
26                                                         The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020 

Machine Learning Based Prediction of Complex 

Bugs in Source Code  

Ishrat-Un-Nisa Uqaili and Syed Nadeem Ahsan 

Department of Computer Science, Iqra University, Karachi 

Abstract: During software development and maintenance phases, the fixing of severe bugs are mostly very challenging and 

needs more efforts to fix them on a priority basis. Several research works have been performed using software metrics and 

predict fault-prone software module. In this paper, we propose an approach to categorize different types of bugs according to 

their severity and priority basis and then use them to label software metrics’ data. Finally, we used labeled data to train the 

supervised machine learning models for the prediction of fault prone software modules. Moreover, to build an effective 

prediction model, we used genetic algorithm to search those sets of metrics which are highly correlated with severe bugs. 

Keywords: Software bugs, software metrics, machine learning, fault prediction model. 

Received March 28, 2017; accepted June 8, 2017 

https://doi.org/10.34028/iajit/17/1/4 
 

 

1. Introduction 

Software engineering literature reveals extensive 

interest of researchers to predict faults in software. 

Availability of limited resources as compared to bugs’ 

quantity needs appropriate allocation of these 

resources [4, 10]. One of the important requirements of 

quality assurance is not only to perform code testing, 

but also to identify fault-prone modules as early as 

possible. Therefore, in recent years researchers have 

put more efforts to minimize the maintenance cost by 

developing fault prediction models.  

Software repositories i.e., the databases of version 

controlling and bug tracking systems are being used to 

develop Machine Learning (ML) based fault prediction 

models. Bug repository and version controlling data 

are accumulated during the evolution of any software. 

Researchers use these evolutionary data to extract 

software metrics and apply ML techniques to predict 

fault prone software modules. Different types of 

metrics such as code, design and requirement are 

effectively used to predict the faulty modules. Jiang et 

al. [11] used code and design metrics data of 14 

different software projects and applied different 

modeling techniques on the data to build fault 

prediction models. They discovered that code and 

design metrics were useful, but code metrics were 

more reliable than design metrics. Similarly, several 

researches have been conducted using software metrics 

to predict software bugs [8, 9, 12]. Whereas, few 

research works have been performed for the 

classification and prediction of severe bugs [15].  

Bugs are expected in the software; some of them are 

severe in nature and should be fixed immediately. 

However, non-severe and low priority bugs may be  

delayed for resource allocation [23]. Prediction of  

 

fault-prone source code modules which can generate 

severe or complex bugs will help software quality 

assurance personnel to perform thorough testing on 

such fault-prone modules. Xuan et al. [25] 

concentrated the issues of prioritization and focused on 

developing a model to predict high priority bugs. Hall 

et al. [7] analyzed 208 studies published in eleven 

years of fault prediction models on the basis of source 

code; they identified that performance of the model 

depends on the selection of data, independent variables 

or metrics, and modeling techniques. Zimmermann et 

al. [28] revealed that the cross-project fault prediction 

is very important for the software having insufficient 

or little evolutionary data of the project. Therefore, for 

such projects, they proposed to build a model by using 

the evolutionary data of other similar projects.  

In this research study, we addressed the major 

challenges of the software fault prediction model and 

proposed an approach to build ML based fault 

prediction model in order to predict those source code 

modules which can generate complex or severe bugs. 

Furthermore, to enhance the model’s prediction 

capability we also addressed the major issues of ML 

based prediction models like feature selection, 

multicollinearity and class imbalance.  

Our research hypothesis (H0) is: code’s metrics data 

labeled with already occurred bugs (like complex and 

ordinary bugs) are correlated, and can be used to build 

ML based bug prediction model. In order to validate 

our research hypothesis, we used a simple approach: 

first, we selected the metrics data of each version of 

software modules and labeled them with the associated 

bugs’ types (if any). Then, we used the labeled data to 

train ML models for the prediction of fault prone 

modules which can induce severe/complex bugs.  

The major contribution of our research work is the 



Machine Learning Based Prediction of Complex Bugs in Source Code                                                                                       27 

identification of those set of software metrics which 

can be used to build software fault prediction model, 

and also produce classification of software bugs into 

different classes including ordinary, complex, severe, 

and priority bugs. To validate our research objectives, 

we performed an experiment by using the publicly 

available software metrics and bug repository1 data of 

these four projects: Eclipse, Pde, Mylyn, and Equinox. 

Our experimental data comprised of 37 metric values 

of each version of software modules (classes) extracted 

from the project’s version controlling system. The data 

also contained the bugs’ information like severity and 

priority, which were linked with the metrics data of 

those versions of software modules that actually 

induced those bugs. This bug information was 

extracted from the project’s bug-tracking-system, 

Bugzilla/Jira. Out of 37 software metrics, 15 were 

change-metrics obtained from CVS Log data, 17 were 

source code metrics such as Chidamber and Kemerer 

(CK) and Object Oriented (OO), and 05 were 

Complexity Code Change metrics (ComCdChg). Then, 

we used different bug categories to label the metric 

data and proposed an approach to categorizing 

software bugs into complex (Comp) and Ordinary 

(Ord) bugs. In order to define bug complexity, we used 

different characteristics of bugs like Non-Trivial Bugs 

(NTB), Major Bugs (MJB), Critical Bugs (CRB), and 

High Priority Bugs (HPB) and Low Priority Bugs 

(LPB). We also pre-processed the downloaded data to 

handle multicollinearity and class imbalance issues 

using Principal Components Analysis (PCA), Genetic 

Search, Resample and Synthetic Minority 

Oversampling Technique (SMOTE). In order to design 

a better model we trained our data by multiple ML 

algorithms (Alg) and found that Complexity Code 

metrics were more crucial for High Priority bugs, 

while Chidamber and Kemerer and Object Oriented 

(CKOO) and Change metrics were more important for 

severe bugs. 

In section 3 of the paper, we discussed Related 

Work. Section 3 describes the Data Extraction and 

Experimental Setup, while section 4 comprises of 

Results and Discussions. Finally, section 5 is the 

Conclusion and discusses future work. 

2. Related Work 

It is difficult to predict software defects reliably. 

Researchers have developed different prediction 

approaches depending on precision, complexity, and 

requirement of input data [5]. Software metrics are 

imperative for fault prediction and resource allocation 

in quality assurance, hence, identification of proper 

metrics plays important role in software projects [14]. 

Since, our research approach is also to identify relevant 

set of metrics and addresses machine learning 

                                                           
1http://bug.inf.usi.ch/index.php 

challenges to build fault prediction model, therefore, in 

the following paragraphs we highlighted those research 

work which are more relevant to our work: 

D’Ambros et al. [5] introduced a benchmark to 

allow for common comparison which provides all the 

data needed to apply multiple prediction techniques on 

5 publicly available datasets and compared with 

previously available defect prediction approaches. 

They showed that Weighted Churn and Linearly 

Decayed Entropy of source code metrics are best 

performing techniques and single metric cannot work 

reliably across all systems. Different approaches have 

been proposed for handling the problem with the 

variety of metrics such as line of code and complexity 

(code metrics) [6, 17, 21], and the number of changes, 

and recent activity (process metrics) [8, 16] or previous 

faults [9]. 

Cotroneoa et al. [3] examined the features of the 

whole process of bug manifestation by studying 666 

bug reports of two applications Apache web server and 

open source relational database management system 

(MySQL). Their study showed that the appearance of 

bug and its relation with the environment is highly 

important for fault removing process and its 

effectiveness. Shatnawi and Li [20] compared 

efficiency of various prediction models and proposed a 

model for prediction of three fault quantities such as 

count, fix cost and fix effort. Catel et al. [2] compared 

different ML models with Statistical models and found 

that ML models were better than Statistical models. 

