
208 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

Optimization of Position Finding Step of PCM-

oMaRS Algorithm with Statistical Information

Ammar Balouch

Department of Computer Science, University of Rostock, Germany

Abstract: The PCM-oMaRS algorithm guarantees the maximal reduction steps of the computation of the exact median in

distributed datasets and proved that we can compute the exact median effectively with reduction of blocking time and without

needing the usage of recursive or iterative methods anymore. This algorithm provided more efficient execution not only in

distributed datasets even in local datasets with enormous data. We cannot reduce the steps of PCM-oMaRS algorithm any

more but we have found an idea to optimize one step of it. The most important step of this algorithm is the step in which the

position of exact median will be determinate. For this step, we have development a strategy to achieve more efficiency in

determination of position of exact median. Our aim in this paper to maximize the best cases of our algorithm and this was

achieved through dividing the calculation of number of all value that smaller than or equal to temporary median in two

groups: The first one contains only the values that smaller than the temporary median and the second group contains the

values that equal to the temporary median. In this dividing we achieve other best cases of PCM-oMaRS algorithm and

reducing the number of values that are required to compute the exact median. The complexity cost of this algorithm will be

discussed more in this article. In addition some statistical information depending on our implementation tests of this algorithm

will be given in this paper.

Keywords: Median, parallel computation, algorithm, optimization, big data, evaluation, analysis, complexity costs

Received June 11, 2015; accepted October 18, 2015; published on line January 28, 2016

1. Introduction

The goal of distributed aggregation is to compute an

aggregation function on a set of distributed values.

Typical aggregation functions are max, sum, count,

average, median, variance, k
th
 smallest, or largest

value, or combinations thereof. The most problematic

aggregation is in the distributed computation of holistic

aggregation function, in especially of distributed

enormous data sets. Such data is like streaming data

from network-sensors. The database community

classifies aggregation functions into three categories:

distributive, algebraic and holistic. Combinations of

these functions are believed to support a wide range of

reasonable aggregation queries.

PCM-oMaRS algorithm [2] shed a new light on the

problem of distributed computation of exact median

for general n distributed datasets. PCM-oMaRS solved

the problem of exact median computation without

using recursion or iteration steps and blocks

determinate data only in one time by one step, actually

by the last step if it is necessary. This algorithm

consists of three major phases like as MapRaduce

principle and depends on mathematical definition of

median.

The reduction of blocking time of streaming data

and of complexing cost is a recent growing interest in

distributed aggregation, thanks to emerging application

areas such as, e.g. data mining or sensor networks.

Therefore we focus us on the optimization facilities of

one step of PCM-oMaRS algorithm. With this

optimization strategy

We can simply see that this strategy makes this step

more efficient. Then, we show that the complexity of

this algorithm is in worst case the worst case of a quick

sort algorithm.

This article is organized as follows: In section 2 we

list related works with a short summary. A short

introduction of PCM-oMaRS algorithm is to find in

section 3. Optimization strategy of PCM-oMaRs

algorithm is presented in section 4. The complexity of

PCM-oMaRS algorithm will be shown in section 5, in

addition we discuss about some statistical information

concerning implantation of PCM-oMaRS and at the

end we summarize the most important points of the

article in last section.

2. Related Works

Actually the research of distributed algorithm to

determine the median is for more than 40 years active.

This problem attracted many researchers. Blum et al.

[3] presented a new selection algorithm named PICK.

This algorithm proved a new lower bound for the cost

of selection, and it was the first linear algorithm, Floyd

and Rivest [7] presented a new selection algorithm

which is shown to be very efficient on the average,

both theoretically and practically, and Schönhage et al.

