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1. Introduction 

Since Dempster-Shafer theory (DS theory) is proposed 

[4, 21], it has been widely used in information fusion 

[2, 9, 14, 19, 27, 31], decision making [5, 7, 20, 30] 

and other fields [1, 3, 6, 8, 13, 18, 28]. However, 

Zadeh et al. [26] proposed a numerical example to 

illustrate that it may result an illogical result when two 

bodies of evidences are in conflict. Therefore, how to 

describe conflict and difference between two bodies of 

evidence becomes important. The metric distance not 

only quantitatively describe the difference between two 

bodies of evidence, but also is used to calculate the 

weight in weighted average combination rule, which is 

a broadly accepted method [17, 24]. 

A lot of works have been done to introduce 

quantitative measuring method [11, 16]. In [15], the 

point that the conflict coeffcient in evidence theory is 

able to represent the conflict between evidences is 

illustrated. The widely used and classical method is 

constructing a map from vectors made of Basic 

Probability Assignment (BPA) to real number 

presented in [10, 12, 22, 23]. Some real applications 

indicate the evidence distance can show the difference 

between two bodies of evidence. What’s more 

important, the function satisfies three characteristics of 

distance, namely nonnegativity, symmetry and triangle 

inequality. 

However, this method doesn’t have a fast 

convergence and it is not considered that probability 

distribution on a power set is able to assign to its 

subsets not only single elements. In other words, the 

similarity between two sets is not just the similarity 

among single elements, their power sets should be 

considered as well. 

In this paper, a novel distance between two bodies 

of evidence is proposed based on classical evidence 

distance. In the novel evidence the first step is to 

constitute vectors made of BPAs. And then a matrix Dp 

whose elements represent the similarity between two 

sets A and B, like metric in Euclid space, is produced. 

The last step is to calculate the distance using vectors 

and matrix𝐷𝑝 like calculating the length of difference 

between two vectors. 

The rest of the paper is organized as follows. In 

section 2, Dempster-Shafer theory and the existing 

evidence distance are briefly introduced. In section 3, a 

new evidence distance is proposed, and five properties 

of new distance function has are proved as well. In 

section 4 a numerical example is used to illustrate the 

behaviour of the new evidence distance. We also use it 

in the real application to exam its practical 

applicability. Section 5 concludes the main 

contribution of the paper. 

2. Preliminaries  

In this section, some preliminaries are briefly 

introduced below. 

2.1. Dempster-Shafer Theory of Evidence 

The theory of evidence is introduced by Dempster [4] 

and developed by Shafer [21]. In Dempster-shafer 

theory, basic probability is distributed to power sets 

not mutually exclusive elements. Some terminology 

and notions are defined below to explain theory better. 

Let Θ be a set of N mutually exclusive and 

exhaustive elements, which means the problem has N 

possible values. The following set is called the frame 

of discernment 

 
1 2{ , ,..., }. NH H H   

P(Θ) is the power set composed of 2N elements A of Θ, 

representing the object is in A 

 (1) 
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A Basic Probability Assignment (BPA) is a function 

from P(Θ) to [0, 1] defined by: 

 : ( )  [0,1] m P   

and which satisfies the following conditions [4, 21]: 

 
( )

( ) 1,
 


A P

m A  

 ( ) 0. m  

Where m(A) represents the belief to A. In other words, 

m(A) is the support that we only know the object is 

belong to A, but we don’t accurately know which it is. 

If m(A) =1, it represents it is certain that the object is 

in A, which means we completely have confidence in 

this set. If m(A) = 0, it represents that we have no 

confidence in set A. Two bodies of evidence, 

𝑚1and𝑚2, can be combined to yield a new evidence 

m, by the follow combination rule [4, 21] 

 
1 2( ) ( )

( )
1

0





 


   





B C A

m B m C

Am A
K

A

  

with 

 
1 2( ) ( )

 

 
B C

K m B m C  

Where K is named conflict coefficient. It reflects the 

conflict between two bodies of evidences. Absolutely,0 

≤K≤ 1.K = 0 shows the absence of conflict between 

two bodies of evidence. K=1 shows complete conflict 

between 𝑚1and 𝑚2. When K=1, the Dempster’s rule of 

combination is no longer applicable. 
 