If a developer changes one of the logically coupled 

program files instead of all files, it may produce severe 

scenarios and unstable software with a bulk of errors 

[1]. Zimmermann et al. [29] categorized bugs on the 

basis of their reopening and discovered various factors 

such as metrics, people involved and their relationship 

which impacts the reopening of bugs. It is desirable to 

expose more severe concurrent bugs before the release 

of the software [27]. Therefore, it is essential for a 

software engineer to identify the severity of each 

problem during testing, especially when designing 

critical systems. It is very important for test engineers 

to properly recognize the severity of each issue they 

identify during the testing process, hence there is a 

need for appropriate resource allocation, scheduling of 

fixing activities, and additional testing [15]. Lamkanfi 

et al. [13] compared different ML algorithms and 

found Naive Bayes Multinomial as most suitable for 

bug classification in terms of accuracy and speed. They 

also classified severe and non-severe bugs. MySQL In 

real scenarios, the classification data are normally class 

imbalanced; one class has more training instances as 

compared to other class/classes. The skewed class 

distribution can negatively impact the classifier’s 

performance, since classifier may be biased towards 

classifying new, unseen instances as belonging to the 

majority class. Another challenge is high 

dimensionality which means datasets with a huge 



28                                                         The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020 

number of features [15]. Several data mining methods 

are used to enhance the performance of classifier for 

imbalanced data; one of them is data sampling, which 

is used to generate a sampled dataset having a more 

balanced distribution of both classes by eliminating 

biased class. Then, the classifier will train the new 

generated and unbiased dataset [24]. 

3. Data Extraction and Experimental Setup 

To perform experiment, data was obtained from the 

publicly available and published data in bug prediction 

datasets which stored software metrics along with 

defect information of several projects. We designed 

our model after combining data of four projects: 

Eclipse, Pde, Mylyn and Equinox. Each dataset 

comprised of various classes and versions 

(CVS/Subversion) as shown in Table 1. The data also 

includes their bug categories according to severity and 

priority from defect tracking systems, Bugzilla/Jira 

repositories [5]. 

Table 1. Datasets used in this study. 

S# DataSets Instances Versions Description 

1 Eclipse 998 91 
Eclipse JDT Core 

www.eclipse.org/jdt/core/ 

2 Pde 1498 97 
Eclipse PDE UI 

www..eclipse.org/pde/pde-ui/ 

3 Mylyn 1863 98 
Eclipse MyLyn 

www.eclipse.org/mylyn/ 

4 Equinox 325 91 
Equinox Framework 

www.eclipse.org/equinox/ 

3.1. Bug and its Categories 

A bug is an error, or fault in software which produces 

an incorrect or unexpected result, or an unplanned 

behavior. The importance of a bug is described as the 

combination of its Priority and Severity. Severity 

describes the impact of a bug, whereas priority 

describes the importance and order in which a bug 

should be fixed compared to other bugs and, how it 

should be utilized by the programmers and engineers 

to prioritize their work [19]. Thung et al. [22] states 

that bug reporter can assign 5 severity levels in bug 

repositories: Blocker, Critical, Major, Minor and 

Trivial. In this study, we used following 5 bug 

categories according to their complexity from available 

bug categories in datasets as shown in Table 2. 

 Bugs Found Until (BFU): These bugs include all 

types of bugs which do not lie in any specific 

category. 

 Non-Trivial Bugs (NTB): These bugs do not impact 

overall functionality; they cause some undesirable 

behavior, but the system remains functional. The 

severity of NTB is higher than trivial bugs [4]. 

 Major Bugs (MJB): These bugs affect major 

functionality of software or data. The severity of 

major bugs is higher than non-trivial bugs [4]. 

 Critical Bugs (CRB): These bugs affect further 

testing. The severity of critical bugs includes critical 

and blocker bugs and higher than major bugs [4]. 

 High Priority Bugs (HPB): These bugs affect the 

application or product critically and must be 

resolved as soon as possible. The priority of these 

bugs is greater than default priority [4]. 

Table 2. List of already available bugs in datasets. 

S# Bugs (Count) Abbr Type 

1 NumberOf BugsFoundUntil BFU General 

2 NumberOfNonTrivialBugs FoundUntil NTB Severity 

3 NumberOfMajorBugs FoundUntil MJB Severity 

4 NumberOfCriticalBugs FoundUntil CRB Severity 

5 NumberOfHighPriorityBugsFoundUntil HPB Priority 

3.2. Bug Classification in Terms of Data 

Available bugs were further classified as clean, 

ordinary, complex, NTB, MJB, CRB, HPB and LPB 

(Low Priority Bugs) bugs. For classification of all 

bugs, the data was divided in two sets, described as:  

1. Whole data: It comprises of all instances which 

have any type of bug. Also, those which do not have 

any type of bug (buggy and non-buggy/clean data). 

2. Buggy data: It includes only those instances which 

have any type of bug. The overall distribution of 

data on the basis of bug categories is shown in 

Figure 1. 

 

Figure 1. Distribution of data in terms of buggy and clean. 

3.3. Bug Classification in Terms of Categories 

The whole and buggy data sets were further classified 

into six groups on the basis of different class 

distribution of bugs, and are shown in Table 3.  

3.3.1. General Bugs (All) 

 The whole data was classified & labeled as clean and 

buggy (with any type of bug) with 400 and 4280 

instances respectively. 

Table 3. Bugs Categories used and classified in this study. 

S# Bug Categories Data used Model Classification 

1 General Bugs Whole Clean, Buggy 

2 Complex and Ordinary Whole Clean, Complex, Ordinary 

3 Complex Categories Whole Clean, Ordinary, NTB, MJB, CRB 

4 High Priority Bugs Buggy LPB, HPB 

5 Complex and Ordinary Buggy Complex, Ordinary 

6 Complex Categories Buggy Ordinary, NTB, MJB, CRB 

3.3.2. Complex and Ordinary Bugs (All) 

 The whole data was classified as clean, complex and 

ordinary. If any type of severe bug such as CRB, MJB, 



Machine Learning Based Prediction of Complex Bugs in Source Code                                                                                       29 

NTB was found, then it was labeled as Complex. If 

only BFU existed then it was labeled as ordinary, 

otherwise it was labeled as Clean. These values are 

defined as: 

IF (NTB >0) OR (MJB >0) OR (CRB >0) then Value= 

“Complex” 

    Else IF (BFU >0) then Value=“Ordinary”  

Else value = “Clean” 

3.3.3. Complex Categories (All) 

The whole data was classified as Clean, Ordinary, 

NTB, MJB and CRB. If any type of severe bug such as 

CRB, MJB and NTB was found, then we labeled it as 

CRB, MJB, and NTB respectively. If only BFU found, 

then it was labeled as Ordinary, otherwise it was 

labeled as Clean. These class values are defined as: 

IF (CRB >0) then Value= “CRB”  

  Else IF (MJB >0) then Value= “MJB”  

     Else IF (NTB >0) then Value= “NTB”  

        Else IF (BFU > 0) then Value= “Ordinary” 

Else value = “Clean” 

3.3.4. High Priority Bugs (Buggy) 

 The buggy data was classified as HPB and LPB. If 

High Priority Bugs existed, then it was labeled as HPB, 

otherwise it was labeled as LPB and defined as:  

IF (HPB >0) then Value= “HPB”  

Else Value= “LPB” 

3.3.5. Complex and Ordinary Bugs (Buggy) 

 The buggy data was labeled as Complex when any 

type of severe bug existed such as CRB, MJB, NTB, 

otherwise it was labeled as Ordinary and defined as: 

