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Abstract: Privacy-preserving data publishing have been studied widely on static data. However, many recent applications 

generate data streams that are real-time, unbounded, rapidly changing, and distributed in nature. Recently, few work 

addressed k-anonymity and l-diversity for data streams. Their model implied that if the stream is distributed, it is collected at a 

central site for anonymization. In this paper, we propose a novel distributed model where distributed streams are first 

anonymized by distributed (collecting) sites before merging and releasing. Our approach extends Continuously Anonymizing 

STreaming data via adaptive cLustEring (CASTLE), a cluster-based approach that provides both k-anonymity and l-diversity 

for centralized data streams. The main idea is for each site to construct its local clustering model and exchange this local view 

with other sites to globally construct approximately the same clustering view. The approach is heuristic in a sense that not 

every update to the local view is sent, instead triggering events are selected for exchanging cluster information. Extensive 

experiments on a real data set are performed to study the introduced Information Loss (IL) on different settings. First, the 

impact of the different parameters on IL are quantified. Then k-anonymity and l-diversity are compared in terms of messaging 

cost and IL. Finally, the effectiveness of the proposed distributed model is studied by comparing the introduced IL to the IL of 

the centralized model (as a lower bound) and to a distributed model with no communication (as an upper bound). The 

experimental results show that the main contributing factor to IL is the number of attributes in the quasi-identifier (50%-75%) 

and the number of sites contributed about 1% and this proves the scalability of the proposed approach. In addition, providing 

l-diversity is shown to introduce about 25% increase in IL when compared to k-anonymity. Moreover, 35% reduction in IL is 

achieved by messaging cost (in bytes) of about 0.3% of the data set size. 
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1. Introduction and Background 

Many applications such as social networks, sensor 

networks, health-care, market-basket analysis, network 

monitoring and cloud-based services produce big data. 

Big data with time stamp is called data stream. For 

organizations to release such data gathering, that 

contain person specific information, they are obligated 

by privacy policy to remove all explicit identifiers, such 

as name, Social Security Number (SSN) and address. 

Usually released data are outsourced to a third party for 

research or data-mining purpose. The resulting data 

after suppressing identifying information looks 

anonymous. However, the data is still vulnerable to 

linking attacks. That is the remaining data can be used 

to re-identify individuals by linking to other data. 

For example if Table 1 is released by an insurance 

company that has all explicit identifiers removed. The 

remaining table has four attributes: the zip-code (part of 

the address), date-of-birth, gender and diagnosis. The 

diagnosis is a sensitive attribute that need to be 

protected such that observers (including attackers) 

should not be able to link a specific person to his 

diagnosis. However, if an attacker has background 

knowledge that a specific person is in the table and is 

able to obtain that person (zip-code, data-of-birth,  

gender), he can uniquely link him to his diagnosis. For 

example, an attacker who knows Ali has visited a 

hospital and knows Ali’s first three attributes are 

(53723, 02/05/1973, Male) (e.g., obtained from a voter 

registration table). Then the attacker can search the 

released table and find a unique record (second row) 

that can be linked to Ali, and conclude “Ali is 

diagnosed with heart disease”. 

The goal of privacy-preserving data publishing is to 

limit the ability to link released information to other 

external collections. The attributes that in combination 

can uniquely identify individuals (with high 

probability) are called Quasi-Identifier (QI), such as 

the three attributes (zip-code, birth-date, gender). QI 

needs a domain expert to decide, in addition policies 

and contracts can help. 

One solution to the linking attack is k-anonymity 

[18]. To achieve k-anonymity, generalization of QI 

attributes is applied such that each combination of QI 

values occurs at least k times. In the generalization 

process, a QI attribute value is replaced by a less 

specific but semantically related value. The set of 

released tuples which have the same generalized QI 

are called an equivalence class. All equivalence 

classes should be of size at least k. In this approach, a 
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record QI is indistinguishable from other k - 1 records 

and the probability of linking attack is reduced to 1/k. 

Note that, Suppression and generalization reduce the 

quality of the data and an information loss metric need 

to be minimized during the anonymization process. 

Information loss is defined as the amount of uncertainty 

introduced by the generalization procedure. 

For example, Table 2 is 3-anonymized version of 

Table 1, where the QI is (zip-code, date-of-birth, 

gender) and k=3. Zip-code is generalized by 

suppressing the first digit or two. Date-of-birth is 

generalized by year-of-birth or year interval. Note that, 

for each combination of QI there are at least 3 

occurrences of those values in Table 2. 

While k-anonymity protects against identity 

disclosure where a person cannot be linked to a 

particular record in the released table. It is insufficient 

to prevent attribute disclosure. For example, in Table 2 

the “diagnosis” attribute is sensitive. If an attacker 

knows that Omar’s data is in the table and he is born in 

1979 and lives in part of the address (ZIP) 53724. From 

Table 2, the attacker can conclude that Omar 

corresponds to one of the first three records, and thus 

must have “Heart Disease”. This is known as 

homogeneity attack. While Omar can’t be linked to 

exactly one record in the released table (identity 

disclosure), an attacker still can conclude new 

information about Omar (attribute disclosure). 