[19] presented another algorithm which performs fewer

Optimization of Position Finding Step of PCM-oMaRS Algorithm with Statistical Information 209

comparisons on the worst case. Rodeh [16] considered

the problem of computing the median of a bag of 2n

numbers by using communicating processes, each

having some of the numbers in its local memory. This

algorithm described the distributive median problem as

series of transformations. Marberg and Gafi [13]

considered the problem of selecting the k
th
 largest

element in a set of n elements distributed arbitrarily

among the processors of a Shout-Echo network. Chin

and Ting [5] developed an improved algorithm for

finding the median distributive. He embedded in the

first part of its algorithm the Rodeh’s algorithm, in the

second part of its algorithm reduced the problem size

by one quarter with three messages instead of reducing

the problem size by half with two messages. With the

third part of its algorithm resolved the problem of

choosing the initiator. Santoro et al. [18] minimized

with its algorithm the communication activities among

the processors and considered the distributed k-

selection problem. In [9] the existence of small core-

sets for the problems of computing k-median and k-

means clustering for points in low dimension and get

an (1+ε)-approximation was shown. Kuhn et al. [12]

presented a k-selection algorithm and proved that

distributed selection indeed requires more work than

other aggregation function. In this article has shown

that the k
th
 smallest element can be computed

efficiently by providing both a randomized and a

deterministic k-selection algorithm. And they

considered the k-median clustering on stream data

arriving at distributed sites which communicate

through a routing tree. They proposed a suite of

algorithms for computing (1+ε)-approximation k-

median clustering over distributed data streams. The

algorithms are able to reduce the data transmission to a

small fraction of the original data. Feldman and

Langberg [6] show a unified framework for

constructing core-sets and approximate clustering for

such general sets of functions.

In [21] an algorithm that produces (1+ε)α-

approximation, using any α-approximation non-

distributed algorithm as a subroutine, with total

communication cost has been shown. There are many

others works in this field [1, 4, 11, 14, 15, 17, 20, 22].

All of these researches have used the iteration,

recursion or approximation in their steps. Garrigues

and Manzanera [8] present a new grained distributed

median randomized algorithm. This paper show that

this algorithm is efficient on networks containing O(N)

(up to N⁄4-1) processing units running in parallel. This

algorithm focuses to reduce the number of elements to

process after each iteration. Ivan et al. [10], present a

structure of the median filter device. Median filters are

widely used for smoothing operations in signal,

speech, and image processing. The conveyer device

with parallel implementation of algorithms is widely

used for quick median filtering. Median calculation on

the basis of completely parallel devices is redundant.

Using streaming-conveyor devices reduce this

redundancy. The calculation of the median in this

devices is reduced to the execution pair wise sequence

comparison and permutation of numbers.

3. PCM-oMaRS Algorithm

In this section we will give a short introduction of

PCM-oMaRS algorithm [2]. At first we represent the

general mechanism of this algorithm through the

following sub section.

3.1. Illustration of PCM-oMaRs Algorithm

Mechanism

Figure 1 shows an abstract of the mechanism of our

algorithm cleared by one sequence. In this figure we

can see that the finding of position of exact median

depending on the value of sclenD and of scgnD in

which will be known to which direction must the

position be moved from the position of the temporary

median to achieve the position of exact median.

Figure 1. Abstract of PCM- oMaRS algorithm mechanism.

3.2. PCM-oMaRS Algorithm Steps

The PCM-oMaRS algorithm consists of two sub

algorithms. The steps are represented in Algorithm 1:

Algorithm 1: PCM-oMaRS (Di)

#Execute Subalgorithm 1

CandidateFinding (Di)

#Execute Subalgoithm 2

PositionFinding(Di, MedT)

return MedE

Subalgorithm1 CandidateFinding(Di)

 #Get minimum, maximum and median of Di (Step 1)

foreach (Di)

{

 Get MinDi, MaxDi, MedDi;

}

#construct multiset Ord (Step 2)

Ord = {MinDi, MaxDi, MedDi; i =1,..,n}

#sorting Ord

 Sort(Ord)

 #compute Median of Ord (Step 3)

 MedT=Med(Ord)

return MedT

Temporary Median

sclenD=10 scgnD=10

sclenD=8 scgnD=12

210 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

If the size of the sequence Ord is EVEN then the

temporary median value is the first/ second value of

the two middle values of Ord instead to compute the

average of both middle values. MedT must stay one of

the existing values not new calculated values.

The following steps belong to the second

subalgorihtm “position finding”. These steps will be

optimized in the following section of this paper.

