]. It stores the output in a 

single floating point number greater than or equal to 0 

and less than 1. This scheme is much flexible than 

Huffman encoding.  

2.4. XML Compression Tools 

The following existing tools are used for compressing 
XML files. 

2.4.1. GZIP 

GZIP [7] is one of the most common and general 

purpose tools used for compression and 

decompression. It was developed by Gailly and Adler 

[7]. It finds out the similar substrings in an XML file 

and replaces them to reduce the size of the file. It is 

good enough for those documents in which same 

substring is used again and again. It is normally based 

on DEFLATE algorithm, where DEFLATE uses LZ77 

and Huffman encoding. Gzip has following advantages 

[18]: 

• It does not concentrate on document structure. 
• It is a general purpose tool. 
• Its compression rate may be up to 50%. 

The main disadvantage of GZIP is that it does not 

support semantic compression because it is a general 

compression algorithm. 

2.4.2. XMILL 

XMILL [11] is an efficient lossless compressor for 
compressing and XdeMILL is a decompress or for 
decompressing XML documents. Comparatively its 
compression rate is twice than GZIP with a small 
overhead. For compression only XML file is used, that 
is, DTD is not required. The most important reason for 
popularity of XMILL is that it is extensible.  

2.4.3. XGRIND 

The limitation of XMILL is that it does not support 
querying on compressed data. For query processing 
complete decompression is required which is not 
possible for limited resource devices such as handheld 
devices. XGRIND [21] supports querying process on 
compressed data. Consequently, the disks seek time 
decreases and the efficiency improves. 

3. Proposed Framework 

It is well known that there are many limitations of 
serial/sequential computation. It is not possible to get 
too much efficiency with a single processor, and 
therefore, multiple processing unit/cores are required. 
For achieving efficiency during XML file 
compression, this paper proposes an optimized 
algorithm which makes use of multiple processing 
units/cores. This algorithm reads an XML file, 
removes tags and then divides extracted data into 
different number of parts and sends each part on 
different processor for compression. For parallelism, 
we used MPJ Express [14, 19, 20], which is a library 
implemented by the mpiJava1.2 API [13, 16] and 
supports Single Program Multiple Data (SPMD) based 
model. SPMD is a subset of Multiple Instruction 
Multiple Data (MIMD) [1].  

3.1. Optimized Algorithm for Compression 

Algorithm 1 shows the steps required for compression 
of XML files. 

Algorithm 1: Optimized algorithm for compression. 

1. Read XML file. 
2. Remove tags. 
3. Store extracted data in String form. 

4. Divide String into n parts, {S1, S2, …, Sn} 
5. // The code below executes for each processor P1, ..., Pn 
6. If “Processor is P1 [MASTER]” then 
7.       Send substrings towards SLAVE Processors. 
8. Else // Processors Pi   i€{2, 3, …, n} 

9. Receive substring Si. 
10.   Compress substring by GZIP 
11.   Store each Compressed substring in a separate file Fi. i€{1,    

  2, 3, …, n-1}. 

12. End If 

The algorithm reads an XML file (step 1). In step 2, it 
removes the tags, because tags are repeated again and 
again and increase the file size. After this the extracted 
data (without tags) is stored in string form in step 3. In 
step 4, the string is divided into n parts where n is the 
number of processors and is set by the programmer. 

<?xml version=”1.0”  encoding=”UTF-8”?> 

<Address> 

<HouseNo> 744 </HouseNo> 

<StreetNo> 4 </StreetNo> 

<Colony> Noor-ul-Islam </ Colony> 

<City name=”Multan” /> 

</Address> 
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Subsequently parallel execution starts. If part is 
executed only by “Master” processor which is 
represented by P1. Moreover, the substrings are sent 
towards “Slave” processors for parallel execution. In 
contrast, the Else part is executed by all the slaves 
simultaneously. Each slave receives substring Si from 
the Master processor and compresses it. After 
compression, each slave stores the compressed string 
in a separate file Fi. 