IF (NTB >0) OR (MJB >0) OR (CRB >0) then 

Value= “Complex”  

Else Value=“Ordinary”    

3.3.6. Complex Categories (Buggy) 

 The buggy data was classified as Ordinary, NTB, 

MJB, and CRB. If any type of severe bug such as 

CRB, MJB and NTB existed then it was labeled as 

CRB, MJB and NTB respectively. If only BFU existed 

then it was labeled as Ordinary. These class values are 

defined as: 

    IF (CRB >0) then Value= “CRB”  

     Else IF (MJB >0) then Value= “MJB”  

       Else IF (NTB >0) then Value= “NTB”  

   Else Value= “Ordinary” 

3.4. Metrics  

The metrics used in this research with abbreviated 

names are given in the second and third columns of 

Table 4 respectively. The first 15 values, i.e., row 1 to 

15 are change-metrics obtained from CVS log data 

labeled with ChgMet, the next 17 i.e., row 16 to 32 are 

source-code metrics CK and Object Oriented labeled 

with CkOO, and the last 5 i.e., row 33 to 37 are 

complexity-code-change labeled with ComCdChg. 

Table 4. List of metrics and its correlation with bugs counts. 

S# Metrics Name ABBR Pearson Corr. Significance (2-tailed) 

1 NumberOfVersionsUntil NVU 0.8696 0.0000000 

2 NumberOfFixesUntil NFU 0.5998 0.0000000 

3 NumberOfRefactoringsUntil NRU 0.3049 0.0000000 

4 NumberOfAuthorsUntil NAU 0.3622 0.0000000 

5 LinesAddedUntil LAU 0.6525 0.0000000 

6 MaxLinesAddedUntil MLAU 0.553 0.0000000 

7 AvgLinesAddedUntil ALAU 0.1548 0.0000000 

8 LinesRemovedUntil LRU 0.6087 0.0000000 

9 MaxLinesRemovedUntil MLRU 0.5418 0.0000000 

10 AvgLinesRemovedUntil ALRU 0.1638 0.0000000 

11 CodeChurnUntil CCU 0.6358 0.0000000 

12 MaxCodeChurnUntil MCCU 0.4743 0.0000000 

13 AvgCodeChurnUntil ACCU 0.0616 0.0000245 

14 AgeWithRespectTo AWR 0.1896 0.0000000 

15 WeightdAgeWithRespectTo WAWR 0.2012 0.0000000 

16 CouplingBetwObjectClasses CBO 0.4827 0.0000000 

17 DepthOfInheritanceTree DIT -0.0172 0.2385547 

18 FanIn FIN 0.2895 0.0000000 

19 FanOut FOUT 0.5614 0.0000000 

20 LackOfCohesionInMethods LCOM 0.3201 0.0000000 

21 NumberOfChildren NOC 0.0407 0.0053559 

22 NumberOfAttributes NOA 0.3581 0.0000000 

23 NumberOfAttributeInherited NOAI 0.1099 0.0000000 

24 NumberOfLinesOfCode NLOC 0.5907 0.0000000 

25 NumberOfMethods NOM 0.5077 0.0000000 

26 NumberOfMethodsInherited NOMI 0.0161 0.2706124 

27 NumberOfPrivateAttributes NPRA 0.2601 0.0000000 

28 NumberOfPrivateMethods NPRM 0.3802 0.0000000 

29 NumberOfPublicAttributes NPBA 0.2665 0.0000000 

30 NumberOfPublicMethods NPBM 0.3784 0.0000000 

31 ResponseForaClass RFC 0.6051 0.0000000 

32 WeightedMethodPerClass WMC 0.615 0.0000000 

33 CvsEntropy CE 0.7244 0.0000000 

34 CvsWEntropy CWE 0.5962 0.0000000 

35 CvsLinEntropy CLINE 0.5164 0.0000000 

36 CvsLogEntropy CLOE 0.3335 0.0000000 

37 CvsExpEntropy CEXE 0.5582 0.0000000 

3.5. Hypothesis Testing 

To test the null hypothesis (H0), metrics are correlated 

with the number of bugs and therefore can be used to 

build fault prediction models. We labeled the metrics 

data of each source file (total number of source files = 

4680) with the number of bugs found. The labeled data 

was then used for correlation analysis. The metrics’ 

correlation (Pearson) with bugs’ count is shown in the 

fourth column of Table 4, which shows metrics are 

highly correlated with bugs’ count. Moreover, the 

hypothesis testing (two tailed) with a significance 

value less than 0.01 i.e., α ≤ 0.01 is shown in the fifth 

column of Table 4. Since most of the metrics, i.e., 35 

out of 37 have α ≤ 0.01, therefore, H0 was accepted 

with 99.09% confidence. Finally, to build fault 

prediction model we considered only those metrics 

whose correlation values with bug’s count were high. 



30                                                         The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020 

3.6. Machine Learning Issues Related to 

Dataset 

High dimensionality and class imbalance are the two 

main issues related to the data used to train the ML 

models and can degrade the performance of the 

prediction models. Some ML techniques can resolve 

these issues, i.e., high dimensionality reduced by 

feature selection; class imbalance issue can be 

addressed by data sampling and ensemble learners 

(Data Transformation Techniques). Both problems can 

be addressed by combining these techniques [18]. 

3.7. Data Transformation Techniques  

Principal Component Analysis (PCA) and Genetic 

Search (GenSch) are modeling techniques used to 

minimize correlation problem, while SMOTE 

(Synthetic Minority Oversampling Technique) and 

Resample Filter (Res) are modeling techniques used to 

minimize class imbalance issue. 

We pre-processed our datasets and applied different 

transformation techniques in combination to address 

both ML issues. In this way, we got 4 groups of 

transformed data:  

a) Genetic Search-SMOTE.  

b) Genetic Search-Resample. 

c) PCA-SMOTE. 

d) PCA-Resample.  

These 4 groups of data were further tested with 6 Bug 

categories classified in section 3.3. 

3.8. Machine Learning (ML) Algorithms 

We built fault prediction models using ML 

Algorithms. The following 03 classifiers were used: 

Random Forest (RF), MultiLayer Perceptron (MLP) 

and Naive Bayes (NB), with 4 groups of transformed 

dataset as discussed in section 3.7. and 6 bug 

categories as discussed in section 3.3. and shown in 

Table 3. 

3.9. Building Fault Prediction Models 

For building a better fault prediction model:  

1. Initially all 37 metrics were used along with 6 

derived bug categories.  

2. Set of highly correlated metrics with each bug 

category was chosen for prediction of severe bugs  

3. Prediction models were improved by handling 

feature selection and class imbalance issues. 

4. Three ML classifiers were applied to all groups of 

datasets after applying transformation techniques 

with 6 bug categories.  

These four techniques were applied after combining 

data of all projects to adopt general model building and 

validation approach in fault prediction modeling with 

PCA, GenSch, SMOTE and Resample data 

transformation techniques according to their bug 

category, as shown in Figure 2 and summarized in the 

following steps. 

 

 

Figure 2. Fault prediction model. 

3.10. Evaluation of Prediction Models  

Models along with the modeling techniques were 

compared according to their highest values of 

Precision (Prec) and Recall (Rec) for all classes 

according to their 6 bug categories defined in section 

3.3. 

1. Precision (Prec) and Recall (Rec): Precision and 

Recall rate are used for the assessment of binary 

prediction models. Precision is used for the 

assessment of positive signal predictions; and Recall 

rate is used for the assessment of prediction power 

for positive signals. In software engineering field, 

identifying fault is considered most crucial, 

therefore, Recall rate has been considered to be the 

most important metric [26]. 