Table 1. Health insurance table. 

ZIP code Date of Birth Gender Diagnosis 

53712 01/01/1970 M Heart Disease 

53723 02/05/1973 M Heart Disease 

57321 01/01/1963 F Diabetes 

53724 02/06/1979 M Heart Disease 

56305 03/04/1963 F Cancer 

56309 09/08/1961 M Flu 

57311 05/05/1963 F Cancer 

57322 03/02/1963 F Cancer 

56306 01/02/1966 M Diabetes 

Table 2. A 3-Anonymous version of Table 1. 

ZIP code Date of Birth Gender Diagnosis 

537* 1970-1979 M Heart Disease 

537* 1970-1979 M Heart Disease 

537* 1970-1979 M Heart Disease 

5630* 1961-1966 Any Flu 

5630* 1961-1966 Any Cancer 

5630* 1961-1966 Any Diabetes 

573* 1963 F Diabetes 

573* 1963 F Cancer 

573* 1963 F Cancer 

Secondly, suppose that, an attacker can conclude that 

Mahi corresponds to a record in the last equivalence 

class in Table 2. Furthermore, suppose that he knows 

that Mahi has very low risk for Diabetes. This 

background knowledge enables the attacker to conclude 

that “Mahi has cancer” leading to a privacy breach. 

To address these limitations of k-anonymity, l-

diversity has been introduced in [14]. An equivalence 

class is said to have l-diversity if there are at least l 

“well-represented” values for the sensitive attribute. A 

table is said to have l-diversity if every equivalence 

class of the table has l-diversity [14]. The Simplest 

definition of “well represented” is to ensure there are 

at least l distinct values for the sensitive attribute in 

each equivalence class which we adopt in our work. 

Other types of l-diversity are entropy l-diversity, and 

recursive (c, l)-diversity [14]. 

Research has focused on the privacy of relational 

and static data sets [3, 6, 9], clustering of data streams 

[22] and anonymization of incremental data sets [2] 

which assumes that the whole dataset can be kept for 

processing. These solutions can’t be easily adapted for 

data streams privacy-preserving. In this work we are 

motived by the unique requirements to anonymize 

data streams. Data streams are real time; 

unbounded/infinite (whole dataset can’t be kept); fast 

growing and rapidly changing (multiple scans are not 

possible); tuples have to be released before a time 

constraint expires. In addition, many data stream 

applications are distributed in nature. For example 

supermarket chains where check-out scanners, located 

at different stores, gather data continuously. Another 

example is international companies that have some 

data located in different continents. Those companies 

have various reasons why the data cannot be 

transmitted to a central site, e.g., limited bandwidth or 

security aspects. However, the few work that 

addressed anonymizing data stream has implied that 

the data streams is to be merged at central location for 
anonymization. 

We claim to be the first to propose a distributed 

model for anonymizing data streams. In this paper our 

k-anonymity solution for distributed data streams [15] 

is extended to provide l-diversity as well. 

The main contributions of the paper are: 

 An l-diversity protocol for anonymizing distributed 

data stream is presented. 

 Complexity analysis and an experimental study that 

shows the efficiency and effectiveness of the 

proposed protocol. 

The rest of the paper is organized as follows. Section 2 

surveys related work. Section 3 is a preliminary that 

introduces the proposed model and definitions. In 

section 4 the main algorithm and its procedures are 

detailed. Complexity analysis is depicted in section 5. 

Performance evaluation is presented in section 6. 

Finally, section 7 concludes the paper and discusses 

further research. 

2. Related Work 

Several studies have discussed different techniques for 

privacy-preserving including k-anonymity [17, 19], 

perturbation [5], condensation [1] and cryptography 

[7]. k-anonymity, adopted in this work, for static data 
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is NP-hard and the research has focused on 

approximate solutions [6, 10]. Moreover, new 

approaches have been proposed to overcome k-

anonymity possible inference attacks such as l-diversity 

[14] and t-closeness [12]. 

There are few work that addressed anonymizing 

(central) data streams and generally are based on two 

approaches tree-based and cluster-based. The tree-

based approach maintains a tree whose nodes are a set 

of tuples and their common generalization. Sliding 

Window Anonymization Framework (SWAF) [20], 

Stream K-anonYmity (SKY) [11], Continuous Privacy 

Preserving Publishing of Data Streams (BYJ) [25] and 

K-anonymIzation Data Stream base on sliding window 

(KIDS) [24] are tree-based. Compared to the cluster-

based approach it owns larger time and space 

complexity and entails larger information loss and 

never extended to provide l-diversity. 

The cluster-based approach for providing k-

anonymity for data streams continuously anonymize 

data via adaptive clustering. That is grouping close 

records and releasing it under the same generalization. 

