
52 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

Privacy-Preserving for Distributed Data Streams:

Towards l-Diversity

Mona Mohamed, Sahar Ghanem, and Magdy Nagi

Computer and Systems Engineering Department, Alexandria University, Egypt

Abstract: Privacy-preserving data publishing have been studied widely on static data. However, many recent applications

generate data streams that are real-time, unbounded, rapidly changing, and distributed in nature. Recently, few work

addressed k-anonymity and l-diversity for data streams. Their model implied that if the stream is distributed, it is collected at a

central site for anonymization. In this paper, we propose a novel distributed model where distributed streams are first

anonymized by distributed (collecting) sites before merging and releasing. Our approach extends Continuously Anonymizing

STreaming data via adaptive cLustEring (CASTLE), a cluster-based approach that provides both k-anonymity and l-diversity

for centralized data streams. The main idea is for each site to construct its local clustering model and exchange this local view

with other sites to globally construct approximately the same clustering view. The approach is heuristic in a sense that not

every update to the local view is sent, instead triggering events are selected for exchanging cluster information. Extensive

experiments on a real data set are performed to study the introduced Information Loss (IL) on different settings. First, the

impact of the different parameters on IL are quantified. Then k-anonymity and l-diversity are compared in terms of messaging

cost and IL. Finally, the effectiveness of the proposed distributed model is studied by comparing the introduced IL to the IL of

the centralized model (as a lower bound) and to a distributed model with no communication (as an upper bound). The

experimental results show that the main contributing factor to IL is the number of attributes in the quasi-identifier (50%-75%)

and the number of sites contributed about 1% and this proves the scalability of the proposed approach. In addition, providing

l-diversity is shown to introduce about 25% increase in IL when compared to k-anonymity. Moreover, 35% reduction in IL is

achieved by messaging cost (in bytes) of about 0.3% of the data set size.

Keywords: k-anonymity, l-diversity, data streams and clustering.

Received April 20, 2017; accepted December 18, 2017

https://doi.org/10.34028/iajit/17/1/7

1. Introduction and Background

Many applications such as social networks, sensor

networks, health-care, market-basket analysis, network

monitoring and cloud-based services produce big data.

Big data with time stamp is called data stream. For

organizations to release such data gathering, that

contain person specific information, they are obligated

by privacy policy to remove all explicit identifiers, such

as name, Social Security Number (SSN) and address.

Usually released data are outsourced to a third party for

research or data-mining purpose. The resulting data

after suppressing identifying information looks

anonymous. However, the data is still vulnerable to

linking attacks. That is the remaining data can be used

to re-identify individuals by linking to other data.

For example if Table 1 is released by an insurance

company that has all explicit identifiers removed. The

remaining table has four attributes: the zip-code (part of

the address), date-of-birth, gender and diagnosis. The

diagnosis is a sensitive attribute that need to be

protected such that observers (including attackers)

should not be able to link a specific person to his

diagnosis. However, if an attacker has background

knowledge that a specific person is in the table and is

able to obtain that person (zip-code, data-of-birth,

gender), he can uniquely link him to his diagnosis. For

example, an attacker who knows Ali has visited a

hospital and knows Ali’s first three attributes are

(53723, 02/05/1973, Male) (e.g., obtained from a voter

registration table). Then the attacker can search the

released table and find a unique record (second row)

that can be linked to Ali, and conclude “Ali is

diagnosed with heart disease”.

The goal of privacy-preserving data publishing is to

limit the ability to link released information to other

external collections. The attributes that in combination

can uniquely identify individuals (with high

probability) are called Quasi-Identifier (QI), such as

the three attributes (zip-code, birth-date, gender). QI

needs a domain expert to decide, in addition policies

and contracts can help.

One solution to the linking attack is k-anonymity

[18]. To achieve k-anonymity, generalization of QI

attributes is applied such that each combination of QI

values occurs at least k times. In the generalization

process, a QI attribute value is replaced by a less

specific but semantically related value. The set of

released tuples which have the same generalized QI

are called an equivalence class. All equivalence

classes should be of size at least k. In this approach, a

Privacy-Preserving for Distributed Data Streams: Towards l-Diversity 53

record QI is indistinguishable from other k - 1 records

and the probability of linking attack is reduced to 1/k.

Note that, Suppression and generalization reduce the

quality of the data and an information loss metric need

to be minimized during the anonymization process.

Information loss is defined as the amount of uncertainty

introduced by the generalization procedure.

For example, Table 2 is 3-anonymized version of

Table 1, where the QI is (zip-code, date-of-birth,

gender) and k=3. Zip-code is generalized by

suppressing the first digit or two. Date-of-birth is

generalized by year-of-birth or year interval. Note that,

for each combination of QI there are at least 3

occurrences of those values in Table 2.

While k-anonymity protects against identity

disclosure where a person cannot be linked to a

particular record in the released table. It is insufficient

to prevent attribute disclosure. For example, in Table 2

the “diagnosis” attribute is sensitive. If an attacker

knows that Omar’s data is in the table and he is born in

1979 and lives in part of the address (ZIP) 53724. From

Table 2, the attacker can conclude that Omar

corresponds to one of the first three records, and thus

must have “Heart Disease”. This is known as

homogeneity attack. While Omar can’t be linked to

exactly one record in the released table (identity

disclosure), an attacker still can conclude new

information about Omar (attribute disclosure).

Table 1. Health insurance table.

ZIP code Date of Birth Gender Diagnosis

53712 01/01/1970 M Heart Disease

53723 02/05/1973 M Heart Disease

57321 01/01/1963 F Diabetes

53724 02/06/1979 M Heart Disease

56305 03/04/1963 F Cancer

56309 09/08/1961 M Flu

57311 05/05/1963 F Cancer

57322 03/02/1963 F Cancer

56306 01/02/1966 M Diabetes

Table 2. A 3-Anonymous version of Table 1.

ZIP code Date of Birth Gender Diagnosis

537* 1970-1979 M Heart Disease

537* 1970-1979 M Heart Disease

537* 1970-1979 M Heart Disease

5630* 1961-1966 Any Flu

5630* 1961-1966 Any Cancer

5630* 1961-1966 Any Diabetes

573* 1963 F Diabetes

573* 1963 F Cancer

573* 1963 F Cancer

Secondly, suppose that, an attacker can conclude that

Mahi corresponds to a record in the last equivalence

class in Table 2. Furthermore, suppose that he knows

that Mahi has very low risk for Diabetes. This

background knowledge enables the attacker to conclude

that “Mahi has cancer” leading to a privacy breach.