2. Bug Category: Bug data is categorized in terms of 

their severity and priority as shown in Table 3.  

4. Results and Discussions 

4.1. Discussion based on Metrics Selection  

Metrics were analyzed for different type of bugs, using 

Statistical Correlation and GenSch methods. 

1. Statistical Correlation Method: It was observed that 

overall 21 metrics were important according to their 

bug types, most of them were crucial for severe 

bugs (10 for CRB, 14 for MJB, and 17 for NTB), 4 

for priority and 18 for BFU (Gen) bugs. It was also 

seen that ComCdChg metrics were more crucial for 

HPB, while metrics CKOO, ChgMet and 

ComCdChg were found more important for severe 

bugs. On the other hand, some metrics were found 

only important for one category of bug as shown in 

Table 5. 
 

Table 5 shows that three ComCdChg metrics (CLNE, 

CLGE and CEXE) and one ChgMet (NRU) were more 

crucial for HPB. All types of metrics (CKOO, ChgMet 

and ComCdChg) were more important for severe bugs. 

The following 14 metrics found crucial for MJB: 

NVU, NFU, LAU, MLAU, LRU, MLRU, CCU, 

FOUT, NLOC, NOM, RFC, WMC, CE, and CWE; 10 

metrics such as NVU, LAU, MLAU, LRU, MLRU, 

NLOC, RFC, WMC, CE, and CWE were crucial for 

CRB; 17 metrics such as NVU, NFU, NAU, LAU, 

MLAU, LRU, MLRU, CCU, MCCU, CBO, FOUT, 

NLOC, NOM, RFC, WMC, CE, and CWE were 

crucial for NTB. Whereas all three types of 18 metrics 

Software 

Matrices 

Data 

Classify 

Bugs 

Preprocessing 

(Feature Selection 

& Class imbalance) 

 

Apply  

ML 

Classifiers 

Fault 

Prediction 

Model 



Machine Learning Based Prediction of Complex Bugs in Source Code                                                                                       31 

were important for general bugs such as NVU, NFU, 

LAU, MLAU, LRU, MLRU, CCU, MCCU, CBO, 

FOUT, NLOC, NOM, RFC, WMC, CE, CWE, CLNE, 

and CEXE Only 3 ComCdChg metrics such as CLNE, 

CLGE and CEXE were crucial for all types of severe 

and high priority bugs. 

Table 5. Metrics correlation by Bug Category. 

S# Metrics Type 

Severity Priority Severity/Priority Gen 

NTB MJB CRB AVG Comp HPB 
Comp-

v-HPB 

Comp-ʌ-

HPB 
BFU 

1 NVU ChgMet .908 .765 .649 .774 .193 .253 .166 .180 .870 

2 NFU ChgMet .689 .525 .443 .552 .111 -.008 .091 .059 .600 

3 NRU ChgMet .183 .115 .096 .131 .056 .456 .036 .138 .305 

4 NAU ChgMet .450 .369 .315 .378 .193 -.098 .137 -.065 .362 

5 LAU ChgMet .723 .612 .542 .626 .090 .078 .078 .095 .652 

6 MLAU ChgMet .623 .530 .501 .551 .127 .056 .108 .078 .553 

7 ALAU ChgMet .181 .155 .158 .165 .086 -.008 .067 -.014 .155 

8 LRU ChgMet .676 .581 .533 .597 .082 .079 .072 .099 .609 

9 MLRU ChgMet .604 .515 .501 .540 .121 .073 .104 .102 .542 

10 ALRU ChgMet .184 .162 .177 .175 .080 .022 .064 .033 .164 

11 CCU ChgMet .700 .554 .413 .556 .094 .047 .081 .051 .636 

12 MCCU ChgMet .518 .416 .344 .426 .132 .066 .109 .028 .474 

13 ACCU ChgMet .085 .066 .044 .065 .056 -.061 .040 -.096 .062 

14 AWR ChgMet .274 .230 .217 .240 .082 -.134 .008 -.153 .190 

15 WAWR ChgMet .243 .202 .176 .207 .086 -.028 .035 -.049 .201 

16 CBO CkOO .488 .426 .365 .426 .166 .236 .146 .146 .483 

17 DIT CkOO .023 .011 .028 .020 -.018 -.136 -.057 -.155 
-

.017 

18 FIN CkOO .291 .269 .246 .269 .086 .169 .076 .104 .289 

19 FOUT CkOO .575 .484 .389 .482 .206 .217 .179 .137 .561 

20 LCOM CkOO .347 .278 .256 .294 .030 .032 .026 .049 .320 

21 NOC CkOO .049 .050 .053 .051 .047 -.003 .040 .027 .041 

22 NOA CkOO .310 .156 .079 .182 .043 .037 .039 .029 .358 

23 NOAI CkOO .167 .135 .181 .161 .054 -.090 .032 -.058 .110 

24 NLOC CkOO .638 .543 .465 .549 .122 .121 .111 .128 .591 

25 NOM CkOO .543 .456 .390 .463 .139 .123 .125 .098 .508 

26 NOMI CkOO .060 .055 .062 .059 .015 -.100 -.015 -.080 .016 

27 NPRA CkOO .214 .176 .138 .176 .113 .256 .116 .118 .260 

28 NPRM CkOO .392 .323 .214 .310 .096 .087 .086 .047 .380 

29 NPBA CkOO .221 .086 .018 .109 .016 -.012 .013 .002 .266 

30 NPBM CkOO .397 .345 .328 .357 .093 .132 .083 .115 .378 

31 RFC CkOO .648 .555 .468 .557 .140 .145 .125 .122 .605 

32 WMC CkOO .684 .603 .512 .600 .126 .079 .112 .116 .615 

33 CE ComCdChg .719 .598 .504 .607 .299 .323 .252 .200 .724 

34 CWE ComCdChg .608 .527 .450 .528 .150 .228 .132 .081 .596 

35 CLNE ComCdChg .400 .305 .264 .323 .302 .612 .354 .652 .516 

36 CLGE ComCdChg .226 .165 .149 .180 .241 .512 .320 .652 .333 

37 CEXE ComCdChg .426 .324 .276 .342 .299 .673 .330 .629 .558 

 

2. Genetic Search method: It was observed that overall 

29 metrics were important, whereas most of them 

were crucial for severe bugs (21 for CRB, 19 for 

MJB, and 12 for NTB), 5 for priority and 9 for 

general bugs (Gen), as shown in Table 6. 
 

Table 6 shows that 21 metrics were important for CRB 

such as NVU, NFU, NRU, LRU, MLRU, MCCU, 

WAWR, CBO, FOUT, LCOM, NOC, NOAI, NLOC, 

NPRM, NPBA, WMC, CE, CWE, CLNE, CLGE, and 

CEXE; 19 metrics were important for MJB such as 

NVU, NFU, LAU, MLRU, CCU, CBO, FOUT, NOA, 

NOAI, NLOC, NPRM, NPBA, NPBM, WMC, CE, 

CWE, CLNE, CLGE, and CEXE; 12 metrics were 

important for NTB such as NVU, NRU, LAU, AWR, 

WAWR, CBO, NOM, CE, CWE, CLNE, CLGE, and 

CEXE; 9 metrics were important for general bugs such 

as AWR, WAWR, FIN, NOM, CE, CWE, CLNE, 

CLGE, and CEXE. 5 metrics such as MCCU, CBO, 

CLNE, CLGE, and CEXE were important for HPB. 5 

metrics were important for both Complex and HPB 

such as WAWR, NOMI, CLNE, CLGE, and CEXE. 12 

metrics were important for any Complex bug such as 

NVU, NRU, LAU, AWR, WAWR, CBO, NOM, CE, 

CWE, CLNE, CLGE, and CEXE. 5 metrics were 

important for any Complex or HPB such as CBO, CE, 

CLNE, CLGE, and CEXE. 