The following is a list of cluster-based anonymization 

work: Continuously Anonymizing STreaming data via 

adaptive cLustEring (CASTLE) [4], B-CASTLE [21], 

Fast Anonymizing Algorithm for Numerical Streaming 

DaTa (FAANST) [23], FADS [8], and FAST [16]. 

Only CASTLE and Fast clustering-based k-

Anonymization approach for Data Streams (FADS) 

extended their work to provide l-diversity on top of k-

anonymity. The work in this paper extends CASTLE to 

provide k-anonymity and l-diversity for distributed data 

streams. 

3. Preliminary 

The term data refers to a table of rows (or tuples) and 

columns (or attributes). k-anonymity for data streams is 

introduced in CASTLE [4], and termed ks-anonymity. 

CASTLE is a cluster-based approach that tries to group 

close tuples into clusters while minimizing an IL 

metric. The algorithm maintains a buffer that holds a 

(count-based) window of the data stream sized by a 

delay constraint (δ). In addition, it maintains two sets of 

clusters. The first set (Γ) is the working non-

anonymized clusters that are updated, merged and split 

due to insertion and release of tuples. This set has a size 

limit of β. The second set (Ω) contains anonymized 

clusters of good quality (in terms of information loss) 

that are kept to be reused according to a reuse strategy. 

The IL threshold of good quality clusters is tuned using 

a parameter μ. A new arriving tuple is inserted into the 

cluster that requires the minimum enlargement. Due to 

the data stream characteristics tuples have to be 

released before a delay constraint expires. Tuples 

belonging to the same cluster are released with the 

same cluster QI generalization. After releasing all 

tuples belonging to a cluster, the cluster is moved to 

the anonymized set Ω (for reuse) if it has good quality. 

Motivated by the distributed nature of many data 

stream applications, in [15] we extended ks-anonymity 

to the distributed data streams case, kds-anonymity. In 

central CASTLE, it is implied that distributed data 

streams are merged at a central site for anonymization. 

In our proposed model, Figure 1, we assume the data 

streams are generated by n sites, and each site is to 

process/anonymize its own data stream. However, the 

anonymized streams are merged before releasing. Our 

novel approach is based on exchanging local view of 

working clusters. Every site x sends its own working 

non-anonymized clusters Γx to each other site (through 

a relay sever). These messages contain only cluster 

information (such as ID, size, and generalization) but 

actual tuples are not sent. In addition, message 

sending is triggered by merge, split, or release of 

clusters. The goal is for sites to construct 

approximately the same view of working non-

anonymized clusters. In this case, a released cluster of 

size at least k implies that there is more than k tuples 

belonging to the cluster across all n sites. The 

approach is heuristic that approximates the same 

global view of clusters at different sites to reduce the 

information loss. 

CASTLE [4] extended its main algorithm to 

provide data stream l-diversity in addition to ks-

anonymity. Similarly, in this paper we extend our 

distributed data stream kds-anonymity algorithm in 

[15] to provide l-diversity in a distributed scenario. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Distributed CASTLE model. 

3.1. Network Model 

We assume two level hierarchical model where n sites 

connect to a central relay server. The communication 

between the sites and the server is secured, for 

example by VPN. In addition, we assume a semi-

honest adversary model which follows the protocol 

but tries to infer valuable information. 

3.2. Information Loss Metric (IL) 

A Generalized Loss Metric [4] is adopted for 
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categorical and continuous QI attributes. Let {q1, …., 

qm} be the set of QI attributes. 

For a categorical attribute qi generalized to a node v 

in the Domain Generalization Hierarchy (DGHi), the 

information loss associated with v is defined as follows: 

1||

1||
)(






S

SvvVInfoloss 

Where Sv is the set of leaf nodes of the subtree rooted at 

v and S is the set of all the leaf nodes in DGHi. 

For a continuous attribute qi value generalized to an 

interval I = [lower, upper] from the domain [L, U], the 

information loss associated with I is defined as follows: 
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Cluster generalization g = (v1, …,vm) over a set of tuples 

is defined such that for each QI attribute qi, the 

corresponding range value vi is defined as follows:  

 If qi is a categorical attribute, vi is lowest common 

ancestor (in DGHi) containing all set of qi leaves 

included in the tuples 

 If qi is a continuous attribute, vi is the minimal 

subinterval of qi’s domain that contains all qi’s 

values of the tuples 

The total information loss of a tuple QI generalization g 

= (v1, …,vm) is defined as follows: 
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3.3. Cluster Enlargement 

Enlargement of cluster C, with respect to a tuple t, is 

the difference between total IL when applying the new 

generalization g’ resulted from adding t to C and the 

current generalization g.  

3.4. Distance Between Tuples 

The distance between two tuples t and t’ is calculated as 

the sum of all corresponding attributes distances such 

that 

 For a categorical attribute, the distance is calculated 

using VInfoloss for the lowest common ancestor of t 

and t’ attribute values. 

 For a continuous attribute, the distance is the 

absolute difference between t and t’ attribute values 

divided by their domain range. 

