
730 The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021

Spider Monkey Optimization Algorithm for Load

Balancing in Cloud Computing Environments

Sawsan Alshattnawi and Mohammad AL-Marie

Department of Computer Science, Yarmouk University, Jordan

Abstract: Scheduling of tasks is one of the main concerns in the Cloud Computing environment. The whole system

performance depends on the used scheduling algorithm. The scheduling objective is to distribute tasks between the Virtual

Machines and balance the load to prevent any virtual machine from being overloaded while other is underloaded. The problem

of scheduling is considered an NP-hard optimization problem. Therefore, many heuristics have been proposed to solve this

problem up to now. In this paper, we propose a new Spider Monkeys algorithm for load balancing called Spider Monkey

Optimization Inspired Load Balancing (SMO-LB) based on mimicking the foraging behavior of Spider Monkeys. It aims to

balance the load among virtual machines to increase the performance by reducing makespan and response time. Experimental

results show that our proposed method reduces tasks' average response time to 10.7 seconds compared to 24.6 and 30.8

seconds for Round Robin and Throttled methods respectively. Also, the makespan was reduced to 21.5 seconds compared to

35.5 and 53.0 seconds for Round Robin and Throttled methods respectively.

Keywords: Cloud computing, load balancing, metaheuristic optimization, spider monkeys optimization, tasks scheduling.

Received April 1, 2020; accepted January 6, 2021

https://doi.org/10.34028/iajit/18/5/13

1. Introduction

Cloud computing consists of a pool of IT resources

scattered over the entire world and available for paying

users through a pay-as-use model [10, 24]. The

increasing number of cloud customers has led to an

increased load over these resources. The tasks must be

allocated efficiently to ensure that there is no

overloaded machine while other is idle.

Load balancing was defined by Patil et al. [19] as

“load balancing allocates load (work) across multiple

devices intending to use maximum resources with the

highest efficiency and minimum response time along

with preventing single resource overload”. Therefore,

Load Balancing (LB) has to allocate resources to

achieve several critical measurements necessary to

obtain high performance such as resource utilization,

throughput, response time, and scalability.

LB is considered one of the NP-complete problems

in the Cloud Computing environment [9, 22]. Many

algorithms have been proposed to solve this problem.

These algorithms can be divided into static, dynamic,

and optimization-based algorithms [4, 23]. The static

algorithms work for small variations of workload and

don’t take into account changes in load during run-

time. The cloud computing environment is dynamic,

and it needs dynamic algorithms for efficient

scheduling and load balancing among Virtual

Machines (VMs) [1, 21]. The nature-inspired

algorithms are very efficient in solving dynamic real-

time problems that could be hard to solve by classic

methods. Therefore, Optimization methods in Artificial

intelligence have been used to enhance and optimize

load balancing concerning execution time.
Optimization-based algorithms are numerical

methods using mathematical optimization. They

adopted Metaheuristics that belong to the mathematical

optimization family. They are stochastic methods

based on a search model, attempting to find an optimal

global solution among a set of feasible solutions.

Swarm intelligence, mostly inspired by natural

biological systems that simulate the cooperative

behavior of an organized group of animals or insects,

as they struggle to survive [19].

In this paper, we propose a load balancing approach

inspired by the foraging behavior of spider monkeys

[5]. Spider monkeys follow a dynamic and cooperative

tactic for finding sufficient food sources for all

members of the swarm (group). The foraging behavior

of spider monkeys ensures that the process of

searching for food should be as fast as possible and all

members of the group should be fed. Thus, the Spider

Monkey Optimization (SMO) algorithm is applied to

optimize the load balancing problem in terms of

distributing users’ tasks among VMs to achieve the

minimum response time and makespan time.

To the best of our knowledge, this is the first work

that applies SMO in load balancing. Therefore, the key

contribution of this work is:

 Proposing a mathematical model of the foraging

behavior of Spider Monkey to be applicable for load

balancing in cloud computing environments.

https://doi.org/10.34028/iajit/18/5/13

Spider Monkey Optimization Algorithm for Load Balancing in Cloud Computing Environments 731

 Adopting a grouping strategy for both virtual

machines and users’ tasks to mimic the nature of

food sources VMs and the nature of biological

swarms.

 Testing and comparing the proposed method with

other algorithms.

1.1. Spider Monkey Optimization

SMO algorithm [5] is a swarm intelligence-inspired

algorithm based on the foraging behavior of spider

monkeys. Spider monkeys are social animals in which

live in groups and follow a particular living pattern in

terms of communication and foraging for food. A

group of spider monkeys always is led by a female

leader, foraging for food in which should be enough

for all group members. In case of insufficient food, the

leader splits the group into slighter sub-groups which

in turn foraging in different dimensions and regions to

increase the opportunity of finding food sources. The

leader of the whole group called the global leader

while leaders of subgroups called local leaders.

The optimization process of the spider monkey

algorithm is achieved throughout six phases:

1. Local leader phase: while a sub-group is foraging,

members changing their positions based on

information from the local leader and from group

members.

2. Global leader phase: members of all sub-groups are

changing their positions based on information from

the Global leader and the local leader of the sub-

group.