Table 6. Metrics selection by genetic search. 

S# Metrics Type 

Severity Priority Severity/Priority Gen 

NTB MJB CRB Comp HPB 
Comp-v-

HPB 

Comp-

ʌ-HPB 
BFU 

1 NVU ChgMet √ √ √ √ 
    

2 NFU ChgMet 
 

√ √ 
     

3 NRU ChgMet √ 
 

√ √ 
    

4 NAU ChgMet 
        

5 LAU ChgMet √ √ 
 

√ 
    

6 MLAU ChgMet 
        

7 ALAU ChgMet 
        

8 LRU ChgMet 
  

√ 
     

9 MLRU ChgMet 
 

√ √ 
     

10 ALRU ChgMet 
        

11 CCU ChgMet 
 

√ 
      

12 MCCU ChgMet 
  

√ 
 

√ 
   

13 ACCU ChgMet 
        

14 AWR ChgMet √ 
  

√ 
   

√ 

15 WAWR ChgMet √ 
 

√ √ 
  

√ √ 

16 CBO CkOO √ √ √ √ √ √ 
  

17 DIT CkOO 
        

18 FIN CkOO 
       

√ 

19 FOUT CkOO 
 

√ √ 
     

20 LCOM CkOO 
  

√ 
     

21 NOC CkOO 
  

√ 
     

22 NOA CkOO 
 

√ 
      

23 NOAI CkOO 
 

√ √ 
     

24 NLOC CkOO 
 

√ √ 
     

25 NOM CkOO √ 
  

√ 
   

√ 

26 NOMI CkOO 
      

√ 
 

27 NPRA CkOO 
        

28 NPRM CkOO 
 

√ √ 
     

29 NPBA CkOO 
 

√ √ 
     

30 NPBM CkOO 
 

√ 
      

31 RFC CkOO 
        

32 WMC CkOO 
 

√ √ 
     

33 CE ComCdChg √ √ √ √ 
 

√ 
 

√ 

34 CWE ComCdChg √ √ √ √ 
   

√ 

35 CLNE ComCdChg √ √ √ √ √ √ √ √ 

36 CLGE ComCdChg √ √ √ √ √ √ √ √ 

37 CEXE ComCdChg √ √ √ √ √ √ √ √ 

4.2. Discussion according to ML Techniques 

and Classifiers 

Results of all datasets were improved when using class 

imbalance techniques, i.e., Resample and SMOTE in 

combination with feature selection techniques, i.e. 

GenSch and PCA. Best results were achieved with 

Complex bugs. The results were also improved with 

NTB, MJB and HPB and with those bugs which were 



32                                                         The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020 

both Complex as well as HPB. Detail of results for all 

categories of bugs is discussed as under: 

4.2.1. Experimental Results Obtained Using Dataset 

for General Bugs 

There were two classes: clean and buggy. The results 

of the buggy class were best classified for all ML 

classifiers except NB, whereas the results of dataset for 

both classes were improved by using feature selection 

techniques, i.e., GenSch and PCA with class imbalance 

techniques, i.e., SMOTE and Resample as displayed in 

Table 7 and Figure 3. 
 

Table 7. Precision/Recall values (in %) of all datasets according 
to the general bugs. 

M
L

 

A
lg

 

Class 
GenSch-SMOTE GenSch-Res PCA-SMOTE PCA-Res 

Prec Rec Prec Rec Prec Rec Prec Rec 

R
F

 CLEAN 85.9 81 95.1 85.6 79 65.8 91.7 73.5 

BUGGY 96.5 97.5 98.7 99.6 93.8 96.7 97.6 99.4 

M
L

P
 

CLEAN 74.3 63.6 65.4 39.9 29.4 0.6 0 0 

BUGGY 93.4 95.9 94.5 98 84.3 99.7 91.6 100 

N
B

 CLEAN 32.1 96.9 17.4 95.3 17.9 99.1 9.9 97.5 

BUGGY 99.1 61.7 99.2 57.2 98.9 15.1 98.8 18.6 

 

 
a) Genetic search-SMOTE.                  b) Genetic search-resample. 

 
c) PCA-SMOTE.                         d) PCA-resampl. 

Figure 3. Precision/recall according to the general bugs. 

Approximately 90% precision/recall values were 

produced when RF was applied after using GenSch 

with Resample. 80% precision/recall values were 

produced when RF was applied on dataset after using 

GenSch with SMOTE. 70% results were produced 

when RF was applied on dataset after using PCA with 

Resample and PCA with SMOTE. 60% 

precision/recall values were produced when MLP was 

applied on dataset after using GenSch with SMOTE. 

4.2.2. Experimental Results Obtained Using Dataset 

for Complex and Ordinary Bugs (All) 

There were three classes: Clean, Ordinary and 

Complex. The Complex class was best classified with 

all ML classifiers after using modeling techniques, 

whereas clean class was better classified than ordinary. 

Results of dataset for all classes were improved by 

using feature selection technique, i.e. GenSch in 

combination with class imbalance technique, Resample 

as displayed in Table 8 and Figure 4. 

Approximately 80% precision/recall values were 

obtained when RF was applied on dataset after using 

GenSch with Resample. 70% precision/recall values 

were produced when RF was applied on dataset after 

using PCA with Resample. 60% precision/recall values 

were produced when RF was applied on dataset after 

using GenSch with SMOTE. 

Table 8. Precision/recall values (in %) of all datasets according to 
complex and ordinary bugs. 

M
L

 A
lg

 

Class 
GenSch-SMOTE GenSch-Res PCA-SMOTE PCA-Res 

Prec Rec Prec Rec Prec Rec Prec Rec 

R
F

 

CLEAN 87.5 84.5 90.9 86.3 79.3 69.1 87.2 71.2 

COMPLEX 91.2 95.3 95.4 97.6 85.5 94.6 93.4 97.9 

ORDINARY 75.3 55.2 87.3 76.5 67.4 29.9 89.5 71 

M
L

P
 CLEAN 70.1 68.4 62.4 56.5 0 0 0 0 

COMPLEX 85.1 89.4 86.3 92.5 73.8 100 80.3 100 

ORDINARY 45.9 31.5 45.6 25.6 0 0 0 0 
N

B
 

CLEAN 42 92.5 26.5 91.3 17.6 26.3 5.5 9.7 

COMPLEX 97.5 46.5 98.3 46.6 98 15.9 97.8 18 

ORDINARY 21.2 60.8 22.5 65.7 14.9 91.9 15 93.6 

 

 
a) Genetic search-SMOTE.        b) Genetic search-resample. 

 
                        c) PCA-SMOTE.                          d) PCA-resample. 

Figure 4. Precision/recall according to complex and ordinary bugs. 
 

 Clean Class: Clean class was best classified with all 

ML classifiers except NB classifier after using all 

modeling techniques.  

Approximately 90% precision/recall values were 

produced when RF was applied on dataset after using 

GenSch with Resample. 80% precision/recall values 

were produced when RF was applied on dataset after 

using GenSch with SMOTE. 70% precision/recall 

values were produced when RF was applied after using 

PCA with SMOTE and Resample, and MLP was 

applied on dataset after using GenSch with Resample. 

 Complex Class: Complex class was best classified 

with all ML classifiers except NB after using all 

modeling techniques. 