 Example 1: To calculate the distance between tuples, 

assume a tuple QI has two attributes (age; 

education), where age is a continuous attribute in the 

domain [0-100] and education has a DGH illustrated 

in Figure 2. Consider t1=(26, Bachelors), t2 =(29, 

Doctorate) and t3 = (28, Masters), Distance (t1, t2) = 

(29-26)/(100-0) + VInfoloss(University)=0.03 + ((3-

1)/(7-1))=0.363, and Distance (t1, t3) = (28-26)/(100-

0) + VInfoloss(University)= 0.02+((3-1)/(7-1)) = 

0.353. Thus, t3 is closer to t1 than t2. 
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Figure 2. DGH for education Attribute [6]. 

3.5. Kds-Anonymization of Distributed Data 

Stream 

The input data stream at site x is a sequence of tuples, 

DSx(px, pidx, q1, q2, ..., qm, a1, a2, …, al), where px is 

the tuple position, pidx is a person ID, (q1, q2, ..., qm) 

are the QI attributes, and (a1, a2, …, al) are the 

remaining attributes including sensitive ones. We 

assume all explicit identifiers are suppressed and only 

pidx is kept. 

The output data stream at site x, DSx
out, is an 

anonymized sequence such that for each tuple t ϵ DSx 

a corresponding anonymized tuple t’ in DSx
out is 

found. In addition, for each QI group (i.e., cluster), the 

set of included distinct persons (pidx) are greater than 

or equal to k. Moreover, a delay constraint (δ) is 

enforced such that for each new arriving tuple t with 

position px, all tuples with positions less than (px - δ) 

have been in output by DSx
out. 

3.6. Kds-Anonymized and l-Diversified Cluster 

Consider a single sensitive attribute as. Ensuring l-

diversity requires that all tuples with the same 

generalization, i.e., all tuples belonging to the same 

cluster, have at least l distinct values for as. Given a 

cluster C at site x, let C.size denote the number of 

distinct persons (pidx) belonging to the cluster. C.size 

is approximated by the sum of the cluster local size (at 

site x) and the shared size. In addition, let C.diversity 

denote the number of distinct values of as for tuples in 

C. Similarly, C.diversity is approximated by the count 

of distinct as values at site x and shared distinct values 

from one other site. 

If, at a given time instant C.size is greater than or 

equal to k, and C.diversity is at least l, and all tuples in 

C are output with C’s generalization. Then C is kds-

anonymized and l-diversified cluster. 

4. Algorithm and Procedures 

4.1. Procedure CentralServer() 

The central server waits for all sites to connect before 

listening to messages, and it is assumed that no site 

fails. The server relays messages between sites 

(1) 

(2) 

(3) 
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ID Size q1, q2, …., qm as1, as2, …. 

ID ….. 

through a Transmission Control Protocol (TCP) server 

socket on a predefined port. 

4.2. Messages 

Figure 3 shows the exchanged message format. A 

message sent by site x contains either a list of newly 

shared clusters or a cluster update. For each cluster, the 

message contains: 

 Cluster ID which is a concatenation of a site ID and 

a sequential identifier 

 Cluster size that is at least  nk /  for a newly shared 

cluster, at least k for a released cluster, and zero for 

merged or split clusters 

 Cluster QI generalized values 

 Array of distinct values of the sensitive attribute as in 

the cluster; for a categorical as the array size equals 

to the number of leaf nodes of the attribute DGH (an 

entry is set to 1 if the attribute exists otherwise it is 

set to 0); for a continuous as actual distinct values 

are sent 

 

Figure 3. Message format. 

A cluster C size (C.size) is the sum of the cluster 

local size and its shared size (received in a message). 

Similarly, a cluster C diversity (C.diversity) is the count 

of distinct as values in local tuples and in the shared 

array (received in a message). 

Note that a calculated size or diversity at site x uses 

local cluster (size or diversity, respectively) and a 

shared cluster (size or diversity, respectively) from only 

one other site. This approximation guarantees that a 

released cluster will have size > k and diversity > l. If 

more sites to be included in the calculation that should 

provide tighter bounds but increases the messaging and 

space complexity. 

4.3. Main Algorithm: dCASTLE(DSx, k, l, δ, β, 

μ, n) @ site x 

The software components are depicted in Figure 4.  

 

 

 

 

 

 

 

 

 

Figure 4. Software components. 

The input to the main algorithm distributed 

CASTLE, dCASTLE, at site x is a continuous stream 

of data DSx and the following parameters: 

 The anonymity parameter k. 

 The diversity parameter l. 

 The delay constraint δ. 

 A size limit for the working local non-anonymized 

set of clusters β. 

 A parameter used to tune the set size of reused 

(anonymized) clusters μ. 

 Number of sites n. 

The algorithm produces in output a flow of kds-

anonymized and l-diversified tuples. 