3. Global leader learning phase: the global leader

hadn’t changed his position by applying a greedy

selection on all members to find the nearest spider

monkey to a food source, and then his position will

be the position of the global leader.

4. Local leader learning phase: same as the previous

phase but within the domain of the sub-group.

5. Local leader decision phase: to avoid stagnation, if

the local leader hadn’t changed her position within a

prespecified time, then all sub-group members will

update their positions based on information from the

global leader and the local leader.

6. Global leader decision phase: also, if the global

leader didn’t update her position within a

prespecified time, then she divided the group into

two sub-groups in the first iteration and for three

sub-groups in the second iteration and so on until

the maximum number of allowed groups is reached.

If the swarm of spider monkeys has been split into

the maximum groups' number and the position of

the global leader hadn’t changed, then she combines

all sub-groups to form one group.

During foraging, spider monkeys follow a dynamic

approach for finding the best food sources with the

lowest possible time. Thus, SMO is an appropriate

algorithm to be applied for solving the load balancing

problem in cloud computing.

2. Literature Review

Many load balancing algorithms have been proposed.

These algorithms can be classified according to the

utilized approach as static, dynamic, and optimization-

based methods.

2.1. Static Methods

In these methods, task distribution is made at compile-

time; they don’t consider the current load of the

resources. Those methods do not need to monitor or

acquire information about the behavior of the system

[17]. One of the first simplest static algorithms is

Round Robin (RR) [18]. It depends on dividing time

into slices. It does not take into consideration the

changing demands for the resources and the node’s

state. Another algorithm is Throttled Load Balancing

Algorithm; it depends on a table for allocation and

deallocation of nodes [11]. It distributes the load

depending on the index inside the table based on a

requested service. The problem with this method is that

it fails to achieve the resource utilization criteria.

2.2. Dynamic Methods

In these Methods, the distribution of load depends on

the current information of the system, which is

changing over time. The distribution process happens

at runtime [17]. Shortest Job First (SJF) presented in

[15], aims to improve the scheduling efficiency of

jobs’ distribution, minimize the response time, and

increase virtual machines’ availability. It depends on

the allocation priority of services to nodes taking into

consideration the status of the current node. It gave

better results than RR.

2.3. Optimization-based Methods

In the field of computation, optimization techniques

could be mathematically based as Linear Programming

techniques or techniques based on Meta-heuristics such

as Ant colony and Bee colony optimization. Swarm

intelligence, mostly inspired by biological systems,

simulates the cooperative behavior of an organized

group of animals or insects, as they struggle to survive

[19]. Researches in different computational fields have

been simulated the behavior of bees, ants, fireflies, and

other creatures for solving different optimization

problems [2, 16, 20, 25].

A load-balancing method inspired by Honeybee

behavior was proposed in [12]. It focused on reducing

execution time and waiting time of tasks in the queue

taking into consideration tasks’ priorities. They found

significant improvement in makespan when compared

to Weighted Round Robin (WRR), First in First out

(FIFO), and dynamic load balancing. Some

732 The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021

modification is made over the bee colony algorithm to

enhance load balancing over VMs, to minimize

makespan and to decrease VM migration [25]. The

algorithm is modified by adding two concepts,

honeybees (overloaded VMs) and food sources (under

loaded VMs). Experiments showed better results than

the original bee colony algorithm.

The firefly algorithm is also used to maximize

resource utilization and for better load balancing in

cloud servers [8]. Two algorithms for dynamic load

balancing, Fuzzy Logic, and Particle Swarm

Optimization algorithm are combined [3] to reduce the

makespan. The proposed model was tested using

CloudSim and the results were compared with the

results of First Come First Serve (FCFS) and Particle

Swarm Optimization (PSO) methods.

A hybrid algorithm that combined three algorithms:

ant colony, particle swarm, and honeybee algorithm

presented in [29]. The proposed algorithm gave

superior results when compared to the results of the

artificial bee colony, ant colony optimization, and PSO

algorithms. It reduced the makespan and improved

resource utilization. The Scheduling Algorithm is a

popular meta-heuristic that is easy to implement as

indicated in [31], the authors solve this problem by

PSO because it is easy to trap into a locally optimal

solution. The work presented in [30] is more efficient

than other traditional algorithms in terms of energy-

saving and load-balancing. They use a new coalitional

game approach for optimizing the energy efficiency of

VM consolidation in heterogeneous cloud datacenters.

Partitioning the cloud into many parts with several

nodes and using the bee colony algorithm to optimize

the waiting time was the idea proposed in [7].

Simulation results proved that the Completion Time

(CT) of overall tasks was less than CT in Honey Bee

Behavior Inspired Load Balancing (HBB-LB), WRR,

and FCFS algorithms.

Sundararaj [28] combined the bee and ant colony

approaches to assign tasks to process in the cloud

computing for the mobile users. The proposed

approach deals with two-way mobile cloud computing

with offloading technique. This technique uses the Ant

Colony Optimization ACO algorithm to minimize the

overhead problems and the delay in the response time.