To address these limitations of k-anonymity, l-

diversity has been introduced in [14]. An equivalence

class is said to have l-diversity if there are at least l

“well-represented” values for the sensitive attribute. A

table is said to have l-diversity if every equivalence

class of the table has l-diversity [14]. The Simplest

definition of “well represented” is to ensure there are

at least l distinct values for the sensitive attribute in

each equivalence class which we adopt in our work.

Other types of l-diversity are entropy l-diversity, and

recursive (c, l)-diversity [14].

Research has focused on the privacy of relational

and static data sets [3, 6, 9], clustering of data streams

[22] and anonymization of incremental data sets [2]

which assumes that the whole dataset can be kept for

processing. These solutions can’t be easily adapted for

data streams privacy-preserving. In this work we are

motived by the unique requirements to anonymize

data streams. Data streams are real time;

unbounded/infinite (whole dataset can’t be kept); fast

growing and rapidly changing (multiple scans are not

possible); tuples have to be released before a time

constraint expires. In addition, many data stream

applications are distributed in nature. For example

supermarket chains where check-out scanners, located

at different stores, gather data continuously. Another

example is international companies that have some

data located in different continents. Those companies

have various reasons why the data cannot be

transmitted to a central site, e.g., limited bandwidth or

security aspects. However, the few work that

addressed anonymizing data stream has implied that

the data streams is to be merged at central location for
anonymization.

We claim to be the first to propose a distributed

model for anonymizing data streams. In this paper our

k-anonymity solution for distributed data streams [15]

is extended to provide l-diversity as well.

The main contributions of the paper are:

 An l-diversity protocol for anonymizing distributed

data stream is presented.

 Complexity analysis and an experimental study that

shows the efficiency and effectiveness of the

proposed protocol.

The rest of the paper is organized as follows. Section 2

surveys related work. Section 3 is a preliminary that

introduces the proposed model and definitions. In

section 4 the main algorithm and its procedures are

detailed. Complexity analysis is depicted in section 5.

Performance evaluation is presented in section 6.

Finally, section 7 concludes the paper and discusses

further research.

2. Related Work

Several studies have discussed different techniques for

privacy-preserving including k-anonymity [17, 19],

perturbation [5], condensation [1] and cryptography

[7]. k-anonymity, adopted in this work, for static data

54 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

is NP-hard and the research has focused on

approximate solutions [6, 10]. Moreover, new

approaches have been proposed to overcome k-

anonymity possible inference attacks such as l-diversity

[14] and t-closeness [12].

There are few work that addressed anonymizing

(central) data streams and generally are based on two

approaches tree-based and cluster-based. The tree-

based approach maintains a tree whose nodes are a set

of tuples and their common generalization. Sliding

Window Anonymization Framework (SWAF) [20],

Stream K-anonYmity (SKY) [11], Continuous Privacy

Preserving Publishing of Data Streams (BYJ) [25] and

K-anonymIzation Data Stream base on sliding window

(KIDS) [24] are tree-based. Compared to the cluster-

based approach it owns larger time and space

complexity and entails larger information loss and

never extended to provide l-diversity.

The cluster-based approach for providing k-

anonymity for data streams continuously anonymize

data via adaptive clustering. That is grouping close

records and releasing it under the same generalization.

The following is a list of cluster-based anonymization

work: Continuously Anonymizing STreaming data via

adaptive cLustEring (CASTLE) [4], B-CASTLE [21],

Fast Anonymizing Algorithm for Numerical Streaming

DaTa (FAANST) [23], FADS [8], and FAST [16].

Only CASTLE and Fast clustering-based k-

Anonymization approach for Data Streams (FADS)

extended their work to provide l-diversity on top of k-

anonymity. The work in this paper extends CASTLE to

provide k-anonymity and l-diversity for distributed data

streams.

3. Preliminary

The term data refers to a table of rows (or tuples) and

columns (or attributes). k-anonymity for data streams is

introduced in CASTLE [4], and termed ks-anonymity.

CASTLE is a cluster-based approach that tries to group

close tuples into clusters while minimizing an IL

metric. The algorithm maintains a buffer that holds a

(count-based) window of the data stream sized by a

delay constraint (δ). In addition, it maintains two sets of

clusters. The first set (Γ) is the working non-

anonymized clusters that are updated, merged and split

due to insertion and release of tuples. This set has a size

limit of β. The second set (Ω) contains anonymized

clusters of good quality (in terms of information loss)

that are kept to be reused according to a reuse strategy.

The IL threshold of good quality clusters is tuned using

a parameter μ. A new arriving tuple is inserted into the

cluster that requires the minimum enlargement. Due to

the data stream characteristics tuples have to be

released before a delay constraint expires. Tuples

belonging to the same cluster are released with the

same cluster QI generalization. After releasing all

tuples belonging to a cluster, the cluster is moved to

the anonymized set Ω (for reuse) if it has good quality.

Motivated by the distributed nature of many data

stream applications, in [15] we extended ks-anonymity

to the distributed data streams case, kds-anonymity. In

central CASTLE, it is implied that distributed data

streams are merged at a central site for anonymization.

In our proposed model, Figure 1, we assume the data

streams are generated by n sites, and each site is to

process/anonymize its own data stream. However, the

anonymized streams are merged before releasing. Our

novel approach is based on exchanging local view of

working clusters. Every site x sends its own working

non-anonymized clusters Γx to each other site (through

a relay sever). These messages contain only cluster

information (such as ID, size, and generalization) but

actual tuples are not sent. In addition, message

sending is triggered by merge, split, or release of

clusters. The goal is for sites to construct

approximately the same view of working non-

anonymized clusters. In this case, a released cluster of

size at least k implies that there is more than k tuples

belonging to the cluster across all n sites. The

approach is heuristic that approximates the same

global view of clusters at different sites to reduce the

information loss.

CASTLE [4] extended its main algorithm to

provide data stream l-diversity in addition to ks-

anonymity. Similarly, in this paper we extend our

distributed data stream kds-anonymity algorithm in

[15] to provide l-diversity in a distributed scenario.