Every site maintains, as illustrated in Figure 1, a 

buffer that holds a window of size δ of the data 

stream, the set of local and shared non-anonymized 

(i.e., working) clusters (Γx) and a subset of good 

quality anonymized clusters (Ωx) for reuse. The 

threshold β is used to limit Γx so that no new local 

cluster will be created if |Γx| reaches β, however due to 

exchange of cluster information the maximum size of 

Γx could be larger (β+) with an upper bound n β. 

Using TCP socket, the algorithm spawns a thread to 

listen to messages from the server. When a message 

(msg) is received, procedure dUpdateClusters(msg) is 

called. 

The algorithm performs the following steps when a 

new tuple t arrives: 

 Sends a message msg that contains a selected list of 

recent (not sent before) local non-anonymized 

clusters from Γx with size ≥  nk /  if any 

  Calls procedure dBestSelection(t) to select the best 

cluster C to insert t 

 If the procedure returns NULL, creates new cluster 

to enclose t with unique cluster ID and add it to Γx 

else insert t in C 

 Verifies whether the arrival of t makes a tuple t’ 

with position (t.px - δ) that has not been output yet 

to expire; if yes, calls procedure 

dDelayConstraint(t’) 

4.4. Procedure dUpdateClusters(msg) 

Procedure dUpdateClusters(msg) takes as input a 

message (msg) received from the server and updates 

Γx. The message has one of three types as follows: 

 Type 1: msg contains a list of newly shared clusters 

(identified by their ID) with size >  nk /  each. 

Those clusters are added to the set of non-

anonymized clusters Γx. 

 Type 2: msg contains an update to a cluster with 

size ≥ k and diversity ≥ l (in case the cluster has 

been sent to output). In this case, the cluster is 

updated and procedure dOutputCluster(C) is called. 

dCASTLE 

dBestSelection 
dUpdateClusters dDelayConstraint 

dOutputCluster dMergeClusters 

dSplitCluster 
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 Type 3: msg contains an update to a cluster with size 

set to zero (in case cluster is merged or split). The 

cluster shared size is set to zero. However, local 

tuples are kept in the cluster. 

4.5. Procedure dBestSelection(t) 

The procedure selects the best cluster to host a new 

tuple t. If it returns NULL, the main algorithm creates a 

new cluster over t. Note that, IL threshold τ is the 

average information loss of the most recent outputted μ 

number of clusters, and is calculated in dOutputCluster. 

The procedure is as follows: 

Algorithm 1: dBestSelection(t)@ site x 

loop through Γx and calculate the enlargement due to the 

insertion of t in each cluster; 

select the clusters requiring the minimum enlargement, then 

select those whose information-loss (IL) ≤ τ and then return the 

cluster with minimum size; 

if no cluster with IL ≤ τ and size ≤ k then  

    if |Γx| < β then  

     return NULL to create a new cluster over t  

    else  

return the minimum size cluster among those requiring 

the minimum enlargement 

    end if 

end if 

4.6. Procedure dDelayConstraint(t) 

The main goal of this procedure is to output the tuple t 

hosted in cluster C according to the following 5 cases 

checked in order. Note that, a cluster is considered as 

an outlier if it is smaller in size than the majority of 

other clusters. 

 Case 1: loop through Γx and verifies if there is a 

better cluster C’ in Γx (has less IL) with C’.size ≥ k 

and C’.diversity ≥ l; if more than one cluster exists, 

the minimum IL cluster is chosen to host t; the tuple 

is moved to that cluster C’ and dOutputCluster(C’) 

procedure is called. 

 Case 2: verifies whether t can be output with its 

hosting cluster C with C.size ≥ k and C.diversity ≥ l; 

if yes the procedure dOutputCluster(C) is called. 

 Case 3: loop through Ωx to check the possibility of 

the reuse strategy, i.e. find clusters in Ωx that contain 

t and randomly select C’ and output t with C’ 

generalization. 

 Case 4: verifies if t is contained in an outlier cluster, 

then suppress it (i.e., output with the most 

generalized QI values). 

 Case 5: verifies whether a merge among the hosting 

cluster C and clusters in Γx will result in a cluster 

with C.size ≥ k and C.diversity ≥ l; if yes then call 

dMergeClusters(C) followed by dOutputCluster(C) 

else suppress t. 

 

 

4.7. Procedure dMergeClusters(C) 

The dMergeClusters(C) procedure takes as input the 

cluster to be merged C and proceeds as follows: 

Algorithm 2: dMergeClusters(C) @ site x 

 loop until C.size is at least k and C.diversity is at least l  

{ 

    loop through Γx except C 

    { 

    calculate the enlargement of C if merged with every 

cluster C’ belonging to Γx; 

select the cluster Cmin which brings the minimum   

enlargement and merges it with C; 

           removes Cmin; 

 send a message msg to trigger Cmin removal at other 

sites (size is set to 0) 

    } 

} 

4.8. Procedure dOutputCluster(C) 

Algorithm 3: dOutputCluster(C) @ site x 

#initialize a set of clusters SC to be empty 

if C.localsize ≥ 2* k and C.localdiversity ≥ l then  

      SC = dSplitCluster(C) 

 else SC = C 

end if 

output all tuples in each Ci in SC 

update τ (using μ sized queue) 

 foreach Ci in SC  

{ 

       if Ci information loss < τ, then  

           add Ci to Ωx 

      end if 

      delete Ci from Γx 

} 

 if( SC == C) then  

 send a message msg to trigger other sites to output the   

cluster C 

end if 

4.9. Procedure dSplitCluster(C) 

It is assumed that k ≥ l. First the procedure creates a 

set of buckets BS according to the tuples values of the 

sensitive attribute as. If |BS| < l, this means that the 

split is not possible and the input cluster C is returned. 