Subalgorithm 2: PositionFinding (Di, MedT)

 # Sum numbers according MedT (Step 4)

 foreach (Di) {

counting numbers that are greater than MedT

cgnDi=count ({Ni | Ni >MedT})

counting numbers that are smaller than or equal to

MedT

clenDi = count ({Mi | Mi ≤ MedT})

 # sum all cgnDi and all slenDi

 scgnD = sum (cgnDi)

 sclenD = sum (clenDi)-1

}
 # Calculate the exact median MedE (Step 5)

if (scgnD < sclenD)

 {

 MedLP = (sclenD - scgnD)/ 2;

Construct multiset LtD and sorting it descending

 LtD= {maximum MedLP largest {Ni | Ni ≤ MedT}}

 MedE =LtD[MedLP]

 } else if (scgnD > sclenD)

{

MedRP = (scgnD - sclenD)/ 2;

 # Construct multiset GtD and sorting it ascending

GtD= {maximum MedRP smallest {Ni | Ni >MedT}}

 MedE =GtD[MedRP]

} else MedE = MedT

return MedE

For more detailed information about PCM-oMaRS

algorithm see [2].

3.3. Example of Application

Let us have the following Datasets after ordering:

D1= (3, 5, 11, 27, 30)

D2= (1, 7, 27, 27, 29)

 D3= (10, 18, 27, 30, 32)

In the first step we have to get MedT a temporary

median. MedT is the median of Ord-set in which

contains ordering all Minimal, Maximal and Median

values of each Dataset.

The minimal, maximal and median values for each

dataset are as following:

MinMaxMedD1={3, 11, 30}

MinMaxMedD2={1, 27, 29}

 MinMaxMedD3={10 ,27, 32}

Then the ordered set of them is:

Ord=(1, 3, 10, 11, 27, 27, 29, 30, 32)

And the median of Ord is the temporary median,

MedT and equal to 11.

MedT=27

Now we start with step 4. We calculate cgnD1, cgnD2

and cgnD1 (number of all values that greater than

MedT of each dataset respectively) as following:

cgnD1=|{30}|, cgnD2=|{29}|, cgnD3=|{30, 32}|

Now the number of all values that greater than MedT in

all datasets is scgnD:

scgnD = 1+1+2=4

On the other hand, we calculate now the number of all

values that smaller than or equal to MedT:

clenD1=|{3, 5, 11, 27}|

clenD2=|{1, 7, 27, 27}|

clenD3=|{10, 18, 27}|

That means, the number of all values that smaller than

or equal to is sclenD:

sclenD = (4+4+3)-1=10

 (-1) is because we do not need to take the temporary

median itself into consideration. That means, actually

instead of counting clenD2 as:

clenD2 = |{1, 7, 27, 27}|

We count clenD2 as:

clenD2 = |{1, 7, 27}|

Now we have the case:

sclenD > scgnD

We start now with step 5 of PCM-oMaRS algorithm:

MedLP = ((sclenD-scgnD)/ 2)

MedLP = (10–4)/2 = 3

Now we know that the position of exact median is to

find in the left side of temporary median in 3 positions.

We get now LtD, the sequence that contains maximum

3 largest numbers from each dataset smaller than or

equal to MedT outer MedT self.

Max 3 greatest Nrs of D1≤27(MedT)are 27, 11, 5

Max 3 greatest Nrs of D2≤27(MedT)are 27, 7, 1

Max 3 greatest Nrs of D3≤27(MedT) are 27, 18, 10

Then, LtD is as following:

LtD=(27, 27, 27, 18, 11, 10, 7, 5, 1)

The exact median is now:

MedE=LtD[3]= 27

The value 27 is really the exact median because the
number of all values that greater than 27 is equal to the
number of all values that smaller than or equal to 27
minus 1 (the median itself).

In the following sections we focus on the

optimization of PCM-oMaRS algorithm and its

complexity cost, in addition we discus some statistical

information of our implementation.

4. Optimization of PCM-oMaRS Algorithm

The single step in which we can implement an

optimization is the step 5 of PCM-oMaRS algorithm.

