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Abstract: The PCM-oMaRS algorithm guarantees the maximal reduction steps of the computation of the exact median in 

distributed datasets and proved that we can compute the exact median effectively with reduction of blocking time and without 

needing the usage of recursive or iterative methods anymore. This algorithm provided more efficient execution not only in 

distributed datasets even in local datasets with enormous data. We cannot reduce the steps of PCM-oMaRS algorithm any 

more but we have found an idea to optimize one step of it. The most important step of this algorithm is the step in which the 

position of exact median will be determinate. For this step, we have development a strategy to achieve more efficiency in 

determination of position of exact median. Our aim in this paper to maximize the best cases of our algorithm and this was 

achieved through dividing the calculation of number of all value that smaller than or equal to temporary median in two 

groups: The first one contains only the values that smaller than the temporary median and the second group contains the 

values that equal to the temporary median. In this dividing we achieve other best cases of PCM-oMaRS algorithm and 

reducing the number of values that are required to compute the exact median. The complexity cost of this algorithm will be 

discussed more in this article. In addition some statistical information depending on our implementation tests of this algorithm 

will be given in this paper. 

 

Keywords: Median, parallel computation, algorithm, optimization, big data, evaluation, analysis, complexity costs 

 

Received June 11, 2015; accepted October 18, 2015; published on line January 28, 2016   
 

 

1. Introduction  

The goal of distributed aggregation is to compute an 

aggregation function on a set of distributed values. 

Typical aggregation functions are max, sum, count, 

average, median, variance, k
th
 smallest, or largest 

value, or combinations thereof. The most problematic 

aggregation is in the distributed computation of holistic 

aggregation function, in especially of distributed 

enormous data sets. Such data is like streaming data 

from network-sensors. The database community 

classifies aggregation functions into three categories: 

distributive, algebraic and holistic. Combinations of 

these functions are believed to support a wide range of 

reasonable aggregation queries.  

PCM-oMaRS algorithm [2] shed a new light on the 

problem of distributed computation of exact median 

for general n distributed datasets. PCM-oMaRS solved 

the problem of exact median computation without 

using recursion or iteration steps and blocks 

determinate data only in one time by one step, actually 

by the last step if it is necessary. This algorithm 

consists of three major phases like as MapRaduce 

principle and depends on mathematical definition of 

median. 

The reduction of blocking time of streaming data 

and of complexing cost is a recent growing interest in 

distributed aggregation, thanks to emerging application 

areas such as, e.g. data mining or sensor networks. 

Therefore we focus us on the optimization facilities of 

one step of PCM-oMaRS algorithm. With this 

optimization strategy  

We can simply see that this strategy makes this step 

more efficient. Then, we show that the complexity of 

this algorithm is in worst case the worst case of a quick 

sort algorithm.  

This article is organized as follows: In section 2 we 

list related works with a short summary. A short 

introduction of PCM-oMaRS algorithm is to find in 

section 3. Optimization strategy of PCM-oMaRs 

algorithm is presented in section 4. The complexity of 

PCM-oMaRS algorithm will be shown in section 5, in 

addition we discuss about some statistical information 

concerning implantation of PCM-oMaRS and at the 

end we summarize the most important points of the 

article in last section. 

 

2. Related Works 
 

Actually the research of distributed algorithm to 

determine the median is for more than 40 years active. 

This problem attracted many researchers. Blum et al. 

[3] presented a new selection algorithm named PICK. 

This algorithm proved a new lower bound for the cost 

of selection, and it was the first linear algorithm, Floyd 

and Rivest [7] presented a new selection algorithm 

which is shown to be very efficient on the average, 

both theoretically and practically, and Schönhage et al. 