 Example 2.1. Given Θ = {a, b, c}, considering the 

following two bodies of evidence. 

m1: m1({a,b})=0.5, m1(c)=0.5;  
m2: m2({a,b})=0.5, m2(c)=0.5. 

The two bodies of evidence are completely identical. 

But conflict coefficient K is means the two bodies of 

evidence have great conflict. It is obvious that using 

conflict coefficient to measure the distance will cause 

the counterintuitive result. 

In addition, as long as BPA of a body of evidence is 

distributed to sets with no intersection, K is always 

greater than 0, even though m1 and m2 are completely 

identical. Therefore K is not able to accurately 

represent the conflict of two bodies of evidence. 

2.2. Existing Evidence Distance 

To measure the distance between two bodies of 

evidence, Joussel me defined a function from vector 

made up of BPAs to real number. Let m1 and m2 be two 

BPAs on the same frame of discernment Θ, containing 

N mutually exclusive and exhaustive hypotheses. The 

distance between m1 and m2 is [18]: 

 

1 2 1 2 1 2

1
( , ) ( ) ( ),

2
  T

BPAd m m m m D m m  

Where
1m and

2m are the associated vectors of BPAs 

𝑚1and 𝑚2 and D is a 2𝑁 × 2𝑁matrix whose elements 

are 

 
| |

( , ) ,
| |






A B
D A B

A B
  

 , ( ) A B P   

Equation (8) can be transformed as follows [18] 

 2 2

1 2 1 1 1 2

1
( , ) 2 ,

2
‖ ‖ ‖ ‖    BPAd m m m m m m   

Where
2 ,‖ ‖  m m m and 

1 2, m m are the scalar 

product defined by 

2 2

1 2 1 2

1 1

| |
, ( ) ( )

| | 


  




N N

i j

i j

i j i j

A A
m m m A m A

A A
  

with , ( ), i jA A P , 1,2, ,2 Ni j . 

This function dBPA (m1, m2) satisfies three 

requirements, namely nonnegativity, symmetry, 

triangle inequality. We use Equation (8) to calculate 

the distance between m1 and m2 in Example 1, we 

obtain that the result is zero, which is consistent with 

real condition. 

3. The Proposed Evidence Distance 

In this section, the definition and the properties of the 

proposed evidence distance function are detailed. 

3.1. Definition 

When calculating evidence distance, a matrix D is used 

in [10], whose elements, Jaccard similarity coefficient, 

are  

| |
( , ) , , ( ),

| |


  



A B
D A B A B P

A B

  

to measure distance between two subsets A and B of 

Θ . But in Dempster-Shafer theory, belief value is 

distributed to power sets. For example, we set a frame 

of discernment Θ as follows [10]: 

{a,b,c,d}.  

In addition, two sensors produce two pieces of data,m1 

(A)=0.2, m2 (B)=0.5. And A = {a, b, c}, B ={c, d} are 

elements of P(Θ). It illustrates that the first sensor 

thinks the object possibly is single elements a, b, c or 

its subsets {a, b},{a, c},{b, c},{a, b, c}. It is notable to 

distribute belief function on single elements, but the 

 (2) 

 (3) 

 (4) 

 (5) 

 (6) 

 (7) 

 (8) 

 (9) 

 (10) 

 (11) 

 (12) 

 (13) 

 (14) 
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global possibility is 0.2. We can regard A as a new 

frame of discernment. So the belief of A is divided 

by(2|𝐴| − 1), which represents the potential number of 

states in A (We exclude the empty set of A). Similarly 

B is equivalent to a frame of discernment whose global 

possibility is 0.5. The union set and intersection of A 

and B and are able to regard as new discernments, 

which will assign basic probability on power sets. 

Therefore, 

| |

| |

2 1
( , )

2 1










A B

p A B
D A B  

Can reflect the similarity between set A and B more 

reasonably. 