Figure 1. Distributed CASTLE model.

3.1. Network Model

We assume two level hierarchical model where n sites

connect to a central relay server. The communication

between the sites and the server is secured, for

example by VPN. In addition, we assume a semi-

honest adversary model which follows the protocol

but tries to infer valuable information.

3.2. Information Loss Metric (IL)

A Generalized Loss Metric [4] is adopted for

site x

site i

snd
msg rcv

msg

Si

Relay Server

DSout

anonym. clusters

input stream Sx

buffer

δ

non-anonym. clusters

Γx

Ωx

anonym. stream

Sxout

Si
out

Privacy-Preserving for Distributed Data Streams: Towards l-Diversity 55

categorical and continuous QI attributes. Let {q1, ….,

qm} be the set of QI attributes.

For a categorical attribute qi generalized to a node v

in the Domain Generalization Hierarchy (DGHi), the

information loss associated with v is defined as follows:

1||

1||
)(

S

SvvVInfoloss

Where Sv is the set of leaf nodes of the subtree rooted at

v and S is the set of all the leaf nodes in DGHi.

For a continuous attribute qi value generalized to an

interval I = [lower, upper] from the domain [L, U], the

information loss associated with I is defined as follows:

LU

lowerupper
IVInfoloss

)(

Cluster generalization g = (v1, …,vm) over a set of tuples

is defined such that for each QI attribute qi, the

corresponding range value vi is defined as follows:

 If qi is a categorical attribute, vi is lowest common

ancestor (in DGHi) containing all set of qi leaves

included in the tuples

 If qi is a continuous attribute, vi is the minimal

subinterval of qi’s domain that contains all qi’s

values of the tuples

The total information loss of a tuple QI generalization g

= (v1, …,vm) is defined as follows:

)()(

1

i

m

i

vVInfolossgInfoloss

3.3. Cluster Enlargement

Enlargement of cluster C, with respect to a tuple t, is

the difference between total IL when applying the new

generalization g’ resulted from adding t to C and the

current generalization g.

3.4. Distance Between Tuples

The distance between two tuples t and t’ is calculated as

the sum of all corresponding attributes distances such

that

 For a categorical attribute, the distance is calculated

using VInfoloss for the lowest common ancestor of t

and t’ attribute values.

 For a continuous attribute, the distance is the

absolute difference between t and t’ attribute values

divided by their domain range.

 Example 1: To calculate the distance between tuples,

assume a tuple QI has two attributes (age;

education), where age is a continuous attribute in the

domain [0-100] and education has a DGH illustrated

in Figure 2. Consider t1=(26, Bachelors), t2 =(29,

Doctorate) and t3 = (28, Masters), Distance (t1, t2) =

(29-26)/(100-0) + VInfoloss(University)=0.03 + ((3-

1)/(7-1))=0.363, and Distance (t1, t3) = (28-26)/(100-

0) + VInfoloss(University)= 0.02+((3-1)/(7-1)) =

0.353. Thus, t3 is closer to t1 than t2.

Any_Edu

Secondary University

 Junior Senior Bachelors Grad School

 9th 10th 11th 12th Masters Doctorate

Figure 2. DGH for education Attribute [6].

3.5. Kds-Anonymization of Distributed Data

Stream

The input data stream at site x is a sequence of tuples,

DSx(px, pidx, q1, q2, ..., qm, a1, a2, …, al), where px is

the tuple position, pidx is a person ID, (q1, q2, ..., qm)

are the QI attributes, and (a1, a2, …, al) are the

remaining attributes including sensitive ones. We

assume all explicit identifiers are suppressed and only

pidx is kept.

The output data stream at site x, DSx
out, is an

anonymized sequence such that for each tuple t ϵ DSx

a corresponding anonymized tuple t’ in DSx
out is

found. In addition, for each QI group (i.e., cluster), the

set of included distinct persons (pidx) are greater than

or equal to k. Moreover, a delay constraint (δ) is

enforced such that for each new arriving tuple t with

position px, all tuples with positions less than (px - δ)

have been in output by DSx
out.

3.6. Kds-Anonymized and l-Diversified Cluster

Consider a single sensitive attribute as. Ensuring l-

diversity requires that all tuples with the same

generalization, i.e., all tuples belonging to the same

cluster, have at least l distinct values for as. Given a

cluster C at site x, let C.size denote the number of

distinct persons (pidx) belonging to the cluster. C.size

is approximated by the sum of the cluster local size (at

site x) and the shared size. In addition, let C.diversity

denote the number of distinct values of as for tuples in

C. Similarly, C.diversity is approximated by the count

of distinct as values at site x and shared distinct values

from one other site.

If, at a given time instant C.size is greater than or

equal to k, and C.diversity is at least l, and all tuples in

C are output with C’s generalization. Then C is kds-

anonymized and l-diversified cluster.

4. Algorithm and Procedures

4.1. Procedure CentralServer()

The central server waits for all sites to connect before

listening to messages, and it is assumed that no site

fails. The server relays messages between sites

(1)

(2)

(3)

56 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

ID Size q1, q2, …., qm as1, as2, ….

ID …..

through a Transmission Control Protocol (TCP) server

socket on a predefined port.

4.2. Messages

Figure 3 shows the exchanged message format. A

message sent by site x contains either a list of newly

shared clusters or a cluster update. For each cluster, the

message contains:

 Cluster ID which is a concatenation of a site ID and

a sequential identifier

 Cluster size that is at least nk / for a newly shared

cluster, at least k for a released cluster, and zero for

merged or split clusters

 Cluster QI generalized values

 Array of distinct values of the sensitive attribute as in

the cluster; for a categorical as the array size equals

to the number of leaf nodes of the attribute DGH (an

entry is set to 1 if the attribute exists otherwise it is

set to 0); for a continuous as actual distinct values

are sent

Figure 3. Message format.

A cluster C size (C.size) is the sum of the cluster

local size and its shared size (received in a message).

Similarly, a cluster C diversity (C.diversity) is the count

of distinct as values in local tuples and in the shared

array (received in a message).

Note that a calculated size or diversity at site x uses

local cluster (size or diversity, respectively) and a

shared cluster (size or diversity, respectively) from only

one other site. This approximation guarantees that a

released cluster will have size > k and diversity > l. If

more sites to be included in the calculation that should

provide tighter bounds but increases the messaging and

space complexity.