[19] presented another algorithm which performs fewer 



Optimization of Position Finding Step of PCM-oMaRS Algorithm with Statistical Information                                                209 

comparisons on the worst case. Rodeh [16] considered 

the problem of computing the median of a bag of 2n 

numbers by using communicating processes, each 

having some of the numbers in its local memory. This 

algorithm described the distributive median problem as 

series of transformations. Marberg and Gafi [13] 

considered the problem of selecting the k
th
 largest 

element in a set of n elements distributed arbitrarily 

among the processors of a Shout-Echo network. Chin 

and Ting [5] developed an improved algorithm for 

finding the median distributive. He embedded in the 

first part of its algorithm the Rodeh’s algorithm, in the 

second part of its algorithm reduced the problem size 

by one quarter with three messages instead of reducing 

the problem size by half with two messages. With the 

third part of its algorithm resolved the problem of 

choosing the initiator. Santoro et al. [18] minimized 

with its algorithm the communication activities among 

the processors and considered the distributed k-

selection problem. In [9] the existence of small core-

sets for the problems of computing k-median and k-

means clustering for points in low dimension and get 

an (1+ε)-approximation was shown. Kuhn et al. [12] 

presented a k-selection algorithm and proved that 

distributed selection indeed requires more work than 

other aggregation function. In this article has shown 

that the k
th
 smallest element can be computed 

efficiently by providing both a randomized and a 

deterministic k-selection algorithm. And they 

considered the k-median clustering on stream data 

arriving at distributed sites which communicate 

through a routing tree. They proposed a suite of 

algorithms for computing (1+ε)-approximation k-

median clustering over distributed data streams. The 

algorithms are able to reduce the data transmission to a 

small fraction of the original data. Feldman and 

Langberg [6] show a unified framework for 

constructing core-sets and approximate clustering for 

such general sets of functions.  

In [21] an algorithm that produces (1+ε)α- 

approximation, using any α-approximation non-

distributed algorithm as a subroutine, with total 

communication cost has been shown. There are many 

others works in this field [1, 4, 11, 14, 15, 17, 20, 22]. 

All of these researches have used the iteration, 

recursion or approximation in their steps. Garrigues 

and Manzanera [8] present a new grained distributed 

median randomized algorithm. This paper show that 

this algorithm is efficient on networks containing O(N) 

(up to N⁄4-1) processing units running in parallel. This 

algorithm focuses to reduce the number of elements to 

process after each iteration. Ivan et al. [10], present a 

structure of the median filter device. Median filters are 

widely used for smoothing operations in signal, 

speech, and image processing. The conveyer device 

with parallel implementation of algorithms is widely 

used for quick median filtering. Median calculation on 

the basis of completely parallel devices is redundant. 

Using streaming-conveyor devices reduce this 

redundancy. The calculation of the median in this 

devices is reduced to the execution pair wise sequence 

comparison and permutation of numbers. 

 

3. PCM-oMaRS Algorithm 
 

In this section we will give a short introduction of 

PCM-oMaRS algorithm [2]. At first we represent the 

general mechanism of this algorithm through the 

following sub section. 

 

3.1. Illustration of PCM-oMaRs Algorithm 

Mechanism 
 

Figure 1 shows an abstract of the mechanism of our 

algorithm cleared by one sequence. In this figure we 

can see that the finding of position of exact median 

depending on the value of sclenD and of scgnD in 

which will be known to which direction must the 

position be moved from the position of the temporary 

median to achieve the position of exact median. 
 

 
 

Figure 1.  Abstract of PCM- oMaRS algorithm mechanism. 

 

3.2. PCM-oMaRS Algorithm Steps 

The PCM-oMaRS algorithm consists of two sub 

algorithms. The steps are represented in Algorithm 1: 

Algorithm 1: PCM-oMaRS (Di) 
 

#Execute Subalgorithm 1 

CandidateFinding (Di) 

#Execute Subalgoithm 2 

PositionFinding(Di, MedT) 

return MedE 

Subalgorithm1 CandidateFinding(Di) 

 #Get minimum, maximum and median of Di (Step 1) 

foreach (Di)  

{ 

   Get MinDi, MaxDi, MedDi; 

} 

#construct multiset Ord (Step 2) 

Ord = {MinDi, MaxDi, MedDi; i =1,..,n} 

#sorting Ord 

 Sort(Ord) 

 #compute Median of Ord (Step 3) 

 MedT=Med(Ord)  

return MedT 

 

Temporary Median 

sclenD=10 scgnD=10 

 

sclenD=8 scgnD=12 
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If the size of the sequence Ord is EVEN then the 

temporary median value is the first/ second value of 

the two middle values of Ord instead to compute the 

average of both middle values. MedT must stay one of 

the existing values not new calculated values.  