In this step we can apply other computation strategy.

This strategy makes a brilliant optimization of this

algorithm. This Optimizations step will illustrate in the

following sub section.

Optimization of Position Finding Step of PCM-oMaRS Algorithm with Statistical Information 211

4.1. Position Finding Optimization

In step 5 of PCM-oMaRS algorithm we find the

relationship of position determination in tow cases.

The first one is if sclenD greater than scgnD. The

second case is if sclenD smaller than scgnD. For the

second case we could not find any possibility of

optimization but for the first case we have found that

we can optimize this case with clever steps. scgnD is

the number of all values that greater than the

temporary median and sclenD is the number of all

values that smaller than or equal to temporary median.

Now, we make the change. Instead to calculate the

number of all values that smaller than or equal to

temporary median, we calculate the number of all

values that smaller than the temporary median and the

number of all values that equal to the temporary

median in sclnD and scenD respectively. The second

subalgorithm is optimized as following:

Algorithm 2: Optimized PCM-oMaRS (Di).

#Execute Subalgorithm 2

CandidateFinding(Di)

#Execute Subalgoithm 3

 OptimizedPositionFinding(Di, MedT)

return MedE

Subalgorithm 3OptimizedPositionFinding (Di,MedT)

 # Sum numbers according MedT (Step 4)

 foreach (Di)

 { #counting numbers that are greater than MedT

 cgnDi=count ({Ni | Ni >MedT})

 # counting numbers that are smaller than MedT

 clnDi = count ({Mi | Mi < MedT})

counting numbers that are equal to MedT

 clnDi = count ({Mi | Mi = MedT})

sum all cgnDi, all clnDi and cenG

scgnD = sum (cgnDi)

sclnD = sum (clnDi)

scenD = sum (cenDi)-1

}
Calculate the exact median MedE (Step 5)

if (scgnD < (sclnD+scenD))

{
MedLP = ((sclnD+scenD)-scgnD)/2;

 if (MedLP ≤ scenD)

 MedE= MedT

else

{ # Construct multiset LtD and sorting it descending

 LtD= {maximum MedLP-scenD largest {Ni | Ni <

MedT}}

 MedE =LtD[MedLP-scenD]

 } else if (scgnD > (sclnD + scenD))

{
 MedRP=(scgnD-(sclnD+scenD))/2;

 # Construct multiset GtD and sorting it ascending

 GtD= {maximum MedRP smallest {Ni | Ni >MedT}}

 MedE =GtD[MedRP]

}
else MedE = MedT

return MedE

In this case we can see simply that if the position

MedLP smaller than or equal to scenD then we do not

need to make any other computations to get the exact

median. In this optimization step we make this case

belong to the best cases of PCM-oMaRS algorithm.

In this optimization strategy is to remark too that if

the MedLP greater than scenD then instead of sending

all sequences of datasets to send back maximum

MedLP values smaller than or equal to temporary

median, the algorithm sends all datasets to send back

maximum (MedLP–scenD) values smaller than

temporary median. This step of our optimization

reduce too the number of values that will be sorted to

get the exact median. The other cases of this step

remain unchanged as following: The last case of this

step is simplest one and presents one of the best cases

of this algorithm.

In the following section we represent the new cases

map after executing the presented optimization

strategy.

4.2. Example of Application with the Optimization

Let us now apply our optimization of the previous

example to clear the efficiency. Let us start with step 4

the calculation of cgnD1, cgnD2 and cgnD1 stay

unchanged as following:

cgnD1=|{30}|, cgnD2 =|{29}|, cgnD3=|{30, 32}|

Where the number of all values that greater than MedT

in all datasets is scgnD:

scgnD = 1+1+2=4

Now, we calculate now the number of all values that

only smaller than MedT:

clnD1 = |{3, 5, 11}|, clnD2 = |{1, 7}|, clnD3=|{10, 18}|

That means, the number of all values that smaller than

is sclnD:

sclnD=(3+2+2)=7.