Machine Learning Based Prediction of Complex Bugs in Source Code                                                                                       33 

Approximately 90% precision/recall values were 

produced when RF was applied on dataset after using 

all modeling techniques, and MLP was applied on 

dataset after using GenSch with SMOTE and GenSch 

with Resample. 80% precision/recall values were 

produced when MLP was applied after using PCA with 

Resample.  

 Ordinary Class: Approx. 80% precision/recall 

values were produced when RF was applied on 

dataset after using GenSch with Resample 

technique. 70% precision/recall values were 

produced when RF was applied on dataset after 

using PCA with Resample.  

4.2.3. Experimental Results Obtained Using Dataset 

for Complex Categories (All) 

There were five classes clean, ordinary, NTB, MJB 

and CRB. Results of dataset were improved by using 

feature selection techniques, i.e., GenSch and PCA, in 

combination with class imbalance technique, i.e., 

Resample as displayed in Table 9 and Figure 5. 

Approximately 70% precision/recall values were 

produced when RF was applied on dataset after using 

GenSch and PCA with Resample. 

 Clean Class: Approximately 90% precision/recall 

values were produced when RF was applied on 

dataset after using GenSch with SMOTE. 70% 

precision/recall values were produced when RF was 

applied on dataset after using PCA with SMOTE 

and Resample. 

 Ordinary Class: Approximately 80% 

precision/recall values were produced when RF was 

applied on dataset after using GenSch with 

Resample. 70% precision/recall values were 

produced when RF was applied on dataset after 

using PCA with Resample. 60% precision/recall 

values were produced when RF was applied on 

dataset after using GenSch with SMOTE.  

 NTB Class: Approximately 90% precision/recall 

values were produced when RF was applied on 

dataset after using GenSch with Resample. 80% 

precision/recall values were produced when RF was 

applied on dataset after using PCA with Resample. 

70% precision/recall values were produced when 

RF was applied on dataset after using GenSch and 

PCA with SMOTE, and MLP was applied after 

applying GenSch with Resample. 60% 

precision/recall values were produced when MLP 

was applied after using GenSch and PCA with 

SMOTE, and PCA with Resample. 

 MJB Class: Approximately 70% precision/recall 
values were produced when RF was applied on 

dataset after using GenSch and PCA with Resample.  

 CRB Class: Approximately 80% precision/recall 

values were produced when RF was applied on 

dataset after using GenSch and PCA with Resample. 

Table 9. Precision/recall values (in %) of all datasets according to 
complex categories and ordinary bugs. 

M
L

 A
lg

 

Class 
GenSch-SMOTE GenSch-Res PCA-SMOTE PCA-Res 

Prec Rec Prec Rec Prec Rec Prec Rec 

R
F

 

CLEAN 86.5 86.6 90.1 86 75.2 73.4 83.9 72.8 
ORDINARY 73.8 57.8 90.9 81 61.8 34.1 89.8 73.2 

NTB 74.5 90 87.5 96 66.8 86.3 84.1 94.7 
MJB 51.1 22.1 88.3 69.4 32.1 9.5 86.1 65.9 
CRB 69.3 48.9 89.9 78.8 59 40.5 86 77.3 

M
L

P
 

CLEAN 4.7 71.7 60.1 54.7 40.7 3 0 0 
ORDINARY 3.8 39 35 29 0 0 0 0 

NTB 55.8 64 66.1 85 55.4 97.7 59.9 97.9 
MJB 1.6 38.3 43.8 14.8 50 0.6 29.1 2.8 
CRB 2.7 59.9 63.2 31 65.7 30.3 62.3 31.8 

N
B

 

CLEAN 43.6 93 28.2 92.4 42.6 10.1 21 67.7 
ORDINARY 23.6 59.9 22.6 58.2 15.3 91.7 22.1 88.5 

NTB 67.5 34 65.8 34.5 56.7 27.9 58.2 19.4 
MJB 26.1 22.5 28.3 21.7 22.1 10.4 30.6 12.3 

CRB 64.7 25.8 62.9 26.3 71.2 16.4 65.3 22.5 

 

 
                 a) Genetic search-SMOTE.        b) Genetic search-resample.    

 
                 c) PCA-SMOTE                          d) PCA-resample 

Figure 5. Precision/Recall according to complex categories and 

ordinary bug. 

4.2.4. Experimental Results obtained using Dataset 

for High Priority Bugs (Buggy) 

Only buggy data was selected and classified as LPB 

and HPB. Results of dataset were improved by using 

feature selection techniques, i.e., GenSch and PCA in 

combination with class imbalance techniques, i.e. 

SMOTE and Resample as displayed in Table 10 and 

Figure 6. 

Table 10. Precision/Recall values (in %) of All Datasets according 
to HPB Bugs in Buggy Data. 

M
L

 A
lg

 

Class 

GenSch-SMOTE GenSch-Res PCA-SMOTE PCA-Res 

Prec Rec Prec Rec Prec Rec Prec Rec 

R
F

 

LPB 89.5 92.4 95.1 97 84 79.5 91.7 94.5 

HPB 94.1 91.8 95.3 92.5 85.2 88.6 91.3 87.3 

M
L

P
 

LPB 78.4 87.1 84.3 95.3 51 27.4 60.4 97.7 

HPB 89.4 81.9 91.3 73.6 59.5 80.2 56.1 4.3 

N
B

 

LPB 73.3 88.9 84.1 89.2 43.7 96.2 60.6 96.6 
HPB 90.1 75.6 82.3 74.8 70.3 6.8 54.9 6.2 

 
 



34                                                         The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020 

   

                  a) Genetic search-SMOTE.        b) Genetic search-resample.   

 

                  c) PCA-SMOTE.                           d) PCA-resample. 

Figure 6. Precision/Recall according to HPB in buggy data. 
 

Approximately 90% precision/recall values were 

produced when RF was applied on dataset after using 

GenSch with SMOTE and Res, and PCA with 

Resample. 80% precision/recall values were produced 

when RF was applied on dataset after using PCA with 

Resample, and MLP was applied after using GenSch 

with SMOTE. 70% precision/recall values were 

produced when MLP was applied after using GenSch 

with Resample and NB was applied after using 

GenSch with SMOTE and Resample. 

4.2.5. Experimental Results Obtained using 

Complex and Ordinary Bugs Dataset (Buggy) 

Only buggy data was selected and classified as 

Complex and Ordinary classes. Results of all datasets 

were improved by using feature selection technique, 

i.e., GenSch with class imbalance technique, i.e., 

Resample as displayed in Table 11 and Figure 7. 

Approximately 80% precision/recall values were 

produced when RF was applied on dataset after using 

GenSch with Resample and SMOTE. 70% 

precision/recall values were produced when RF was 

applied on dataset after using PCA with Resample. 

60% precision/recall values were produced when RF 

was applied on dataset after using PCA with SMOTE, 

and MLP was applied after using GenSch with 

SMOTE. 

Table 11. Precision/recall values (in %) according to complex and 

ordinary bugs in buggy data.  

M
L

 

A
lg

 

Class 
GenSch-SMOTE GenSch-Res PCA-SMOTE PCA-Res 

Prec Rec Prec Rec Prec Rec Prec Rec 

R
F

 ORDINARY 87.4 76.3 93.1 80 80.3 64 92.4 71.9 

COMPLEX 93.5 96.9 97.3 99.2 90.4 95.5 96.2 99.2 

M
L

P
 

ORDINARY 58.4 67.4 32.8 3.6 14.3 0.1 0 0 

COMPLEX 90.4 86.4 88 99 77.9 99.8 100 87.7 

N
B

 ORDINARY 37 93.6 22.3 92.4 28 95 16.4 94.3 

COMPLEX 96.8 54.9 98.1 55 95.6 30.9 97.6 32.8 

 
              a) Genetic search-SMOTE.                b) Genetic search-resample.   

 
              c) PCA-SMOTE.                                        d) PCA-resampl. 