The following steps belong to the second 

subalgorihtm “position finding”. These steps will be 

optimized in the following section of this paper. 
 

Subalgorithm 2: PositionFinding (Di, MedT) 

 # Sum numbers according MedT (Step 4) 

 foreach (Di) { 

# counting numbers that are greater than MedT 

cgnDi=count ({Ni | Ni >MedT}) 

# counting numbers that are smaller than or equal to  

MedT 

clenDi = count ({Mi | Mi ≤ MedT})   

  # sum all cgnDi and all slenDi 

  scgnD = sum (cgnDi) 

  sclenD = sum (clenDi)-1 

} 
 # Calculate the exact median MedE (Step 5) 

if (scgnD < sclenD) 

 { 

  MedLP = (sclenD - scgnD)/ 2; 

# Construct multiset LtD and sorting it descending 

 LtD= {maximum MedLP largest {Ni | Ni ≤ MedT}} 

 MedE =LtD[MedLP] 

 } else if (scgnD > sclenD) 

{ 

MedRP = (scgnD - sclenD)/ 2; 

 # Construct multiset GtD and sorting it ascending 

GtD= {maximum MedRP smallest {Ni | Ni >MedT}} 

 MedE =GtD[MedRP] 

} else MedE = MedT 

return MedE 
 

For more detailed information about PCM-oMaRS 

algorithm see [2].  

 

3.3. Example of Application 
 

Let us have the following Datasets after ordering: 

D1= (3, 5, 11, 27, 30) 

D2= (1, 7, 27, 27, 29) 

   D3= (10, 18, 27, 30, 32) 
 

In the first step we have to get MedT a temporary 

median. MedT is the median of Ord-set in which 

contains ordering all Minimal, Maximal and Median 

values of each Dataset.  

The minimal, maximal and median values for each 

dataset are as following:  
 

MinMaxMedD1={3, 11, 30} 

MinMaxMedD2={1, 27, 29} 

  MinMaxMedD3={10 ,27, 32} 
 

Then the ordered set of them is: 

Ord=(1, 3, 10, 11, 27, 27, 29, 30, 32) 

And the median of Ord  is the temporary median, 

MedT and equal to 11. 

MedT=27 
 

Now we start with step 4. We calculate cgnD1, cgnD2 

and cgnD1 (number of all values that greater than 

MedT of each dataset respectively) as following:  
 

cgnD1=|{30}|, cgnD2=|{29}|, cgnD3=|{30, 32}| 
 

Now the number of all values that greater than MedT  in 

all datasets is scgnD: 

scgnD = 1+1+2=4 

On the other hand, we calculate now the number of all 

values that smaller than or equal to MedT: 

clenD1=|{3, 5, 11, 27}| 

clenD2=|{1, 7, 27, 27}| 

clenD3=|{10, 18, 27}| 

That means, the number of all values that smaller than 

or equal to is sclenD: 

sclenD = (4+4+3)-1=10 

 (-1) is because we do not need to take the temporary 

median itself into consideration. That means, actually 

instead of counting clenD2 as: 

clenD2 = |{1, 7, 27, 27}| 

We count clenD2 as: 

clenD2 = |{1, 7, 27}| 

Now we have the case:  

sclenD > scgnD 

We start now with step 5 of PCM-oMaRS algorithm: 

MedLP = ((sclenD-scgnD)/ 2) 

MedLP = (10–4)/2 = 3 

Now we know that the position of exact median is to 

find in the left side of temporary median in 3 positions. 

We get now LtD, the sequence that contains maximum 

3 largest numbers from each dataset smaller than or 

equal to MedT outer MedT self. 