On the other hand, we compute the number of all

values that only equal to MedT:

cenD1= |{27}|, cenD2=|{27, 27}|, cenD3=|{27}|

That means, the number of all values that smaller than

is sclnD: scenD = (1+2+1)-1=3.

Now we have the case: (sclnD+scenD)> scgnD, we

start now with step 5 of PCM-oMaRS algorithm

MedLP=(((sclnD+scenD)-scgnD)/2)

MedLP=((7+3) – 4)/ 2 = 3

Now, we know that the position of exact median is to

find in the left side of temporary median in 3 positions.
 Now before we get LtD, the sequence that contains

maximum 3 largest numbers from each dataset smaller
than or equal to MedT differencing MedT self. We
compare the MedLP with scenD. If MedLP ≤ scenD
then we do not need to do any computation more
because the temporary median has the same value as
the exact median. That means:

MedE= MedT = 27

Based on this example we can see the important role of
this optimization. This optimization provides best
cases of our algorithm. The next section illustrates
these cases with the optimization.

212 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

4.3. Optimized PCM-oMaRS Cases Map

In Figure 2, it was clarified that the best case of our

algorithm is executable by many cases. The first two

cases are applicable if the number of values that

greater than the temporary median equal to the number

of values that smaller than or equal to the temporary

median for both cases of total size of all datasets.

The other cases is to find if the position number

smaller than or equal to the number of values that

equal to the temporary median for the case that the

number of values that greater than the temporary

median smaller than the number of values that smaller

than or equal to temporary median in the both cases of

total size of all datasets. If the total size of all multisets

is an even number and the difference equal to 1 then

this case is too a best case of PCM-oMaRS algorithm

because in this case the temporary median is one of the

two middle values of exact median.

Figure 2. Abstract map of optimized PCM-oMaRS cases.

In these cases, the PCM-oMaRS algorithm does not

need more to apply algorithm 2 completely, because

the temporary median in this case is the required exact

median. In other words that means, after computing the

position of the exact median we do not need to apply

any operation anymore to achieve the required result.

4.3. Complexity and Statistical Study of PCM-

oMARS Algorithm

In this section we discuss the cost of complexity of our

algorithm and give basic statistical information of our

implementation experiments.

4.4. Complexity of PCM-oMaRS

The complexity of parallel algorithms depends on three

major classes of costs. The first class is the

communication cost because parallel algorithms access

data storage in distributed connected nodes. The

second class is the local execution cost. Generally the

more expensive operations execute in local level the

more efficient for the complexity of the parallel

algorithms. The third one is the cost of the parallel

algorithm in the global level.

In most cases the communication cost plays the

most expensive role in the total complexity cost.

Therefore by renouncing the use of iterations or

recursions of communications the PCM-oMaRS

algorithm and its optimized version achieved the

maximal reduction of steps that play a crucial role with

the communications costs. Excessively with our

algorithm only basic operation and optimized sort

algorithm will be required to apply in both local and

global levels.

These classes of costs are cleared in the following

table:

Table 1. Abstract of total cost of PCM- oMaRS.

Cost

Operation

Local

Execution
Communication Global

Execution

Basic Operation + - +

General Operation + - -

Sorting + - +!

Communication - +! -

!: it is only one time and if it is required

In other words, the global and local execution costs

are in best case O(1) and the worst case O(n.logn) and

the communication cost is in the worst case the usually

applied network system communications costs and it is

counted only once. In relation to this idea the blocking

of data will be executed only one time and only if it is

necessary.

4.5. Statistical Study

Depending on tests of implementation of PCM-

oMaRS algorithm we have received some important

results. We have carried out over 55000 tests with

Eclipse-Parallel-Luna on intel(R) Core(TM)2 Duo

CPU P9600 processor with 8GB RAM. These results

are organized in a short statistical study as following.

We have classified the required data to getting the

exact median in 4 classes depending on our results. We

have found that in the worst case of applying PCM-

oMaRS algorithm we need to receive only 21.31% of

all values in all datasets and in the best case we do not

need to receive any value (0% of all values). In 35.63%

of all tests we do not need to receive any data (0% of

all values) to get the exact median and in 43.47% of all

tests we need 0.01-4.99 % all values. Belong to the

sector 5-9.99% all values 14.76% of all tests and in

7.14% of all tests we need 10-21.31% all values.