Else generates subclusters Csub by selecting from each 

bucket Bj ϵ BS a subset of tuples Tj proportional to the 

bucket size. The procedure is described as follows: 

5. Complexity Analysis 

5.1. Space Complexity 

Algorithm 4: dSplitCluster(C) @ site x 

generate buckets BS by selecting only one tuple from C for 

each distinct pidx value, and group only these selected tuples 

into buckets BS according to their values of the sensitive 

attribute as; 

 if |BS| < l then  

     return C  

else continue 
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end if 

initialize a set of clusters SC to be empty; 

while |BS| ≥ l and (sum = ΣBi ϵ BS |Bi|) ≥ k 

{ 

 random select a bucket from BS and random select a tuple 

from it and generate Csub over the tuple and populate it as 

follows; 

      for each Bj in BS 

     { 

 sort the tuples ti in ascending order by their distance     di = 

(Csub, ti); 

     select the first Tj (= k * |Bj| / sum) tuples and insert it into 

Csub; 

selected tuples are deleted from the bucket; and empty buckets 

are deleted as well; 

      } 

     add Csub to SC; 

} 

 loop through each of the remaining tuples t in BS 

{ 

     loop through each of created sub-clusters 

    { 

 push t into one of the new clusters that requires the minimum 

enlargement to enclose it; 

     } 

} 

insert each tuple t not selected from C, while forming BS, into 

the unique subcluster that contains a tuple with the same pidx 

of t; 

send a message msg to trigger C removal as a shared cluster 

at other sites (size is set to 0); 

return SC 

The space complexity Scost at site x, is the space 

required to store a window of the data stream, DSx, plus 

the space used by the data structure of the non-

anonymized (Γx) and anonymized (Ωx) clusters. Let 

 D be the number of QI attributes. 

 St be the space required to store a tuple. 

 Sg be the space for a QI attribute generalization. 

 Sa be the space required to store a sensitive attribute 

(for a shared cluster). 

 Nc maximum number of clusters in Ωx. 

The data stream window is bounded by δ, the number 

of non-anonymized clusters is bounded by β+ (close to 

β with upper limit nβ), and the number of anonymized 

clusters is bounded by Nc. 
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5.2. Time Complexity 

Estimating the time complexity requires analyzing the 

main algorithm and the procedures it performs. 

Let te be is the time required to calculate the 

enlargement of one dimension (or the distance between 

two tuples in one dimension). 

Both dDelayConstraint (section 4.6.) and 

dOutputCluster (section 4.8) do not contain a time 

consuming calculation such as cluster enlargement or 

distance between two tuples. 

dBestSelection (section 4.5.):the only loop is in 

step 1 that goes through Γx and calculates the 

enlargement. In the worst case, the cluster is enlarged 

over all the QI attributes (|QI| = D). Then 

eexselect tDtQIT  ||||    

dMergeClusters (section 4.7): there is a nested loops 

at step 1 and step 2 that go through clusters in Γx 

(excluding C) and calculates the enlargement to reach 

k and l requirements. In the worst case, each iteration 

the Γx size is decreased by 1. 

ex
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merge tQIiT
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dSplitCluster (section 4.9): assuming k > l, in the 

worst case, the number of tuples in C is δ and each 

tuple has a distinct pidx. In step 6 a loop runs through 

number of buckets |BS| and calculates the enlargement 

for each tuple (step 7) until k and l requirements are 

satisfied (step 4). In the worst case every time a new 

sub-cluster is created, δ is decreased by k. In addition, 

in steps 11 and 12, the remaining tuples (at most k-1) 

are pushed to one of created sub-clusters (  k
 ) after 

calculating the enlargement. 

e
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dCASTLE: Distributed CASTLE iterates on every 

incoming tuple in the data stream |DSx|, and calls 

dBestSelection, also when an expiring tuple need to be 

output, dCASTLE may call either dMergeClusters or 

dSplitCluster. In the worst case, we can say that this 

happens for every tuple in |DSx|. However, every time 

a merge is performed, the number of tuples decreases 

by at least k. Similarly, every time a split is performed, 

the number of tuples decreases by at least 2k. 

split
x

merge
x

selectxdCASTLE T
k

DS
T

k

DS
TDST 

2

||||
||  

            = O(|DSx|)     

5.3. Messaging Overhead 

The number of messages sent is traced at each site x in 

dCASTLE. For every new tuple, a message is sent by 

iterating through Γx looking for new clusters with size 

at least k/n, in the worst case, this message is sent for 

every new tuple. In addition, cluster updates are sent 

in dOutputCluster (step 9) (in the worst case a 

message is sent for every k tuples), dMergeClusters 

(step 6) (in the worst case a message is sent in each 

iteration of the loop) or dSplitCluster (step 15) (in the 

worst case a message is sent for every 2k tuples). 