3.2. Optimized Algorithm for Decompression 

Algorithm 2 shows the steps required for 
decompression. 

Algorithm 2: Optimized algorithm for decompression. 

1. Read DTD file 

2. Extract tags from DTD file. 
3. Read compressed files Fi i€{1, 2, 3, …, n-1}. 
4. Uncompress Fi to string Si i€{1, 2, 3, …, n-1}. 
5. Sn� S1+S2…..+Sn-1 

6. Merge Sn with extracted tags to generate original XML file. 

Initially, the algorithm reads DTD file in step 1. In step 
2, the algorithm extracts tags from DTD, because 
compressed files are without tags. In steps 3 and 4, 
compressed files are read and uncompressed to a string 
form. Subsequently the strings are concatenated to 
form a single string. In the last step, the algorithm 
generates the original XML file. 

4. Experimentation: Setup and Results 

This section presents the configuration used for 
experimentation and the results obtained after 
executing the optimized algorithm in comparison with 
the standard parallel execution of GZIP. We have used 
different files of sizes 500KB, 1MB, 1.5MB, 2MB, 
2.5MB, 3MB, 4MB and 5MB on three architectures 
A1, A2 and A3 as given in Table 1. 

Table 1. Architectures and their configurations used for 
experimentation. 

Archictecture (A1) Archictecture (A2) Archictecture (A3) 

Intel Xeon® X5560, 64 

bit, 12GB RAM 

Intel Core i7- q720, 64-bit, 

6GB RAM 

Intel Core i3, 2.53 GHz, 64 

bit, 2GB RAM 

 
In the rest of the paper, we use the term “optimized 

algorithm” to refer to the proposed algorithm and the 
term “standard algorithm” to refer to the GZIP based 
parallel compression and decompression. The 
execution speed for all the results is measured in 
seconds. 

4.1. Performance Results for File Size=500KB 

The performance results for a file of size 500KB are 
given in Figure 2. As shown in the figure, the 
optimized code performs better than the standard code 
on all the three architectures A1, A2 and A3. There is 
an improvement of 25%, 43% and 65% in performance 
of the optimized code in comparison with the standard 
code. Overall, there is an average improvement of 44% 
for the file size 500KB. 
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Figure 2. Performance results of optimized algorithm on 500kb. 

4.2. Performance Results for File Size=1MB 

The performance results for a file of size 1MB are 
given in Figure 3. As shown in the figure, the 
optimized code performs better than the standard code 
on all the three architectures A1, A2 and A3. There is 
an improvement of 20%, 59% and 83% in performance 
of the optimized code in comparison with the standard 
code. Overall, there is an average improvement of 54% 
for the file size 1MB. 
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Figure 3. Performance results of optimized algorithm on 1MB. 

4.3. Performance Results for File Size=1.5MB 

The performance results for a file of size 1.5MB are 
given in Figure 4. As shown in the figure, the The 
optimized code performs better than the standard code 
on all the three architectures A1, A2 and A3. There is 
an improvement of 10%, 60% and 64% in performance 
of the optimized code in comparison with the standard 
code. Overall, there is an average improvement of 45% 
for the file size 1.5MB. 
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Figure 4. Performance results of optimized algorithm on 1.5MB. 

4.4. Performance Results for File Size=2MB 

The performance results for a file of size 2MB are 
given in Figure 5. As shown in the figure, the 
optimized code performs better than the standard code 
on all the three architectures A1, A2 and A3. There is 
an improvement of 17%, 54% and 73% in performance 
of the optimized code in comparison with the standard 
code. Overall, there is an average improvement of 36% 
for the file size 2MB. 
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Figure 5. Performance results of optimized algorithm on 2MB. 
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4.5. Performance Results for File Size=2.5MB 

The performance results for a file of size 2.5MB are 

given in Figure 6. As shown in the figure, the 

optimized code performs better than the standard code 

on all the three architectures A1, A2 and A3. There is 

an improvement of 32%, 58% and 70% in performance 

of the optimized code in comparison with the standard 

code. Overall, there is an average improvement of 53% 

for the file size 2.5MB. 
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Figure 6. Performance results of optimized algorithm on 2.5MB. 