This statistical information is represented in the

following Table:

Total Size

of all sets

scgnD <

sclnD + scenD

scgnD >

sclnD + scenD

ODD

EVEN

scgnD -

(sclnD + scenD) > 1

(sclnD + scenD) -

scgnD > 1

(sclnD + scenD) -

scgnD = 1

MedE =

MedT

Best Case of PCM- oMaRS

Best Case of PCM- oMaRS

MedLP ≤

scenD

MedLP >

scenD

Best Case of PCM- oMaRS

Optimization of Position Finding Step of PCM-oMaRS Algorithm with Statistical Information 213

Table 2. Statistical information.

Required Data % all tests

0% 35,63

(0,01-4,99) % 43,47

(5,00- 9,99) % 14,76

(10,00- 21,31)% 07,14

This table is represented in the following diagram:

10,00

5.00-9.99%

(0.01-4.99)%

0%

0 20 40 60

Figure 3. Statistical study of implmention of PCM- oMaRS.

5. Conclusions

The research points of this field “median computing of

distributed datasets” divided into two main directions

The first one cares on the approximation methods. The

other one focuses on the computation of the exact

median with usage of iterative or recursive steps. We

have shown that we can compute the exact median

with clever steps depending on the calculation of the

position of the exact median without needing to apply

iterations or recursions to get the value of the exact

median. That means, PCM-oMaRS algorithm

guarantees the maximum reduction of median

computation steps. Too, instead applying blocking of

the required data by the beginning an execution of an

algorithm, the data may be blocked only in one non

iterative or recursive step with the execution of our

algorithm and if it is necessary.

In this article we have shown that the most

computation of our algorithm is calculated in the local

nodes (computers), basic operations and operation with

efficient complexity will be executed in the master

computer (global one). That means in other word, the

costs of complexity of our algorithm is computed

through the common communication costs and local

execution costs like all other algorithms in addition

only the cost of an efficient sort algorithm in step 5. In

our experiments we have proved that the execution of

our algorithm can be more effective in the local

execution too, if we divided the local dataset that

contains enormous values in many local datasets.

We have implemented this algorithm by Java with

two different input possibilities. The first one is with

manually targeted inputs to test extreme cases of

values distributions and the other one is random inputs

to be able to check all possible cases with the passage

of time. We have tested the implementation of our

algorithm with more than 40000 cases, some of these

depended on the manually targeted inputs and the rest

were in relation to the random inputs. In each case, the

number of datasets is different, and each dataset

includes many different values.

Acknowledgment

We would like to thank our colleague in Database and

information systems department at university of

Rostock for their notes. Moreover, we would like to

express our gratitude IIE-SRF/ USA organization for

its support scientists at risk and its scholarships.

References

[1] Anagreh M., Samsudin A., and Omar M.,

“Parallel Method for Computing Elliptic Curve

Scalar Multiplication Based on MOF,” the

International Arab Journal of Information

Technology, vol. 11, no. 6, pp. 521-525, 2014.

[2] Balouch A., “PCM-oMaRS Algorithm: Parallel

Computation of Median-Omniscient Maximal

Reduction Steps,” American Research Journal of

Computer Science and Information Technology,

vol. 1, no. 1, pp. 1-11, 2015.

[3] Blum M., Floyd R., Pratt V., Rivest R., and

Tarjan R., “Time Bounds for Selection,” Journal

of Computer and System Sciences, vol. 7, no. 4,

pp. 448-461, 1973.

[4] Chen W., Linear Networks and Systems,

Belmont, CA: Wadsworth, 1993.

[5] Chin F. and Ting H., “An Improved Algorithm

for Finding the Median Distributively,”

Algorithmic a, vol. 2, no. 5, pp. 235-249, 1987.

[6] Feldman D. and Langberg M., “A Unified

Framework for Approximating and Clustering

Data,” in Proceedings of the Annual ACM

Symposium on Theory of Computing, New York,

USA, pp. 569-578, 2011.