Figure 7. Precision/Recall according to complex and ordinary bugs 

in buggy data. 

 Ordinary Class: Approx. 80% precision/recall 

values were produced when RF was applied on 

dataset after using GenSch with Resample and 

SMOTE. 70% precision/recall values were 

produced when RF was applied on dataset after 

using PCA with Resample. 60% precision/recall 

values were produced when RF was applied on 

dataset after using PCA with SMOTE, and MLP 

applied on dataset after using GenSch with SMOTE.  

 Complex Class: Approximately 90% 

precision/recall values were produced when RF was 

applied on dataset after using all modeling 

techniques. MLP was applied after using GenSch 

with SMOTE and Resample and, PCA with 

Resample. 80% precision/recall values were 

produced when MLP was applied after using PCA 

with SMOTE. 60% precision/recall values were 

produced when NB was applied on dataset after 

using GenSch with Resample. 

4.2.6. Experimental Results Obtained using Dataset 

for Complex Categories (Buggy) 

Only buggy data was selected and classified in four 

classes Ordinary, NTB, MJB and CRB. Results of all 

datasets were improved by using feature selection 

techniques, i.e., GenSch and PCA with class imbalance 

technique, i.e., Resample as displayed in Table 12 and 

Figure 8.  

Approximately 70% precision/recall values were 

produced when RF was applied on dataset after using 

GenSch with Resample, and PCA with Resample. 

 

 

 

 



Machine Learning Based Prediction of Complex Bugs in Source Code                                                                                       35 

Table 12. Precision/Recall values (in %) according to Complex 

Categories and Ordinary Bugs in Buggy Data. 

M
L

 

A
lg

 

Class 
GenSch-SMOTE GenSch-Res PCA-SMOTE PCA-Res 

Prec Rec Prec Rec Prec Rec Prec Rec 

R
F

 

ORDINARY 76.2 55.4 91.7 80.2 64.6 35 86.9 71.7 

NTB 75.1 92.8 89.6 97.5 70.7 89.8 87.3 96 

MJB 61.7 16.4 88.8 71.2 38.4 7.2 86.5 66 

CRB 80 71.7 92 79.5 72.1 68 85.7 76.7 

M
L

P
 

ORDINARY 39.6 12.6 45.4 12.2 0 0 0 0 

NTB 66.5 90.7 71.3 95.3 62.5 96.6 67 98.5 

MJB 37.7 5.5 44.4 22.9 0 0 50 0.4 

CRB 66.8 55.8 68.5 32.1 70.3 41.7 62.7 35.5 

N
B

 

ORDINARY 21.8 90.2 23.6 90.5 17.1 91.9 19.4 93 

NTB 63.1 40.9 70.8 42.8 56.1 28.6 67.4 32 

MJB 20.5 16.3 29.9 21.1 16.1 10.4 24.1 14.5 

CRB 78.2 31.5 63.6 31 83 18.2 69.7 21.3 

 

 
a) Genetic search-SMOTE.        b) Genetic search-resample. 

 
c) PCA-SMOTE.                          d) PCA-resample. 

Figure 8. Precision/Recall according to complex categories and 

ordinary bugs in buggy data. 

 Ordinary Class: Approx. 80% precision/recall 

values were produced when RF was applied on 

dataset after using GenSch with Resample. 70% 

precision/ recall values were produced when RF was 

applied on dataset after using PCA with Resample. 

60% precision/recall values were produced when 

RF was applied on dataset after using GenSch with 

SMOTE. 

 NTB Class: Approximately 90% precision/recall 

values were produced when RF was applied on 

dataset after using GenSch and PCA with Resample. 

80% precision/recall values were produced when 

RF was applied on dataset after using GenSch with 

SMOTE. 70% precision/recall values were 

produced when RF was applied on dataset after 

using PCA with SMOTE, and MLP was applied on 

dataset after using GenSch with Resample and 

SMOTE, and PCA with SMOTE. 60% 

precision/recall values were produced when MLP 

was applied on dataset after using PCA with 

SMOTE. 

 MJB Class: Approximately 70% precision/recall 

values were produced when RF was applied on 

dataset after using GenSch and PCA with Resample. 

 CRB Class: Approx. 80% precision/recall values 

were produced when RF was applied on dataset 

after using GenSch and PCA with Resample. 70% 

precision/recall values were produced when RF was 

applied on dataset after using GenSch and PCA with 

SMOTE. 60% precision/recall values were 

produced when MLP was applied on dataset after 

using GenSch with SMOTE modeling techniques. 

5. Conclusions 

Prediction of software defect provides a list of defect-

prone code modules which need thorough testing. 

Software metrics (e.g., process metrics and product 

metrics) and machine learning techniques are 

commonly used to develop automatic software fault 

(bug) prediction models. Since fixing of complex 

faults consumes more resources, therefore, in this 

paper, we used a specific set of metrics to construct 

machine learning based fault prediction models to 

predict different types of bugs. Our proposed models 

can be used to predict more precisely those source 

codes’ modules which could generate complex bugs.  

Our research revealed that complexity code Change 

Metrics (ComCdChg), Change Metrics (ChgMet), and 

Chidamber and Kemerer and object-oriented (CKOO) 

metrics are crucial to predicting those source codes 

which may induce high priority and severe bugs. 

Overall five metrics such as MCCU, CBU, CLNE, 

CLGE, and CEXE were found to be more crucial for 

severe and high priority bugs.  

It was also observed that after dealing with the well-

known class imbalance and feature selection issues of 

machine learning, the overall rate of model’s precision 

and recall were improved (to above 90%). Our 

experimental results revealed that the supervised ML 

technique, i.e., Random-Forest outclassed the other 

techniques of machine learning. In order to further 

enhance the prediction capability of our proposed fault 

prediction models in future, the metrics data of other 

projects can be used to build the fault prediction 

models, and additional metrics related to software 

project, product and process could also be considered. 

References 

[1] Ahsan S. and Wotawa F., “Fault Prediction 

Capability of Program File’s Logical-Coupling 

Metrics,” in Proceedings of Software 

Measurement, Joint Conference of the 21st Int'l 

Workshop on and 6th Int'l Conference on 

Software Process and Product Measurement, 

Nara, pp. 257-262, 2011. 

[2] Catala C. and Diri B., “A Systematic Review of 

Software Fault Prediction Studies,” Expert 

Systems with Applications, vol. 36, no. 4, pp. 

7346-7354, 2009. 



36                                                         The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020 

[3] Cotroneoa D., Pietrantuono R., Russo S., and 

Trivedi K., “How Do Bugs Surface? A 

Comprehensive Study on The Characteristics of,” 

Journal of Systems and Software, vol. 113, pp. 

27-43, 2016. 

[4] D’Ambros M., Lanza M., and Robbe R., 

“Evaluating Defect Prediction Approaches,” 

Empirical Software Engineering, An 

International Journal, vol. 17, no. 4-5, pp. 531-

577, 2012. 

[5] D’Ambros M., Lanza M., and Robbe R., “An 

Extensive Comparison of Bug Prediction 

Approaches,” in Proceedings of 7th IEEE 

Working Conference on Mining Software 

Repositories, Cape Town, pp. 31-41, 2010.  