Then the definition of novel distance is presented 

below. 

Let m1 and m2 be two BPAs on the same frame of 

discernment Θ, containing N mutually exclusive and 

exhaustive hypotheses. The distance between m1 and 

m2 is: 

1 2 1 2 1 2

1
( , ) ( ) ( ),

2
  T

BPA pd m m m m D m m  

Wherem1⃗⃗ ⃗⃗  ⃗andm2⃗⃗ ⃗⃗  ⃗are the associated vectors of BPAs 

m1⃗⃗ ⃗⃗  ⃗and m2⃗⃗ ⃗⃗  ⃗,𝐷𝑝 is an 2N× 2N matrix whose elements are 

| |

| |

2 1
( , ) , , ( ).

2 1






  



A B

p A B
D A B A B P  

Similarly, (16) can be transformed as follows 

 2 2

1 2 1 2 1 2

1
( , ) 2 ,

2
‖ ‖ ‖ ‖    BPAd m m m m m m  

where
2 , ,‖ ‖  m m m and 1 2, m m are the scalar product 

defined by 

| |2 2

1 2 1 2 | |
1 1

2 1
, ( ) ( )

2 1




 


  




N N
i j

i j

A A

i j A A
i j

m m m A m A   

with , ( ) i jA A P , , 1,2, ,2 Ni j . 

3.2. Properties of Novel Evidence Distance 

First, the new distance satisfies the following 

requirements for any vectors made of BPAs. 

1. Nonnegativity: 
1 2( , ) 0d m m if and only if m1= m2, 

d(m1, m2)=0. 

2. Symmetry: d(m1, m2)= d(m2, m1). 

3. Triangleinequality
1 3 1 2 2 3( , ) ( , ) ( , ). d m m d m m d m m  

Next we prove that this function has three properties. 

Let m1 , m2 be two BPAs on the same frame of 

discernment Ω(|Ω| = n). Then the distance between 

them is  

1 2 1 2 1 2

1
( , ) ( ) ( ),

2
  

n

T

p pd m m m m D m m
 

Where
npD  is an 2N× 2N matrix whose elements are 

| |

| |

2 1
, , .

2 1






 



i j

n i j

A A

i j p i jA A
ent D A A  

We prove nonnegativity the function has. When n =1, 

1

1 1/ 2

1/ 2 1

 
  
 

pD is obviously positive definite 

matrix. 

We suppose that matrix
kpD is positive definite, 

when n= k. Transform
1kDp to

1


kpD by exchanging two 

rows or two columns a couple of times. In other words,

1 1 
  

k kp pD P D Q ,where P, Q are invertible matrix. 

So
1kpD and

1


kpD have the same positive definite 

property and 

1

1

2
.

1

2




 
 

  
 
 
 

k k

k

k k

p p

p

p p

D D

D

D D

 

For any two vectors𝑥1, 𝑥2∈𝑅2𝑘×1satisfy that 

11
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Because of the nonegativity of
kpD ,we can draw a 

conclusion that 

1 1 2 2 1 2 1 2( ) ( ) 0,    
k k k

T T T

p p px D x x D x x x D x x  

If and only if 𝑥1 = 𝑥2 = 0, the equality holds. 

Thus, Dpk+1 is positive definite. By the 

mathematical induction,
npD is positive definite, and 

d(m1, m2) is positive definite. Next we prove the 

function satisfies Symmetry. We note that 

2 1 2 1 2 1

1 2 1 2

1 2 1

1 2

2

1
( , ) ( ) ( )

2

1
[ ( )] [ ( )]

2

1
( ) ( )

2

=d(m ,m )

  

    

  

n

n

n

T

p

T

p

T

p

d m m m m D m m

m m D m m

m m D m m

 

Thus, d(m1, m2) satisfies Symmetry. 