4.3. Main Algorithm: dCASTLE(DSx, k, l, δ, β,

μ, n) @ site x

The software components are depicted in Figure 4.

Figure 4. Software components.

The input to the main algorithm distributed

CASTLE, dCASTLE, at site x is a continuous stream

of data DSx and the following parameters:

 The anonymity parameter k.

 The diversity parameter l.

 The delay constraint δ.

 A size limit for the working local non-anonymized

set of clusters β.

 A parameter used to tune the set size of reused

(anonymized) clusters μ.

 Number of sites n.

The algorithm produces in output a flow of kds-

anonymized and l-diversified tuples.

Every site maintains, as illustrated in Figure 1, a

buffer that holds a window of size δ of the data

stream, the set of local and shared non-anonymized

(i.e., working) clusters (Γx) and a subset of good

quality anonymized clusters (Ωx) for reuse. The

threshold β is used to limit Γx so that no new local

cluster will be created if |Γx| reaches β, however due to

exchange of cluster information the maximum size of

Γx could be larger (β+) with an upper bound n β.

Using TCP socket, the algorithm spawns a thread to

listen to messages from the server. When a message

(msg) is received, procedure dUpdateClusters(msg) is

called.

The algorithm performs the following steps when a

new tuple t arrives:

 Sends a message msg that contains a selected list of

recent (not sent before) local non-anonymized

clusters from Γx with size ≥ nk / if any

 Calls procedure dBestSelection(t) to select the best

cluster C to insert t

 If the procedure returns NULL, creates new cluster

to enclose t with unique cluster ID and add it to Γx

else insert t in C

 Verifies whether the arrival of t makes a tuple t’

with position (t.px - δ) that has not been output yet

to expire; if yes, calls procedure

dDelayConstraint(t’)

4.4. Procedure dUpdateClusters(msg)

Procedure dUpdateClusters(msg) takes as input a

message (msg) received from the server and updates

Γx. The message has one of three types as follows:

 Type 1: msg contains a list of newly shared clusters

(identified by their ID) with size > nk / each.

Those clusters are added to the set of non-

anonymized clusters Γx.

 Type 2: msg contains an update to a cluster with

size ≥ k and diversity ≥ l (in case the cluster has

been sent to output). In this case, the cluster is

updated and procedure dOutputCluster(C) is called.

dCASTLE

dBestSelection
dUpdateClusters dDelayConstraint

dOutputCluster dMergeClusters

dSplitCluster

Privacy-Preserving for Distributed Data Streams: Towards l-Diversity 57

 Type 3: msg contains an update to a cluster with size

set to zero (in case cluster is merged or split). The

cluster shared size is set to zero. However, local

tuples are kept in the cluster.

4.5. Procedure dBestSelection(t)

The procedure selects the best cluster to host a new

tuple t. If it returns NULL, the main algorithm creates a

new cluster over t. Note that, IL threshold τ is the

average information loss of the most recent outputted μ

number of clusters, and is calculated in dOutputCluster.

The procedure is as follows:

Algorithm 1: dBestSelection(t)@ site x

loop through Γx and calculate the enlargement due to the

insertion of t in each cluster;

select the clusters requiring the minimum enlargement, then

select those whose information-loss (IL) ≤ τ and then return the

cluster with minimum size;

if no cluster with IL ≤ τ and size ≤ k then

 if |Γx| < β then

 return NULL to create a new cluster over t

 else

return the minimum size cluster among those requiring

the minimum enlargement

 end if

end if

4.6. Procedure dDelayConstraint(t)

The main goal of this procedure is to output the tuple t

hosted in cluster C according to the following 5 cases

checked in order. Note that, a cluster is considered as

an outlier if it is smaller in size than the majority of

other clusters.

 Case 1: loop through Γx and verifies if there is a

better cluster C’ in Γx (has less IL) with C’.size ≥ k

and C’.diversity ≥ l; if more than one cluster exists,

the minimum IL cluster is chosen to host t; the tuple

is moved to that cluster C’ and dOutputCluster(C’)

procedure is called.

 Case 2: verifies whether t can be output with its

hosting cluster C with C.size ≥ k and C.diversity ≥ l;

if yes the procedure dOutputCluster(C) is called.

 Case 3: loop through Ωx to check the possibility of

the reuse strategy, i.e. find clusters in Ωx that contain

t and randomly select C’ and output t with C’

generalization.

 Case 4: verifies if t is contained in an outlier cluster,

then suppress it (i.e., output with the most

generalized QI values).

 Case 5: verifies whether a merge among the hosting

cluster C and clusters in Γx will result in a cluster

with C.size ≥ k and C.diversity ≥ l; if yes then call

dMergeClusters(C) followed by dOutputCluster(C)

else suppress t.

4.7. Procedure dMergeClusters(C)

The dMergeClusters(C) procedure takes as input the

cluster to be merged C and proceeds as follows:

Algorithm 2: dMergeClusters(C) @ site x

 loop until C.size is at least k and C.diversity is at least l

{

 loop through Γx except C

 {

 calculate the enlargement of C if merged with every

cluster C’ belonging to Γx;

select the cluster Cmin which brings the minimum

enlargement and merges it with C;

 removes Cmin;

 send a message msg to trigger Cmin removal at other

sites (size is set to 0)

 }

}

4.8. Procedure dOutputCluster(C)

Algorithm 3: dOutputCluster(C) @ site x

#initialize a set of clusters SC to be empty

if C.localsize ≥ 2* k and C.localdiversity ≥ l then

 SC = dSplitCluster(C)

 else SC = C

end if

output all tuples in each Ci in SC

update τ (using μ sized queue)

 foreach Ci in SC

{

 if Ci information loss < τ, then

 add Ci to Ωx

 end if

 delete Ci from Γx

}

 if(SC == C) then

 send a message msg to trigger other sites to output the

cluster C

end if

4.9. Procedure dSplitCluster(C)

It is assumed that k ≥ l. First the procedure creates a

set of buckets BS according to the tuples values of the

sensitive attribute as. If |BS| < l, this means that the

split is not possible and the input cluster C is returned.