Max 3 greatest Nrs of D1≤27(MedT)are 27, 11, 5 

Max 3 greatest Nrs of D2≤27(MedT)are 27, 7, 1 

Max 3 greatest Nrs of D3≤27(MedT) are 27, 18, 10 

Then, LtD is as following: 

LtD=(27, 27, 27, 18, 11, 10, 7, 5, 1) 

The exact median is now: 
  

MedE=LtD[3]= 27 

The value 27 is really the exact median because the 
number of all values that greater than 27 is equal to the 
number of all values that smaller than or equal to 27 
minus 1 (the median itself).  

In the following sections we focus on the 

optimization of PCM-oMaRS algorithm and its 

complexity cost, in addition we discus some statistical 

information of our implementation. 

 

4. Optimization of PCM-oMaRS Algorithm 

The single step in which we can implement an 

optimization is the step 5 of PCM-oMaRS algorithm. 

In this step we can apply other computation strategy. 

This strategy makes a brilliant optimization of this 

algorithm. This Optimizations step will illustrate in the 

following sub section. 
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4.1. Position Finding Optimization 
 

In step 5 of PCM-oMaRS algorithm we find the 

relationship of position determination in tow cases. 

The first one is if sclenD greater than scgnD. The 

second case is if sclenD smaller than scgnD. For the 

second case we could not find any possibility of 

optimization but for the first case we have found that 

we can optimize this case with clever steps. scgnD is 

the number of all values that greater than the 

temporary median and sclenD is the number of all 

values that smaller than or equal to temporary median. 

Now, we make the change. Instead to calculate the 

number of all values that smaller than or equal to 

temporary median, we calculate the number of all 

values that smaller than the temporary median and the 

number of all values that equal to the temporary 

median in sclnD and scenD respectively. The second 

subalgorithm is optimized as following: 

Algorithm 2: Optimized PCM-oMaRS (Di). 

#Execute Subalgorithm 2 

CandidateFinding(Di) 

#Execute Subalgoithm 3 

  OptimizedPositionFinding(Di, MedT) 

return MedE 

Subalgorithm 3OptimizedPositionFinding (Di,MedT) 

  # Sum numbers according MedT (Step 4) 

  foreach (Di)  

 { #counting numbers that are greater than MedT 

 cgnDi=count ({Ni | Ni >MedT}) 

 # counting numbers that are smaller than MedT 

 clnDi = count ({Mi | Mi < MedT})   

# counting numbers that are equal to MedT 

 clnDi = count ({Mi | Mi = MedT})   

# sum all cgnDi, all clnDi and cenG 

scgnD = sum (cgnDi) 

sclnD = sum (clnDi) 

scenD = sum (cenDi)-1 

} 
# Calculate the exact median MedE (Step 5) 

if (scgnD < (sclnD+scenD)) 

{ 
MedLP = ((sclnD+scenD)-scgnD)/2; 

 if (MedLP ≤ scenD) 

  MedE= MedT 

else 

{ # Construct multiset LtD and sorting it descending 

 LtD= {maximum MedLP-scenD largest {Ni | Ni < 

MedT}} 

 MedE =LtD[MedLP-scenD] 

 } else if (scgnD > (sclnD + scenD)) 

{ 
 MedRP=(scgnD-(sclnD+scenD))/2; 

 # Construct multiset GtD and sorting it ascending 

 GtD= {maximum MedRP smallest {Ni | Ni >MedT}} 

 MedE =GtD[MedRP] 

}  
else MedE = MedT 

return MedE 
 

In this case we can see simply that if the position 

MedLP smaller than or equal to scenD then we do not 

need to make any other computations to get the exact 

median. In this optimization step we make this case 

belong to the best cases of PCM-oMaRS algorithm.  

In this optimization strategy is to remark too that if 

the MedLP greater than scenD then instead of sending 

all sequences of datasets to send back maximum 

MedLP values smaller than or equal to temporary 

median, the algorithm sends all datasets to send back 

maximum (MedLP–scenD) values smaller than 

temporary median. This step of our optimization 

reduce too the number of values that will be sorted to 

get the exact median.  The other cases of this step 

remain unchanged as following:  The last case of this 

step is simplest one and presents one of the best cases 

of this algorithm.  