Then we prove triangle inequality the modified 

distance has. For
npD  is positive definite,by Cholesky 

decomposition, we have 

,
n

T

pD C C  

Where
2 2

n n

C R  is an invertible matrix, so we can 

obtain the following equation 

 (15) 

 (16) 

 (17) 

 (18) 

 (19) 

 (20) 

 (21) 

 (22) 

 (23) 

 (24) 

 (25) 

 (26) 
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For 2-norm satisfies Triangle inequality, we can draw a 

conclusion that also satisfies Triangle inequality. 

In addition, when the belief value is only assigned 

to single elements, the modified matrix Dp degenerates 

to matrix D. 

| |

| |

2 1 | |

2 1 | |





 


 

A B

A B

A B

A B

 

In other words, when the belief value is only assigned 

to single elements, the proposed method is the same as 

the method represented by Jousselme. 

 Example 3.1. Set a frame of discernment Ω = {a, b, 

c},and two BPAs are given as follows 

m1: m1(a)=0.6, m1(b)=0.4, 

m2: m2(a)=0.6, m2(c)=0.4 

According to Equations (16) and (17), we obtain 

dBPA= dBPA = 0.32. 

Compare with classical evidence distance, the 

modified method converges faster and has higher 

sensitivity. The proof is given below. 

We suppose that |A ∪ B| = a, |A ∩ B| = b, x = a− b, 

Thus 

( , ) ,

2 1
( , ) .

2 1











a x

p a

a x
D A B

a

D A B

 

Then we obtain that the derivative of D(A, B) and D(A, 

B) are 

( ( , )) 1

( ( , )) 2 1
.

ln 2 2 

 


 



a
p

a x

d D A B

dx a

d D A B

dx

 

We find that Dp (A, B) decreases quickly with the 

increase of x. So we think the new evidence distance 

converges faster and has a higher sensitivity than 

evidence distance in [10]. Example 3 specifically 

shows this property. 

4. Numerical Example and Real Application 

In this section numerical example and real application 

exams are used to illustrate the behavior and practical 

applicability of the new evidence distance. 

4.1. Numerical Example 

An example is illustrated to show the advantage of the 

new method. 

 Example 4.1.Set a frame of discernment Ω = {1, 2, 

3,…, 20}, and two BPAs are given as follows 

m1: m1 (7) = 0.6, m1 (A) = 0.4, 

m2: m2 (1, 2, 3) = 1, with A goes through {1}, {1, 

2}, {1, 2, 3},…, {1, 2, 3, …, 10}. 

4.2. Real Application 

Evidence distance is widely used in target recognition 

system [25]. 

The results by different methods to measure the 

distance between two bodies of evidence are shown in 

Figure 1 and Table 1. 

 

Figure 1. Comparison between two kinds of evidence distance. 

As can be seen in Figure 1, with two bodies of 

evidence approaching, the new evidence distance will 

decrease. And when A={1, 2, 3}, the new evidence 

distance achieves the minimum. With the gap between 

two bodies of evidence increasing, the new distance 

increases as well. This new evidence distance curve 

can quantitatively reflect the difference between two 

bodies of evidence. 

Compared with evidence distance curve, the new 

evidence distance curve varies quickly when A near 

the set {1, 2, 3}. As A varies from {1, 2} to {1, 2, 3} 

the new distance decreases 0.1672, while the classical 

distance decreases 0.1024. As A varies from {1, 2, 3} 

to {1, 2, 3, 4} the new distance increases 0.1572, while 

the classical distance increases 0.0782. The new 

evidence distance can obviously show the nearest point 

of two bodies of evidence. 

When A is set {1, 2, 3}, the matrix D is the same an 

DP, two kinds of distance have the same value, since 

the novel function degenerates to the classical evidence 

distance. 

From Figure 1 we can conclude that the modified 

evidence distance has a faster convergence speed and a 

higher sensitivity. 

Table 1. Comparison between two kinds of evidence distance. 