4.6. Performance Results for File Size=3MB 

The performance results for a file of size 3MB are 

given in Figure 7. As shown in the figure, the 

optimized code performs better than the standard code 

on all the three architectures A1, A2 and A3. There is 

an improvement of 30%, 57% and 75% in performance 

of the optimized code in comparison with the standard 

code. Overall, there is an average improvement of 54% 

for the file size 3MB. 
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Figure 7. Performance results of optimized algorithm on 3MB. 

4.7. Performance Results for File Size=4MB 

The performance results for a file of size 4MB are 

given in Figure 8. As shown in the figure, the 

optimized code performs better than the standard code 

on all the three architectures A1, A2 and A3. There is 

an improvement of 32%, 57% and 76% in performance 

of the optimized code in comparison with the standard 

code. Overall, there is an average improvement of 55% 

for the file size 4MB. 
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Figure 8. Performance results of optimized algorithm on 4MB. 

4.8. Performance Results for File Size=5MB 

The performance results for a file of size 5MB are 

given in Figure 9. As shown in the figure, the 

optimized code performs better than the standard code 

on all the three architectures. There is an improvement 

of 30%, 39% and 74% in performance of the optimized 

code in comparison with the standard code. Overall, 

there is an average improvement of 35% for the file 

size 5MB. 
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Figure 9. Performance results of optimized algorithm on 5MB. 

4.9. Performance Results on Architecture 1 

Figure 10 shows the performance results of both the 

optimized and the standard versions on architecture 1. 

As shown in the figure, there is small improvement for 

small file sizes. The improvement obtained by 

optimized version increases with the increases in the 

file size. Overall, there is an average improvement of 

24% on architecture 1.  
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Figure 10. Performance results of optimized algorithm on A1. 

4.10. Performance Results on Architecture 2 

Figure 11 shows the performance results of both the 

optimized and the standard versions on architecture 2. 

As shown in the figure, there is small improvement for 

small file sizes. The improvement obtained by 

optimized version increases with the increases in the 

file size. Overall, there is an average improvement of 

53% on Architecture 2. 
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Figure 11. Performance results of optimized algorithm on A2. 

4.11. Performance Results on Architecture 3 

Figure 12 shows the performance results of both the 
optimized and the standard versions on architecture 3. 
As shown in the figure, there is small improvement for 
small file sizes. The improvement obtained by 
optimized version increases with the increases in the 
file size. Overall, there is an average improvement of 
72% on architecture 3.  
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Figure 12. Performance results of optimized algorithm on A3. 

5. Conclusions 

This paper suggests an algorithm for performing XML 
compression and decompression. The suggested 
approach reads an XML file, removes tags, divides the 
XML file into different parts and then compresses each 
different part on separate core for achieving efficiency. 
We compare the performance results of the optimized 
algorithm with parallel compression and 
decompression of XML files using GZIP.  We have 
uses files of sizes 500KB, 1MB, 1.5MB, 2MB, 2.5MB, 
3MB, 4MB and 5MB on the Intel Xeon, Intel core i7 
and Intel core i3 based architectures. The performance 
results show that, on average, the suggested algorithm 
performs 24%, 53% and 72% better than the parallel 
GZIP compression and decompression on Intel Xeon, 
Intel core i7 and Intel core i3 based architectures 
respectively. Moreover, for files of sizes 500KB, 1MB, 
1.5MB, 2MB, 2.5MB, 3MB, 4MB and 5MB, the 
optimized algorithm is able to achieve an average  
improvement of 44%, 54%, 45%, 36%, 53%, 54%, 
55% and 35% respectively. 
In future work, we shall target the XML 

compression on heterogeneous systems simultaneously 
using Remote Method Invocation (RMI). 
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