 

 

(4) 

 (5) 

 (6) 

(7) 

(8) 
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6. Performance Evaluation 

The performance of the proposed algorithm is 

evaluated using real data set. The “Adult” data set from 

UC Irvine Machine Learning Repository [13] is used 

that became a standard for testing anonymity [3, 4, 6, 8, 

15, 16, 21]. 

UCI-Adult contains 30,162 tuples after removing 

15,060 tuples having missing values. Quasi-identifier 

QI attributes are selected from the following 11 

attributes: age, final-weight, education-number, capital-

gain, capital-loss, hours-per-week, work-class, 

education, marital-status, occupation, and nation. The 

first six of them are continuous, and the last five are 

categorical. The hierarchies for categorical attributes, 

and the intervals for continuous attributes are adopted 

from [6]. 

Intervals for continuous attributes are: age [0-100]; 

final-weight [0-1500000]; education-number [0-20]; 

capital-gain [0-100000]; capital-loss [0-5000]; hours-

per-week [0-100]. Number of leaves in the DGH of 

work-class is 8, education is 16, marital-status is 7, 

occupation is 14, and nation is 40. 

First, an experiment is designed to quantify the 

impact of the different parameters on information loss 

(section 6.1.). Second, the messaging overhead is 

compared for both dCASTLE algorithms k-anonymity 

and l-diversity (section 6.2). Third, both techniques are 

compared in terms of information loss as well (section 

6.3.). Finally, the effectiveness of the proposed l-

diversity algorithm is studied by comparing the 

introduced information loss to a lower and an upper 

bounds (section 6.4.). 

Note that the k-anonymity algorithm releases k-

anonymized clusters, while the l-diversity algorithm 

releases clusters that are k-anoymized and l-diversified. 

6.1. 2m Factorial Experimental Design 

This experiment is designed to study dCASTLE and 

quantify the effect of different parameters on IL. 

Positive values indicate positive correlation, and 

negative values indicate negative correlation. 

For k-anonymity, there are four parameters (QI, k, δ, 

and n) and 24(=16) experiments with the following low 

and high value of each variable QI = {2, 10}; k = {20, 

400}; n = {2, 10}; δ = {1000, 30000}. . (We omit tables 

due to space limitation). The experimental results show 

that when QI, k, or n increases, IL increases. However, 

when δ increases, IL decreases. QI contribution is the 

highest and equals 58%; k= 19%; δ =9%; n < 1.5%; 

for interactions: QI-k=7%; QI- δ =3%; k- δ = 2%. 

For l-diversity, the effect of l is studied as well. In 

this case there are 5 parameters and 25 (=32) 

experiments. l high and low values = {2, 10}, and 

work-class (categorical attribute) is the sensitive 

attribute. Similarly, the contribution of QI is the 

highest and equals to 75%; k = 9%; δ =6%; n = 1%; l 

≈ 0. For the interactions: QI- δ = 3%; k-QI=2.5%; k- δ 

= 2%. 

6.2. Messaging Overhead 

In this experiment, the number of bytes sent by 

dCASTLE is measured in both the k-anonymity and l-

diversity cases, where μ=100 and β=25. For l-

diversity, work-class is the sensitive attribute and l=6. 

As shown in Figure 5, the number-of-bytes sent 

increases with QI increases (Figure 5(a,b)) as well as 

with n (number-of-sites) increase (Figure 5(g)). 

However, the number-of-bytes sent decreases with k 

increase (Figure 5(c,d)) and δ increase (Figure 5(e,f)). 

Moreover, l-diversity sends more bytes than k-

anonymity, and this increase is insignificant most of 

the time. 

The data set size is 6.6M bytes and the max 

number-of-bytes sent is this experiment is 20K (Figure 

5(d), n=10, l-diversity). In this case the messaging cost 

is 0.3% of the data set size. 
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a) Varying QI: k=100, δ=10000, n=4. 
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b) Varying QI: k=100, δ=10000,  n=8. 
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g) Varying n: QI=10, k=100, δ=10000. 

Figure 5. Communication cost. 

We recorded the increase of β in dCASTLE for the 

same experiment. The maximum obsereved β+ is 43 (< 

2β). 