A 
Classical evidence 

distance 

Modified evidence 

distance 

{1} 

{1, 2} 
{1, 2, 3} 

{1, 2, 3, 4} 

{1, 2, 3, 4, 5} 
{1, 2, 3, 4, 5, 6} 

{1, 2, 3, 4, 5, 6, 7} 

{1, 2, 3, 4, 5, 6, 7, 8} 
{1, 2, 3, 4, 5, 6, 7, 8, 9} 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

0.7916 

0.7024 
0.6000 

0.6782 

0.7211 
0.7483 

0.7982 

0.8000 
0.8083 

0.8149 

0.8383 

0.7672 
0.6000 

0.7572 

0.8183 
0.8459 

0.8601 

0.8660 
0.8689 

0.8703 

 

 (27) 

 (28) 

 (29) 

 (30) 
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 Example 4.2. Another application from reference 

[29] is illustrated to demonstrate the effectiveness of 

the proposed method. Assume that there are three 

objects A, B, C, in a target recognition system. The 

frame of discernment is denoted by Θ ={A, B, C}.In 

the WSN, there are five difference kinds of sensors 

observing objects which are CCD sensor(S1), sound 

sensor(S2), infrared sensor(S3), radar sensor(S4) 

and ESM sensor(S5). The evidences obtained from 

these five kinds of sensors are shown in Table 2. 

Table 2. Five evidence obtained by sensors. 

 {A} {B} {C} {A,C} 

S 1:m1(·) 

S 2:m2(·) 

S 3:m3(·) 

S 4:m4(·) 

S 5:m5(·) 

0.41 

0 

0.58 

0.55 

0.6 

0.29 

0.9 

0.07 

0.1 

0.1 

0.3 

0.1 

0 

0 

0 

0 

0 

0.35 

0.35 

0.3 

 

 

Figure 2. The flowchart of the new method. 

It is obvious that the second evidence is abnormal. It 

will lead to a counterintuitive result after fusion. 

We use the new evidence distance replacing 

classical distance and the combination rule presented 

in [25] to deal with these evidence. The specific 

flowchart of the method that we use is shown in Figure 

2. And results are shown in Table 3 and Figure 3 

compared with different combination rules. When five 

bodies of evidence are obtained and the proposed 

method is used, the calculation process is given below. 

First, adopt Equation (17) to calculate the distance 

and then calculate the support degree of evidences. 

Sup(1) = 3.4222 

Sup(2) = 2.1219 

Sup(3) = 3.7734 

Sup(4) = 3.8213 

Sup(5) = 3.8057 

Next, obtain the information value Iv(i) (1 ≤ i ≤ 5)of 

each evidence. 

Iv(1) = 4.7893 

Iv(2) = 1.5984 

Iv(3) = 6.1056 

Iv(4) = 6.6287 

Iv(5) = 5.8764 

Then, obtain the weight of each evidence. 

w1= 0.1811 

w2= 0.0375 

w3= 0.2545 

w4= 0.2798 

w5= 0.2471 

Finally, modify the BPAs by weights and combine the 

weighted averaging evidence four times. The final 

results are listed in Table 3. 

Though the second evidence is completely different 

with others, which will make distribution when making 

decision. When it comes to three kinds of evidence, 

according to calculating the distance among sensor 1, 

sensor 2, and sensor 3, similarity results are given 

greater weight in modified method, the belief degree 

on A reaches up to 0.8345. When it comes to five 

kinds of evidence, the belief degree on A reaches up to 

0.9887, for which we can make decision certainly. It is 

not distributed by the second evidence. Comparing 

with other methods shown above, the modified method 

assign A higher belief value which is not distributed by 

the wrong evidence. So the modified method using 

new evidence distance is an efficient method in dealing 

with conflict. 

 

 

 

 

Figure 3. The fusion result comparison of different rules. 
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Table 3. Fusion result. 