In the following section we represent the new cases 

map after executing the presented optimization 

strategy. 

  
4.2. Example of Application with the Optimization 

 

Let us now apply our optimization of the previous 

example to clear the efficiency. Let us start with step 4 

the calculation of cgnD1, cgnD2 and cgnD1 stay 

unchanged as following:  

cgnD1=|{30}|, cgnD2 =|{29}|, cgnD3=|{30, 32}| 

Where the number of all values that greater than MedT 

in all datasets is scgnD: 

scgnD = 1+1+2=4 

Now, we calculate now the number of all values that 

only smaller than MedT: 

clnD1 = |{3, 5, 11}|, clnD2 = |{1, 7}|, clnD3=|{10, 18}| 

That means, the number of all values that smaller than 

is sclnD:  

sclnD=(3+2+2)=7. 

On the other hand, we compute the number of all 

values that only equal to MedT: 

cenD1= |{27}|, cenD2=|{27, 27}|, cenD3=|{27}| 

That means, the number of all values that smaller than 

is sclnD: scenD = (1+2+1)-1=3. 
 

Now we have the case: (sclnD+scenD)> scgnD, we 

start now with step 5 of PCM-oMaRS algorithm 

MedLP=(((sclnD+scenD)-scgnD)/2) 

MedLP=((7+3) – 4)/ 2 = 3 

Now, we know that the position of exact median is to 

find in the left side of temporary median in 3 positions. 
 Now before we get LtD, the sequence that contains 

maximum 3 largest numbers from each dataset smaller 
than or equal to MedT differencing MedT self. We 
compare the MedLP with scenD. If MedLP ≤ scenD 
then we do not need to do any computation more 
because the temporary median has the same value as 
the exact median. That means: 

MedE= MedT = 27 

Based on this example we can see the important role of 
this optimization. This optimization provides best 
cases of our algorithm. The next section illustrates 
these cases with the optimization. 
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4.3. Optimized PCM-oMaRS Cases Map 

In Figure 2, it was clarified that the best case of our 

algorithm is executable by many cases. The first two 

cases are applicable if the number of values that 

greater than the temporary median equal to the number 

of values that smaller than or equal to the temporary 

median for both cases of total size of all datasets.  

The other cases is to find if the position number 

smaller than or equal to the number of values that 

equal to the temporary median for the case that the 

number of values that greater than the temporary 

median smaller than the number of values that smaller 

than or equal to temporary median in the both cases of 

total size of all datasets. If the total size of all multisets 

is an even number and the difference equal to 1 then 

this case is too a best case of PCM-oMaRS algorithm 

because in this case the temporary median is one of the 

two middle values of exact median. 
 

Figure 2. Abstract map of optimized PCM-oMaRS cases. 
 

In these cases, the PCM-oMaRS algorithm does not 

need more to apply algorithm 2 completely, because 

the temporary median in this case is the required exact 

median. In other words that means, after computing the 

position of the exact median we do not need to apply 

any operation anymore to achieve the required result.  

 

4.3. Complexity and Statistical Study of PCM-

oMARS Algorithm 

In this section we discuss the cost of complexity of our 

algorithm and give basic statistical information of our 

implementation experiments. 

 

4.4. Complexity of PCM-oMaRS 

The complexity of parallel algorithms depends on three 

major classes of costs. The first class is the 

communication cost because parallel algorithms access 

data storage in distributed connected nodes. The 

second class is the local execution cost. Generally the 

more expensive operations execute in local level the 

more efficient for the complexity of the parallel 

algorithms. The third one is the cost of the parallel 

algorithm in the global level.  

In most cases the communication cost plays the 

most expensive role in the total complexity cost. 

Therefore by renouncing the use of iterations or 

recursions of communications the PCM-oMaRS 

algorithm and its optimized version achieved the 

maximal reduction of steps that play a crucial role with 

the communications costs. Excessively with our 

algorithm only basic operation and optimized sort 

algorithm will be required to apply in both local and 

global levels.  

These classes of costs are cleared in the following 

table: 

 
Table 1.  Abstract of total cost of PCM- oMaRS. 