[7] Floyd R. and Rivest R., “Expected Time Bounds

for Selection,” Communications of the ACM, vol.

18, no. 3, pp. 165-172, 1975.

[8] Garrigues M. and Manzanera A., “Exact and

Approximate Median Splitting on Distributed

Memory Machines,” in Proceedings of

International Conference on Parallel and

Distributed Processing Techniques and

Applications, Las Vegas, USA, 2012.

[9] Har-Peled S. and Mazumdar S, “On Coresets for

k-means and k-median Clustering,” in

Proceedings of the Annual ACM Symposium on

Theory of Computing, New York, USA, pp. 291-

300, 2004.

[10] Ivan T., Dmytro P., and Ivan I., “Parallel

Algorithms and VLSI Structures for Median

Filtering of Images in Real Time,” International

Journal of Advanced Research in Computer

Engineering and Technology, vol. 3, no. 8, pp.

2643-2649, 2014.

[11] Jia L., Lin G., Noubir G., Rajaraman R., and

214 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

Sundaram R., “Universal Approximations for

TSP, Steiner Tree and Set Cover,” in

Proceedings of the 37
th
 Annual ACM Symposium

on Theory of Computing, pp. 386-395, 2005.

[12] Kuhn F., Locher T., and Wattenhofer R.,

“Distributed Selection: A missing Piece of Data

Aggregation,” Communications of the ACM, vol.

51, no. 9, pp. 93-99. 2008.

[13] Marberg J. and Gafi E., “An Optimal Shout-Echo

Algorithm for Selection in Distributed Sets,”

Technical Report University of California, Los

Angeles, Computer Science Department, 1985.

[14] Negro A., Samtoro N., and Urrutia J., “Efficient

distributed selection with bounded messages,” in

Proceedings of IEEE Transactions of Parallel

and Distributed Systems, pp. 397-401, 1997.

[15] Peleg D., Distributed Computing: A Locality-

Sensitive Approach, Society for Industrial and

Applied Mathematics Philadelphia, PA, USA,

2000.

[16] Rodeh M., “Finding the Median Distributively,”
Journal of Computer and System Sciences, vol.

24, no. 2, pp. 162-166, 1982.

[17] Santoro N., Scheutzow M., and Sidney J., “On

the Expected Complexity of Distributed

Selection,” Journal of Parallel and Distributed

Computing, vol. 5, no. 2, pp. 194-203, 1988.

[18] Santoro N., Sidney J., and Sidney S., “A

Distributed Selection Algorithm and its Expected

Communication Complexity,” Theoretical

Computer Science, vol. 100, no. 1, pp. 185-204.

1992.

[19] Schönhage A., Paterson M., and Pippenger N.,

“Finding the median,” Journal of Computer and

System Sciences, vol. 13, no. 2, pp. 184-199,

1976.

[20] Yao Y. and Gehrke J., “The Cougar Approach to

in-Network Query Processing in Sensor

Networks,” ACM SIGMOD Record, vol. 31, no.

3, pp. 9-18. 2002.

[21] Yingyu L., “Distributed k-Median/ k-Means

Clustering on General Topologies,” in

Proceedings of the Advances in Neural

Information Processing Systems, pp. 1995-2003,

2013.

[22] Zhang Q., Liu J., and Wang W., “Approximate

Clustering on Distributed Data Streams,” in

Proceedings of IEEE 24
th
 International

Conference on Data Engineering, Cancun,

Mexico, pp. 1131-1139, 2008.

Ammar Balouch is married and has

three children. He received his PhD

from University of Rostock in

Germany in 2006. He is currently a

researcher at the Chair of Database

and Information Systems in the

Institute of Computer Science at the

University of Rostock. He is active in and

concentrating on his research topics: Analysis and

evaluation of big data, and parallel computation of

statistical functions. He managed and supervised

several IT projects. Focuses were on data mining and

data warehousing technologies in the application areas

Trading and Construction Equipment. He is a supporter

and cofounder of organizations of human support and

rights.