Combination rule {𝒎𝟏,𝒎𝟐} {𝒎𝟏,𝒎𝟐,𝒎𝟑} {𝒎𝟏,𝒎𝟐,𝒎𝟑,𝒎𝟒} {𝒎𝟏,𝒎𝟐,𝒎𝟑,𝒎𝟒,𝒎𝟓} 
Dempster m(A) = 0 m(A) = 0 m(A) = 0 m(A) = 0 

 m(B) = 0.8969 m(B) = 0.6575 m(B) = 0.3321 m(B) = 0.1422 

 m(C) = 0.1031 m(C) = 0.3425 m(C) = 0.6679 m(C) = 0.8578 

Yager m(A) = 0 m(A) = 0.4112 m(A) = 0.6508 m(A) = 0.7732 

 m(B) = 0.260 m(B) = 0.0679 m(B) = 0.0330 m(B) = 0.0167 

 m(C) = 0.0300 m(C) = 0.0105 m(C) = 0.0037 m(C) = 0.0011 

 m(AC) = 0 m(AC) = 0.2481 m(AC) = 0.1786 m(AC) = 0.0938 

Murphy m(A) = 0.0964 m(A) = 0.4619 m(A) = 0.8362 m(A) = 0.9620 

 m(B) = 0.8118 m(B) = 0.4497 m(B) = 0.1147 m(B) = 0.0210 

 m(C) = 0.0917 m(C) = 0.0794 m(C) = 0.0410 m(C) = 0.0138 

 m(AC) = 0 m(AC) = 0.0090 m(AC) = 0.0081 m(AC) = 0.0032 

Deng et al. m(A) = 0.0964 m(A) = 0.4674 m(A) = 0.9089 m(A) = 0.9820 

 m(B) = 0.8119 m(B) = 0.4054 m(B) = 0.0444 m(B) = 0.00039 

 m(C) = 0.0917 m(C) = 0.0888 m(C) = 0.0379 m(C) = 0.0107 

 m(AC) = 0 m(AC) = 0.0084 m(AC) = 0.0089 m(AC) = 0.0034 

Zhang et al. m(A) = 0.0964 m(A) = 0.5681 m(A) = 0.9142 m(A) = 0.9820 

 m(B) = 0.8119 m(B) = 0.3319 m(B) = 0.0395 m(B) = 0.00034 

 m(C) = 0.0917 m(C) = 0.0929 m(C) = 0.0399 m(C) = 0.0115 

 m(AC) = 0 m(AC) = 0.0084 m(AC) = 0.0083 m(AC) = 0.0032 

Yuan et al. m(A) = 0.2849 m(A) = 0.8274 m(A) = 0.9596 m(A) = 0.9886 

 m(B) = 0.5306 m(B) = 0.0609 m(B) = 0.0032 m(B) = 0.00002 

 m(C) = 0.1845 m(C) = 0.0986 m(C) = 0.0267 m(C) = 0.0072 

 m(AC) = 0 m(AC) = 0.0131 m(AC) = 0.0106 m(AC) = 0.0039 

Proposed method m(A) = 0.2678 m(A) = 0.8345 m(A) = 0.9598 m(A) = 0.9887 

 m(B) = 0.5552 m(B) = 0.0622 m(B) = 0.0039 m(B) = 0.0003 

 m(C) = 0.1770 m(C) = 0.0865 m(C) = 0.0250 m(C) = 0.0070 

 m(AC) = 0 m(AC) = 0.0167 m(AC) = 0.0114 m(AC) = 0.0040 

5. Conclusions 

How to measure dissimilarity between two bodies of 

evidence is a significant problem. If conflict coefficient 

K is used to reflect the difference between two bodies 

of evidence, it will produce counterintuitive 

conclusion, especially when the two bodies of evidence 

have a great difference. In evidence theory, belief 

value is assigned to power set but not singleton. So any 

subsets of discernment including m elements can 

produce a 2m-1 linear space. The new evidence 

distance base on this thought improves evidence 

distance. Let Dp(A, B) express similarity between A 

and B, so that the distance matrix D whose element is 

D(A, B) is more meaningful and accurate as metric 

matrix. By reasoning and several examples, we know 

that novel evidence distance preserves properties and 

advantage of the evidence distance introduced by 

Jousselme et al. [10] In addition, when the belief value 

is only assigned to single elements the novel function 

degenerates to the classical evidence distance. 

Compared with evidence distance introduced by 

Jousselme et al. [10] new evidence distance we 

propose in this paper has a higher sensitivity, which 

can accurately represent conflict of two bodies of 

evidence, as mentioned above. 
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