Else generates subclusters Csub by selecting from each

bucket Bj ϵ BS a subset of tuples Tj proportional to the

bucket size. The procedure is described as follows:

5. Complexity Analysis

5.1. Space Complexity

Algorithm 4: dSplitCluster(C) @ site x

generate buckets BS by selecting only one tuple from C for

each distinct pidx value, and group only these selected tuples

into buckets BS according to their values of the sensitive

attribute as;

 if |BS| < l then

 return C

else continue

58 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

end if

initialize a set of clusters SC to be empty;

while |BS| ≥ l and (sum = ΣBi ϵ BS |Bi|) ≥ k

{

 random select a bucket from BS and random select a tuple

from it and generate Csub over the tuple and populate it as

follows;

 for each Bj in BS

 {

 sort the tuples ti in ascending order by their distance di =

(Csub, ti);

 select the first Tj (= k * |Bj| / sum) tuples and insert it into

Csub;

selected tuples are deleted from the bucket; and empty buckets

are deleted as well;

 }

 add Csub to SC;

}

 loop through each of the remaining tuples t in BS

{

 loop through each of created sub-clusters

 {

 push t into one of the new clusters that requires the minimum

enlargement to enclose it;

 }

}

insert each tuple t not selected from C, while forming BS, into

the unique subcluster that contains a tuple with the same pidx

of t;

send a message msg to trigger C removal as a shared cluster

at other sites (size is set to 0);

return SC

The space complexity Scost at site x, is the space

required to store a window of the data stream, DSx, plus

the space used by the data structure of the non-

anonymized (Γx) and anonymized (Ωx) clusters. Let

 D be the number of QI attributes.

 St be the space required to store a tuple.

 Sg be the space for a QI attribute generalization.

 Sa be the space required to store a sensitive attribute

(for a shared cluster).

 Nc maximum number of clusters in Ωx.

The data stream window is bounded by δ, the number

of non-anonymized clusters is bounded by β+ (close to

β with upper limit nβ), and the number of anonymized

clusters is bounded by Nc.

g
SD

c
N

a
Sk

g
SD

t
S

t
S

)(

cos

5.2. Time Complexity

Estimating the time complexity requires analyzing the

main algorithm and the procedures it performs.

Let te be is the time required to calculate the

enlargement of one dimension (or the distance between

two tuples in one dimension).

Both dDelayConstraint (section 4.6.) and

dOutputCluster (section 4.8) do not contain a time

consuming calculation such as cluster enlargement or

distance between two tuples.

dBestSelection (section 4.5.):the only loop is in

step 1 that goes through Γx and calculates the

enlargement. In the worst case, the cluster is enlarged

over all the QI attributes (|QI| = D). Then

eexselect tDtQIT ||||

dMergeClusters (section 4.7): there is a nested loops

at step 1 and step 2 that go through clusters in Γx

(excluding C) and calculates the enlargement to reach

k and l requirements. In the worst case, each iteration

the Γx size is decreased by 1.

ex

i

merge tQIiT
x

||)|(|

1||

1

 =
etD

2

)1(

dSplitCluster (section 4.9): assuming k > l, in the

worst case, the number of tuples in C is δ and each

tuple has a distinct pidx. In step 6 a loop runs through

number of buckets |BS| and calculates the enlargement

for each tuple (step 7) until k and l requirements are

satisfied (step 4). In the worst case every time a new

sub-cluster is created, δ is decreased by k. In addition,

in steps 11 and 12, the remaining tuples (at most k-1)

are pushed to one of created sub-clusters (k
) after

calculating the enlargement.

e

k

i
split tQIikT

||)(
1/

0

 +

etQI
k

k

 ||)1(

etD

k

2

2

dCASTLE: Distributed CASTLE iterates on every

incoming tuple in the data stream |DSx|, and calls

dBestSelection, also when an expiring tuple need to be

output, dCASTLE may call either dMergeClusters or

dSplitCluster. In the worst case, we can say that this

happens for every tuple in |DSx|. However, every time

a merge is performed, the number of tuples decreases

by at least k. Similarly, every time a split is performed,

the number of tuples decreases by at least 2k.

split
x

merge
x

selectxdCASTLE T
k

DS
T

k

DS
TDST

2

||||
||

 = O(|DSx|)

5.3. Messaging Overhead

The number of messages sent is traced at each site x in

dCASTLE. For every new tuple, a message is sent by

iterating through Γx looking for new clusters with size

at least k/n, in the worst case, this message is sent for

every new tuple. In addition, cluster updates are sent

in dOutputCluster (step 9) (in the worst case a

message is sent for every k tuples), dMergeClusters

(step 6) (in the worst case a message is sent in each

iteration of the loop) or dSplitCluster (step 15) (in the

worst case a message is sent for every 2k tuples).

(4)

 (5)

 (6)

(7)

(8)

Privacy-Preserving for Distributed Data Streams: Towards l-Diversity 59

|| xnew DSnMsg

k

DS
nMsg x

output

||

k

DS
nMsg x

merge

||

2

)1(

k

DS
nMsg x

split
2

||

|)(| xDSOnMsgs

6. Performance Evaluation

The performance of the proposed algorithm is

evaluated using real data set. The “Adult” data set from

UC Irvine Machine Learning Repository [13] is used

that became a standard for testing anonymity [3, 4, 6, 8,

15, 16, 21].

UCI-Adult contains 30,162 tuples after removing

15,060 tuples having missing values. Quasi-identifier

QI attributes are selected from the following 11

attributes: age, final-weight, education-number, capital-

gain, capital-loss, hours-per-week, work-class,

education, marital-status, occupation, and nation. The

first six of them are continuous, and the last five are

categorical. The hierarchies for categorical attributes,

and the intervals for continuous attributes are adopted

from [6].

Intervals for continuous attributes are: age [0-100];

final-weight [0-1500000]; education-number [0-20];

capital-gain [0-100000]; capital-loss [0-5000]; hours-

per-week [0-100]. Number of leaves in the DGH of

work-class is 8, education is 16, marital-status is 7,

occupation is 14, and nation is 40.

First, an experiment is designed to quantify the

impact of the different parameters on information loss

(section 6.1.). Second, the messaging overhead is

compared for both dCASTLE algorithms k-anonymity

and l-diversity (section 6.2). Third, both techniques are

compared in terms of information loss as well (section

6.3.). Finally, the effectiveness of the proposed l-

diversity algorithm is studied by comparing the

introduced information loss to a lower and an upper

bounds (section 6.4.).