6.3. Comparing k-anonymity and l-diversity 

In this experiment the IL of dCASTLE (μ=100, β=25 as 

tuned in [15]) is compared in the two cases of k-

anonymity and l-diversity. For l-diversity, work-class is 

the sensitive attribute, l=2 and we vary values of k, δ, 

QI and n. Note that, k-anonymity resembles l=1 and as l 

increases the IL is expected to increase as well because 

l-diversity provides more rigorous anonymity. 

As shown in Figure 6, the IL of l-diversity is always 

more than k-anonymity. Similar to the results reported 

in section 6.1, IL increases with QI Figure 6 (a,b-) and 

k  Figure 6 (c,d) increase. However, IL decreases with δ 

increase Figure 6 (e,f). In addition, increasing n or l 

introduces insignificant increase of IL Figure 6 (g,h). 

The IL increase in l-diversity is in the range 20-27%. 

0

20000

40000

60000

80000

100000

120000

140000

160000

2 4 6 8 10

Information loss

l-diversity

k-anonymity

QI

n=4
l=2

 
a) Varying QI: k=100, δ=10000, n=4. 
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b) Varying QI: k=100, δ=10000, n=8. 
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g) Varying l: QI=10, k=100, δ=10000, n=4 
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h) Varying l: QI=10, k=100, δ=10000, n=8. 

Figure 6. Comparing k-anonymity and l-diversity. 

6.4. l-diversity Effectiveness 

In this experiment the effectiveness of the proposed 

algorithm is studied by comparing its IL to two other 

cases. The comparison involves: 

1) Centralized CASTLE where all tuples are processed 

at a central site (Centralized); this case provides IL 

lower bound. 

2) Distributed CASTLE with no communication where 

tuples are distributed across n sites that do not 

communicate (w/o comm); this case provides IL 

upper bound. 

3) The proposed distributed algorithm where tuples are 

distributed across n sites that communicate a local 

view of clusters for sites to construct approximately 

the same global view (Distributed) 

It is assumed that tuples are equally distributed between 

sites. To resemble the same order of reading from a 

central site the 1st tuple is assigned to site1, the 2nd tuple 

is assigned to site2, …,the nth tuple is assigned to siten, 

the (n+1)th record is assigned to site1, … etc. 

The parameters μ and β are tuned in [15] to give the 

best IL for this data set. For this case μ is set to 100 (for 

the three approaches), β is set to 25 for distributed case, 

and β is set to 50 for centralized and w/o comm cases.  

It can be concluded from Figure 7 that the proposed 

idea of distributed CASTLE provides IL close to the 

centralized approach most of the time. The IL reduction 

in the “Distributed” case can reach 100% when 

compared to the “w/o comm” case. In addition, the 

“w/o comm” case introduces an increase in IL when 

compared to the “Distributed” case. This increase can 

be as large as 35% as reported in this experiment. 
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a) Varying QI: k=100, δ=10000, as= work-class, l=2, n=8. 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

2 4 6 8 10

Information loss

Centralized

Distributed

w/o comm.

QI

n=10
l=2

 
b) Varying QI: k=100, δ=10000, as= work-class, l=2, n=10. 
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g) Varying n: QI=10, k=100, δ=10000, as = occupation, l=6. 
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h) Varying l QI=10, k=100, δ=10000, as =occupation, n=4. 
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Figure 7. l-diversity effectiveness. 

7. Conclusions and Future Work 

In this paper, a novel distributed model is presented for 

providing l-diversity for applications that generate 

distributed data streams. Previous research assumes 

distributed streams are collected at central site for 

anonymization which is not practical for some real-time 

applications. Instead, in the proposed model, collecting 

sites anonymize their streams and communicate their 

local view to achieve approximately the same global 

view. 

In addition, a distributive l-diversity algorithm, 

dCASTLE, is detailed. The algorithm is cluster-based 

that groups close tuples while minimizing an 

information loss metric. The algorithm is heuristic and 

local views are communicated when triggering events 

are fired (such as cluster merge, split, or output). The 

complexity analysis is presented and experiments are 

performed to study the efficiency and the effectiveness 

of the proposed algorithm. 

First, an experiment on real data set is designed to 

quantify the effect of different parameters on IL. The 

main finding is that number of attributes of the QI 

contributed about 50-75% of IL. The anonymity 

parameter k is the second contributing factor. The 

number of sites contributed about 1% and this shows 

the scalability of the algorithm. 

Second, k-anonymity and l-diversity are compared 

in terms of their messaging cost and information loss. 

The main finding is that l-diversity (l=2) introduces 

about 25% increase in IL when compared to k-

anonymity. The messaging cost (in bytes) reached 

0.3% of the size of the data set. 

Third, the proposed distributed approach is 

compared in terms of IL to the centralized model (as a 

lower bound) and to a distributed model with no 

communication (as an upper bound). The main finding 

is that the distributed approach introduces IL close to 

the centralized approach most of the time. In addition, 

about 35% reduction in IL is achieved when compared 

to the w/o comm case. 

For future work, we plan to study providing t-

closeness as well and experiment with larger data set 

and larger number of sites. In addition, the data utility 

will be investigated. 
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