 

Cost 

 

Operation 

Local  

Execution 
Communication Global 

Execution 

Basic Operation + - + 

General Operation + - - 

Sorting + - +! 

Communication - +! - 

!: it is only one time and if it is required 

 

In other words, the global and local execution costs 

are in best case O(1) and the worst case O(n.logn) and 

the communication cost is in the worst case the usually 

applied network system communications costs and it is 

counted only once. In relation to this idea the blocking 

of data will be executed only one time and only if it is 

necessary.  

4.5.  Statistical Study 

Depending on tests of implementation of PCM- 

oMaRS algorithm we have received some important 

results. We have carried out over 55000 tests with 

Eclipse-Parallel-Luna on intel(R) Core(TM)2 Duo 

CPU P9600 processor with 8GB RAM. These results 

are organized in a short statistical study as following. 

We have classified the required data to getting the 

exact median in 4 classes depending on our results. We 

have found that in the worst case of applying PCM- 

oMaRS algorithm we need to receive only 21.31% of 

all values in all datasets and in the best case we do not 

need to receive any value (0% of all values). In 35.63% 

of all tests we do not need to receive any data (0% of 

all values) to get the exact median and in 43.47% of all 

tests we need 0.01-4.99 % all values. Belong to the 

sector 5-9.99% all values 14.76% of all tests and in 

7.14% of all tests we need 10-21.31% all values.  

This statistical information is represented in the 

following Table: 

 

 

Total Size 

of all sets 

scgnD  <  

sclnD + scenD 

scgnD  >  

sclnD + scenD 

ODD 

EVEN 

scgnD  -  

(sclnD + scenD) > 1 

(sclnD + scenD)   -  

scgnD > 1 

(sclnD + scenD)   -  

scgnD = 1 

MedE = 

MedT 

Best Case of PCM- oMaRS 

Best Case of PCM- oMaRS 

MedLP ≤  

scenD 

MedLP >  

scenD 

Best Case of PCM- oMaRS 
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Table 2. Statistical information. 

Required Data % all tests 

0% 35,63 

(0,01-4,99) % 43,47 

(5,00- 9,99) % 14,76 

(10,00- 21,31)% 07,14 

 

This table is represented in the following diagram: 

 

10,00 

5.00-9.99% 

 

(0.01-4.99)% 

 

0% 
   

 
0                      20                    40                  60 

Figure 3. Statistical study of implmention of PCM- oMaRS. 

 

5. Conclusions 
 

The research points of this field “median computing of 

distributed datasets” divided into two main directions 

The first one cares on the approximation methods. The 

other one focuses on the computation of the exact 

median with usage of iterative or recursive steps. We 

have shown that we can compute the exact median 

with clever steps depending on the calculation of the 

position of the exact median without needing to apply 

iterations or recursions to get the value of the exact 

median. That means, PCM-oMaRS algorithm 

guarantees the maximum reduction of median 

computation steps. Too, instead applying blocking of 

the required data by the beginning an execution of an 

algorithm, the data may be blocked only in one non 

iterative or recursive step with the execution of our 

algorithm and if it is necessary.  

In this article we have shown that the most 

computation of our algorithm is calculated in the local 

nodes (computers), basic operations and operation with 

efficient complexity will be executed in the master 

computer (global one).  That means in other word, the 

costs of complexity of our algorithm is computed 

through the common communication costs and local 

execution costs like all other algorithms in addition 

only the cost of an efficient sort algorithm in step 5. In 

our experiments we have proved that the execution of 

our algorithm can be more effective in the local 

execution too, if we divided the local dataset that 

contains enormous values in many local datasets.  

We have implemented this algorithm by Java with 

two different input possibilities. The first one is with 

manually targeted inputs to test extreme cases of 

values distributions and the other one is random inputs 

to be able to check all possible cases with the passage 

of time. We have tested the implementation of our 

algorithm with more than 40000 cases, some of these 

depended on the manually targeted inputs and the rest 

were in relation to the random inputs. In each case, the 

number of datasets is different, and each dataset 

includes many different values.   
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