Note that the k-anonymity algorithm releases k-

anonymized clusters, while the l-diversity algorithm

releases clusters that are k-anoymized and l-diversified.

6.1. 2m Factorial Experimental Design

This experiment is designed to study dCASTLE and

quantify the effect of different parameters on IL.

Positive values indicate positive correlation, and

negative values indicate negative correlation.

For k-anonymity, there are four parameters (QI, k, δ,

and n) and 24(=16) experiments with the following low

and high value of each variable QI = {2, 10}; k = {20,

400}; n = {2, 10}; δ = {1000, 30000}. . (We omit tables

due to space limitation). The experimental results show

that when QI, k, or n increases, IL increases. However,

when δ increases, IL decreases. QI contribution is the

highest and equals 58%; k= 19%; δ =9%; n < 1.5%;

for interactions: QI-k=7%; QI- δ =3%; k- δ = 2%.

For l-diversity, the effect of l is studied as well. In

this case there are 5 parameters and 25 (=32)

experiments. l high and low values = {2, 10}, and

work-class (categorical attribute) is the sensitive

attribute. Similarly, the contribution of QI is the

highest and equals to 75%; k = 9%; δ =6%; n = 1%; l

≈ 0. For the interactions: QI- δ = 3%; k-QI=2.5%; k- δ

= 2%.

6.2. Messaging Overhead

In this experiment, the number of bytes sent by

dCASTLE is measured in both the k-anonymity and l-

diversity cases, where μ=100 and β=25. For l-

diversity, work-class is the sensitive attribute and l=6.

As shown in Figure 5, the number-of-bytes sent

increases with QI increases (Figure 5(a,b)) as well as

with n (number-of-sites) increase (Figure 5(g)).

However, the number-of-bytes sent decreases with k

increase (Figure 5(c,d)) and δ increase (Figure 5(e,f)).

Moreover, l-diversity sends more bytes than k-

anonymity, and this increase is insignificant most of

the time.

The data set size is 6.6M bytes and the max

number-of-bytes sent is this experiment is 20K (Figure

5(d), n=10, l-diversity). In this case the messaging cost

is 0.3% of the data set size.

0

1000

2000

3000

4000

5000

6000

2 4 6 8 10

Number of bytes

l-diversity

k-anonymity

QI

n=4
l=6

a) Varying QI: k=100, δ=10000, n=4.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 4 6 8 10

Number of bytes

l-diversity

k-anonymity

QI

n=8
l=6

b) Varying QI: k=100, δ=10000, n=8.

0

1000

2000

3000

4000

5000

6000

7000

20 50 100 200 400

Number of bytes

l-diversity

k-anonymity

n=4
l=6

k
c) Varying k: QI=10, δ=10000, n=4.

(9)

60 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

0

5000

10000

15000

20000

25000

20 50 100 200 400

Number of bytes

l-diversity

k-anonymity

n=8
l=6

k
d) Varying k: QI=10, δ=10000, n=8.

0

2000

4000

6000

8000

10000

12000

1000 5000 10000 20000 30000

Number of bytes

l-diversity

k-anonymity

n=4
l=6

δ
e) Varying δ: QI=10, k=100, n=4.

0

5000

10000

15000

20000

25000

30000

1000 5000 10000 20000 30000

Number of bytes

l-diversity

k-anonymity

n=8
l=6

δ
f) Varying δ: QI=10, k=100, n=8.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2 4 6 8 10

Number of bytes

k-anonymity

l-diversity

n

l=6

g) Varying n: QI=10, k=100, δ=10000.

Figure 5. Communication cost.

We recorded the increase of β in dCASTLE for the

same experiment. The maximum obsereved β+ is 43 (<

2β).

6.3. Comparing k-anonymity and l-diversity

In this experiment the IL of dCASTLE (μ=100, β=25 as

tuned in [15]) is compared in the two cases of k-

anonymity and l-diversity. For l-diversity, work-class is

the sensitive attribute, l=2 and we vary values of k, δ,

QI and n. Note that, k-anonymity resembles l=1 and as l

increases the IL is expected to increase as well because

l-diversity provides more rigorous anonymity.

As shown in Figure 6, the IL of l-diversity is always

more than k-anonymity. Similar to the results reported

in section 6.1, IL increases with QI Figure 6 (a,b-) and

k Figure 6 (c,d) increase. However, IL decreases with δ

increase Figure 6 (e,f). In addition, increasing n or l

introduces insignificant increase of IL Figure 6 (g,h).

The IL increase in l-diversity is in the range 20-27%.

0

20000

40000

60000

80000

100000

120000

140000

160000

2 4 6 8 10

Information loss

l-diversity

k-anonymity

QI

n=4
l=2

a) Varying QI: k=100, δ=10000, n=4.

0

20000

40000

60000

80000

100000

120000

140000

160000

2 4 6 8 10

Information loss

l-diversity

k-anonymity

QI

n=8
l=2

b) Varying QI: k=100, δ=10000, n=8.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

20 50 100 200 400

Information loss

l-diversity

k-anonymity

n=4
l=2

k
c) Varying k: QI=10, δ=10000, n=4.

0

50000

100000

150000

200000

250000

20 50 100 200 400

Information loss

l-diversity

k-anonymity

n=8
l=2

k
d) Varying k: QI=10, δ=10000, n=8.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1000 5000 10000 20000 30000

Information loss

l-diversity

k-anonymity

n=4
l=2

δ

e) Varying δ: QI=10, k=100, n=4.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1000 5000 10000 20000 30000

Information loss

l-diversity

k-anonymity

n=8
l=2

δ
f) Varying δ: QI=10, k=100, n=8.

Privacy-Preserving for Distributed Data Streams: Towards l-Diversity 61

0

20000

40000

60000

80000

100000

120000

140000

160000

2 4 6 8 10

Information loss

l-diversity

k-anonymity

l

n=4

g) Varying l: QI=10, k=100, δ=10000, n=4

0

20000

40000

60000

80000

100000

120000

140000

160000

2 4 6 8 10

Information loss

l-diversity

k-anonymity

l

n=8

h) Varying l: QI=10, k=100, δ=10000, n=8.