[6] Gyimothy T., Ferenc R., and Siket I., “Empirical 

Validation Of Object-Oriented Metrics on Open 

Source Software for Fault Prediction,” IEEE 

Transactions on Software Engineering (IEEE 

Computer Society), vol. 31, no. 10, pp. 897-910, 

2005. 

[7] Hall T., Beecham S., Bowes D., Gray D., and 

Counsell S., “A Systematic Literature Review on 

Fault Prediction Performance in Software 

Engineering,” Software Engineering, IEEE 

Transactions (IEEE Computer Society), vol. 38, 

no. 6, pp. 1276-1304, 2012. 

[8] Hassan A., “Predicting Faults Using the 

Complexity of Code Changes,” in Proceedings of 

the 31st International Conference on Software 

Engineering, Vancouver, pp. 78-88, 2009.  

[9] Hassan A. and Holt R., “The Top Ten List: 

Dynamic Fault Prediction, ” in Proceedings of 

the 21st IEEE International Conference on 

Software Maintenance, Budapest, pp. 263-272, 

2005.  

[10] Jeon C., Kim N., and In H., “A Probabilistic 

Approach to Building Defect Prediction Model 

for Platform-based Product Lines,” The 

International Arab Journal of Information 

Technology, vol. 14, no. pp. 413-422, 2017. 

[11] Jiang Y., Cukic B., Menzies T., and Lin J., 

“Incremental Development of Fault Prediction 

Models,” International Journal of Software 

Engineering and Knowledge Engineering (World 

Scientic Publishing Company), vol. 23, no. 10, 

pp. 1399-1425, 2013. 

[12] Kamei Y. and Shihab E., “Defect Prediction: 

Accomplishments and Future Challenges,” in 

Proceedings of the IEEE 23rd International 

Conference on Software Analysis, Evolution, and 

Reengineering, Suita, pp. 33-45, 2016. 

[13] Lamkanfi A., Demeyer S., Soetens Q., and 

Verdonck T., “Comparing Mining Algorithms for 

Predicting the Severity of a Reported Bug,” in 

Proceedings of the 15th European Conference on 

Software Maintenance and Reengineering, 

Oldenburg, pp. 249-258, 2011. 

[14] Madeyski L. and Jureczko M., “Which Process 

Metrics Can Significantly Improve Defect 

Prediction Models? An Empirical Study,” 

Software Quality Journal, vol. 23, no. 3, pp. 393-

422, 2015. 

[15] Menzies T. and Marcus A., “Automated Severity 

Assessment of Software Defect Reports,” in 

Proceedings of IEEE International Conference 

on Software Maintenance, ICSM. Software 

Maintenance, Beijing, pp. 346-355, 2008.  

[16] Nagappan N. and Ball T., “Use of Relative Code 

Churn Measures to Predict System Defect 

Density,” in Proceedings of the 27th International 

Conference on Software Engineering, St. Louis, 

pp. 284-292, 2005. 

[17] Nagappan N., Ball T., and Zeller A., “Mining 

Metrics to Predict Component Failures,” in 

Proceedings of the 28th International Conference 

on Software Engineering, Shanghai, pp. 452-461, 

2006. 

[18] Prusa J., Khoshgoftaar T., and Seliya N., 

“Enhancing Ensemble Learners with Data 

Sampling on High-Dimensional Imbalanced 

Tweet Sentiment Data,” in Proceedings of the 

29th International Flairs Conference, Key Largo, 

pp. 322-327, 2016. 

[19] Sharma M., Kumari M., and Singh V., 

“Understanding the Meaning of Bug Attributes 

and Prediction Models,” in Proceedings of the 5th 

IBM Collaborative Academia Research 

Exchange Workshop, New Delhi, 2013. 

[20] Shatnawi R. and Li W., “An Empirical 

Investigation of Predicting Fault Count, Fix Cost 

and Effort Using Software Metrics,” 

International Journal of Advanced Computer 

Science and Applications, vol. 7, no. 2, pp. 484-

491, 2016. 

[21] Subramanyam R. and Krishnan M., “Empirical 

Analysis of Ck Metrics for Object-Oriented 

Design Complexity: Implications for Software 

Defects,” IEEE Transactions on Software 

Engineering (IEEE Computer Society), vol. 29, 

no. 4, pp. 297-310, 2003. 

[22] Thung F., Wang S., Lo D., and Jiang L., “An 

Empirical Study of Bugs in Machine Learning 

Systems,” in Proceedings of 23rd International 

Symposium on Software Reliability Engineering, 

Dallas, pp. 271-280, 2012. 

[23] Tian Y., Lo D., and Sun C., “Information 

Retrieval Based Nearest Neighbor Classification 

for Fine-Grained Bug Severity Prediction,” in 

Proceedings of 19th Working Conference on 

Reverse Engineering, Kingston, pp. 215-224, 

2012. 

[24] Van Hulse J., Khoshgoftaar T., and Napolitano 

A., “Experimental Perspectives on Learning 

From Imbalanced Data. ” in Proceedings of the 

24th International Conference on Machine 



Machine Learning Based Prediction of Complex Bugs in Source Code                                                                                       37 

Learning, Corvalis, pp. 935-942, 2007. 

[25] Xuan J., Jiang H., Ren Z., and Zou W., 

“Developer Prioritization in Bug Repositories,” 

in Proceedings of the 34th International 

Conference on Software Engineering, Zurich, pp. 

25-35, 2012. 

[26] Yu L. and Mishra A., “Experience in Predicting 

Fault-Prone Software Modules Using Complexity 

Metrics,” Quality Technology and Quantitative 

Management, vol. 9, no. 4, pp. 421-433, 2012. 

[27] Zhang W., Sun C., and Lu S., “ConMem: 

Detecting Severe Concurrency Bugs through an 

Effect-Oriented Approach,” in Proceedings of the 

15th Edition of ASPLOS on Architectural Support 

for Programming Languages and Operating 

Systems, Pittsburgh, pp. 179-192, 2010.  

[28] Zimmermann T., Nagappan N., Gall H., Giger E., 

and Murphy B., “Cross-Project Defect 

Prediction: A Large Scale Experiment on Data 

Vs. Domain Vs. Process,” in Proceedings 7th 

Joint Meeting of the European Software 

Engineering Conference and the ACM SIGSOFT 

Symposium on the Foundations of Software 

Engineering, Amsterdam, pp. 91-100, 2009.  

[29] Zimmermann T., Nagappan N., Guo P., and 

Murphy B., “Characterizing and Predicting 

Which Bugs Get Reopened, ” in Proceedings 34th 

International Conference on Software 

Engineering, Zurich, pp. 1074-1083, 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ishrat-Un-Nisa Uqaili is a Final 

year student of M.S (Computer 

Science) at Faculty of Engineering 

Science and Technology (FEST), 

Iqra University (IU), Defence View 

(Main Campus), Shaheed-e-Millat 

Road (Ext.) Karachi-75500, 

Pakistan. She did B.E in Computer Systems from 

Mehran University of Engineering & Technology, 

Jamshoro, Pakistan. Her research interests include 

machine learning application in Software Engineering, 

and build models for automatic software maintenance. 

She has recently completed her MS final year thesis on 

Fault Prediction Model for Software using Soft 

Computing Techniques. 

Syed Nadeem Ahsan did his Ph.D. 

in Computer Science from GRAZ 

University of Technology, Austria. 

Currently, he is doing R&D work in 

software engineering and machine 

learning applications, and also 

associated with FEST, IU, Main 

Campus, Karachi. His Research interest includes 

software maintenance & evolution, software testing, 

formal methods in software engineering, modeling and 

simulation of complex system, and computational 

intelligence. 