Figure 6. Comparing k-anonymity and l-diversity.

6.4. l-diversity Effectiveness

In this experiment the effectiveness of the proposed

algorithm is studied by comparing its IL to two other

cases. The comparison involves:

1) Centralized CASTLE where all tuples are processed

at a central site (Centralized); this case provides IL

lower bound.

2) Distributed CASTLE with no communication where

tuples are distributed across n sites that do not

communicate (w/o comm); this case provides IL

upper bound.

3) The proposed distributed algorithm where tuples are

distributed across n sites that communicate a local

view of clusters for sites to construct approximately

the same global view (Distributed)

It is assumed that tuples are equally distributed between

sites. To resemble the same order of reading from a

central site the 1st tuple is assigned to site1, the 2nd tuple

is assigned to site2, …,the nth tuple is assigned to siten,

the (n+1)th record is assigned to site1, … etc.

The parameters μ and β are tuned in [15] to give the

best IL for this data set. For this case μ is set to 100 (for

the three approaches), β is set to 25 for distributed case,

and β is set to 50 for centralized and w/o comm cases.

It can be concluded from Figure 7 that the proposed

idea of distributed CASTLE provides IL close to the

centralized approach most of the time. The IL reduction

in the “Distributed” case can reach 100% when

compared to the “w/o comm” case. In addition, the

“w/o comm” case introduces an increase in IL when

compared to the “Distributed” case. This increase can

be as large as 35% as reported in this experiment.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

2 4 6 8 10

Information loss

Centralized

Distributed

w/o comm.

QI

n=8
l=2

a) Varying QI: k=100, δ=10000, as= work-class, l=2, n=8.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

2 4 6 8 10

Information loss

Centralized

Distributed

w/o comm.

QI

n=10
l=2

b) Varying QI: k=100, δ=10000, as= work-class, l=2, n=10.

0

50000

100000

150000

200000

250000

20 50 100 200 400

Information loss

Centralized

Distributed

w/o comm.

n=4
l=6

k
c) Varying k: QI=10, δ=10000, as = occupation, l=6, n=4.

0

50000

100000

150000

200000

250000

20 50 100 200 400

Information loss

Centralized

Distributed

w/o comm.

n=10
l=6

k
d) Varying k: QI=10, δ=10000, as = occupation, l=6, n=10.

0

50000

100000

150000

200000

250000

1000 5000 10000 20000 30000

Information loss

Centralized

Distributed

w/o comm.

n=6
l=6

δ
e) Varying δ: QI=10, k=100, as = occupation, l=6, n=6.

0

50000

100000

150000

200000

250000

1000 5000 10000 20000 30000

Information loss

Centralized

Distributed

w/o comm.

n=10
l=6

δ
f) Varying δ: QI=10, k=100, as = occupation, l=6, n=10.

62 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

0

50000

100000

150000

200000

250000

2 4 6 8 10

Information loss

Centralized

Distributed

w/o comm.

n

l=6

g) Varying n: QI=10, k=100, δ=10000, as = occupation, l=6.

0

50000

100000

150000

200000

250000

2 4 6 8 10

Information loss

Centralized

Distributed

w/o comm.

l

n=4

h) Varying l QI=10, k=100, δ=10000, as =occupation, n=4.

0

50000

100000

150000

200000

250000

2 4 6 8 10

Information loss

Centralized

Distributed

w/o comm.

l

n=8

i) Varying l QI=10, k=100, δ=10000, as =occupation, n=8.

Figure 7. l-diversity effectiveness.

7. Conclusions and Future Work

In this paper, a novel distributed model is presented for

providing l-diversity for applications that generate

distributed data streams. Previous research assumes

distributed streams are collected at central site for

anonymization which is not practical for some real-time

applications. Instead, in the proposed model, collecting

sites anonymize their streams and communicate their

local view to achieve approximately the same global

view.

In addition, a distributive l-diversity algorithm,

dCASTLE, is detailed. The algorithm is cluster-based

that groups close tuples while minimizing an

information loss metric. The algorithm is heuristic and

local views are communicated when triggering events

are fired (such as cluster merge, split, or output). The

complexity analysis is presented and experiments are

performed to study the efficiency and the effectiveness

of the proposed algorithm.

First, an experiment on real data set is designed to

quantify the effect of different parameters on IL. The

main finding is that number of attributes of the QI

contributed about 50-75% of IL. The anonymity

parameter k is the second contributing factor. The

number of sites contributed about 1% and this shows

the scalability of the algorithm.

Second, k-anonymity and l-diversity are compared

in terms of their messaging cost and information loss.

The main finding is that l-diversity (l=2) introduces

about 25% increase in IL when compared to k-

anonymity. The messaging cost (in bytes) reached

0.3% of the size of the data set.

Third, the proposed distributed approach is

compared in terms of IL to the centralized model (as a

lower bound) and to a distributed model with no

communication (as an upper bound). The main finding

is that the distributed approach introduces IL close to

the centralized approach most of the time. In addition,

about 35% reduction in IL is achieved when compared

to the w/o comm case.

For future work, we plan to study providing t-

closeness as well and experiment with larger data set

and larger number of sites. In addition, the data utility

will be investigated.

References

[1] Aggarwal C. and Yu P., “A Condensation

Approach to Privacy Preserving Data Mining,”

in Proceedings of International Conference on

Extending Database Technology, Heraklion, pp.

183-199, 2004.

[2] Aldeen Y., Salleh M., and Aljeroudi Y., “An

Innovative Privacy Preserving Technique for

Incremental Datasets on Cloud Computing,”

Journal of Biomedical Informatics, vol. 62, pp.

107-116, 2016.

[3] Bayardo R. and Agrawal R., “Data Privacy

through Optimal k-Anonymization,” in

Proceedings of 21st International Conference on

Data Engineering, Tokoyo, pp. 217-228, 2005.

[4] Cao J., Carminati B., Ferrari E., and Tan K.,

“CASTLE: Continuously Anonymizing Data

Streams,” IEEE Transactions on Dependable

and Secure Computing, vol. 8, no. 3, pp. 337-

352, 2011.

[5] Evfimievski A., Srikant R., Agrawal R., and

Gehrke J., “Privacy Preserving Mining of

Association Rules,” Information Systems, vol.

29, no. 4, pp. 343-364, 2004.

[6] Fung B., Wang K., and Yu P., “Top-Down

Specialization for Information and Privacy

Preservation,” in Proceedings of International

Conference on Data Engineering, Tokoyo, pp.

205-216, 2005.

[7] Goryczka S., Xiong L., and Sunderam V.,

“Secure Multiparty Aggregation with

Differential Privacy: A Comparative Study,” in

Proceedings of the Joint EDBT/ICDT

Workshops, Genoa, pp. 155-163, 2013.

[8] Guo K. and Zhang Q., “Fast Clustering-Based

Anonymization Approaches with Time

Constraints for Data Streams,” Knowledge-

Based Systems, vol. 46, pp. 95-108, 2013.

Privacy-Preserving for Distributed Data Streams: Towards l-Diversity 63

[9] LeFevre K., DeWitt D., and Ramakrishnan R.,

“Incognito: Efficient Full-Domain k-Anonymity,”

in Proceedings of ACM SIGMOD International

Conference on Management of Data, Baltimore,

pp. 49-60, 2005.

[10] LeFevre K. DeWitt D., and Ramakrishnan R.,

“Mondrian Multidimensional Kanonymity,” in

Proceedings of IEEE 22nd International

Conference on Data Engineering, Atlanta, pp. 25,

2006.

[11] Li J., Ooi B., and Wang W., “Anonymizing

Streaming Data for Privacy Protection,” in

Proceedings of 24th International Conference on

Data Engineering, Cancun, pp. 1367-1369, 2008.

[12] Li N., Li T., and Venkatasubramanian S., “t-

Closeness: Privacy Beyond K-Anonymity and L-

Diversity,” in Proceedings of 23st IEEE

International Conference on Data Engineering,

Istanbul, pp. 106-115, 2007.

[13] Lichman M., UCI Machine Learning Repository,

http://archive.ics.uci.edu/ml, Last Visited, 2013.

[14] Machanavajjhala A., Kifer D., Gehrke J., and

Venkitasubramaniam M., “l-diversity: Privacy

Beyond K-Anonymity,” in Proceedings of 22nd

International Conference on Data Engineering,

Atlanta, pp. 24-35, 2006.

[15] Mohamed M., Nagi M., and Ghanem S., “A

Clustering Approach for Anonymizing

Distributed Data Streams,” in Proceedings of 11th

IEEE International Conference on Computer

Engineering and Systems, Cairo, pp. 9-16, 2016.

[16] Mohammadian E., Noferesti M., and Jalili R.,

“FAST: Fast Anonymization of Big Data

Streams,” in Proceedings of International

Conference on Big Data Science and

 Computing, Beijing, pp. 23-30, 2014.

[17] Sweeney L., “Achieving k-Anonymity Privacy

Protection Using Generalization and

Suppression,” International Journal of

Uncertainty, Fuzziness, Knowledge-Based

Systems, vol. 10, no. 5, pp. 571-588, 2002.

[18] Sweeney L., “K-anonymity: A Model for

Protecting Privacy,” International Journal on

Uncertainty, Fuzziness, and Knowledge-based

Systems, vol. 10, no. 5, pp. 557-570, 2002.

[19] Victor N., Lopez D., and Abawajy J., “Privacy

Models For Big Data: A Survey,” International

Journal on Big Data Intelligence, vol. 3, no. 1,

pp. 61-75, 2016.

[20] Wang W., Li J., Ai C., and Li Y., “Privacy

Protection on Sliding Window of Data Streams,”

in Proceedings of International Conference on

Collaborative Computing: Networking,

Applications and Worksharing, New York, pp.

213-221, 2007.

[21] Wang P., Lu J., Zhao L., and Yang J., “B-

CASTLE: An Efficient Publishing Algorithm for

K-Anonymizing Data Streams,” in Proceedings of

2nd WRI Global Congress on Intelligent Systems,

Wuhan, pp. 132-136, 2010.

[22] Yarlagadda A., Jonnalagedda M., and Munaga

K., “Clustering Based on Correlation Fractal

Dimension Over an Evolving Data Stream,” The

International Arab Journal of Information

Technology, vol. 15, no. 1, pp. 1-9, 2018.

[23] Zakerzadeh H. and Osborn S., “FAANST: Fast

Anonymizing Algorithm for Numerical

Streaming Data,” in Proceedings of Data

Privacy Management and Autonomous

Spontaneous Security, Athens, pp. 36-50, 2011.

[24] Zhang J., Yang J., Zhang J., and Yuan Y.,

“KIDS: K-Anonymization Data Stream Base on

Sliding Window,” in Proceedings of 2nd

International Conference on Future Computer

and Communication, Wuha, pp. 311-316, 2010.

[25] Zhou B., Han Y., Pei J., Jiang B., Tao Y., and Jia

Y., “Continuous Privacy Preserving Publishing

Of Data Streams,” in Proceedings of 12th

International Conference on Extending

Database Technology: Advances in Database

Technology, Saint Petersburg, pp. 648-659,

2009.

http://archive.ics.uci.edu/ml

64 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

 Mona Mohamed received her BSc

and MSc in Computer Science from

Faculty of Engineering in Alexandria

University, Egypt, in 2005 and 2011,

respectively. She is currently a PhD

candidate at the Faculty of

Engineering in Alexandria, Egypt.

Her main research interests are privacy, data mining

and distributed systems.

Sahar Ghanem received her BSc

and MSc in Computer Science from

Faculty of Engineering in Alexandria

University, Egypt, in 1994 and 1997,

respectively, and PhD in Computer

Science from Old Dominion

University in VA, USA, in 2004. She

is currently an Associate Professor at the Faculty of

Engineering in Alexandria, Egypt. Her main research

interests are computer networks, network security,

performance evaluation and data mining. She has

published about 20 scientific publications in

international journals and conference proceedings.

Magdy Nagi received his BSc from

the Faculty of Engineering

Alexandria University Egypt in 1963.

He received his PhD from Karlsruhe

University, Karlsruhe, Germany in

1975. He is currently a Professor at

the Faculty of Engineering

Alexandria University. His main

research interests are software engineering, DBMS,

data mining and grid computing. He has published

more than 35 scientific publications in international

journals and conference proceedings.