Mansouri et al. [14] proposed a hybrid task

scheduling approach by combining the modified

particle swarm optimization and fuzzy theory. This

algorithm used important issues for example speed of

CPU, and total execution time in the fuzzy system for

the calculation of the fitness.

Sreenu and Malempati [26] proposed a fractional

gray wolf optimization technique with modification on

the position of each task. This technique uses multi-

objective task scheduling. The algorithm addressed

multiple objectives such as the execution of time, cost,

consumption of energy, and resource utilization.

Su et al. [27] proposed cost-efficient task

scheduling that executed a large number of programs

on the cloud. The researchers applied this algorithm

through two heuristic approaches. This method

dynamically combined tasks and the virtual machine.

Also, the service providers of a cloud environment

may rent the cloud resources as payable services.

On mimicking the dynamicity in the foraging

behavior of spider monkeys in terms of the dynamic

combining and splitting of the group members until

feeding all of them. This mimicry is achieved through

the continuous grouping and splitting of tasks

according to the balance state of VMs (overloaded,

balanced, underloaded) until assigning every task in

the group to a VM. We develop our SMO-inspired

Load Balancing to solve dynamic load balancing

problems in cloud computing, Spider Monkeys (SMs)

maintaining a dynamic foraging behavior by avoiding

stagnation. Therefore, mimicking this smart behavior

in the cloud environment will lead to optimizing load

balancing in terms of dynamicity.

3. Spider Monkey Optimization Inspired

Load Balancing

Cloud computing environments are empowered by

Virtualization technology. Virtualization enables a

single processing machine (such as a Server) to be

turned into a network of virtual machines. The job of a

load balancer is mapping the flow of clients’ tasks into

those VMs and to keep VMs in a balanced state. This

could be achieved by reducing response time and

makespan. Response time is the interval of time taken

for a user request to be responded to, while makespan

is the interval of time that elapses from the start of

tasks processing to the end [12], it is called also

completion time.

Considering the problem of load balancing as the

problem of food foraging for spider monkeys, where

users' tasks are spider monkeys and they should forage

to find adequate food sources VMs. The general

concept of the adopted Spider Monkey Optimization

Inspired Load Balancing (SMO-LB) approach is based

on mimicking the dynamicity in the foraging behavior

of spider monkeys in terms of the dynamic combining

and splitting of the group members until feeding all of

them. This mimicry is achieved through the continuous

grouping and splitting of tasks according to the balance

state of VMs (overloaded, balanced, underloaded) until

assigning every task in the group to a VM.

We develop our Spider Monkey Optimization-

inspired Load Balancing to solve the dynamic load

balancing problem in cloud computing, SMs

maintaining a dynamic foraging behavior by avoiding

stagnation. Therefore, mimicking this smart behavior

in the cloud environment will lead to optimizing load

balancing in terms of dynamicity.

Spider Monkey Optimization Algorithm for Load Balancing in Cloud Computing Environments 733

To apply SMO in load balancing, we reconfigure

the cloud environment in terms of grouping

assumptions. The goal of our grouping assumption is

to mimic the nature of food sources VMs and the

nature of biological swarms. Thus, we follow a

grouping strategy for both VMs and Users’ Tasks

(UTs). On one hand, VMs are grouped based on their

processing capacity which depends on the allocated

resources Random Memory acces (RAM), processing

units, bandwidth) concerning the length of estimated

traffic flow. Each VMs group represents a region of

food sources with a direction to each food source VM.

On the other hand, the flow of tasks is grabbed through

groups, where each group represents a spider monkeys’

group. This grouping strategy paves for the load

balancer to reach an optimal balance state. Figure 1

shows the general framework of the SMO-LB.

Figure 1. SMO-LB general framework.

3.1. Mathematical Model for Load Balancing

The mathematical model encompasses all necessary

terms, formulas, and calculations for the SMO-LB

algorithm.

Set of Virtual Machines:
1 2{ , ,....., }mVM VM VMVM

Set of Users Tasks: 1 2 , , .. , tUT UT UT UT

Set of VM groups: 1 2 , , .. , mgVMG VMG VMG VMG

Set of UT groups: 1 2 , , .. , tgUTG UTG UTG UTG

Group of VMs:

1

 , .. , | :
mg

g i ig i g c
c

VMG VM VM VM VM where VMG VMG

Group of UTs:

1

 , .. , | :
tg

i iu i u c

c

UT UT UT UT where UTG UTG

 uUTG

Where, as stated earlier here, each VMGg is

corresponding to a region of multi food sources, while

each UTGu is corresponding to a group of foraging

spider monkeys.

Processing Capacity (PC) of VMj [1]:

PCj = Pnumj * Ppwrj + Cspdj

Where: Pnumj: number of processing elements on

VMj,

Ppwrj: millions instruction per second for all

processors allocated for VMj, and Cspdj:

communication bandwidth handling speed of VMj

Processing Capacity of VMG:

1

g

ig

VMG j

j

PC PC

Processing Capacity of the System:

m

Sys j

j=1

PC = PC∑

 Execution Time ET: ETij denotes the expected

execution time of UTi in VMj , which can be defined

as the load (length) of the task divided into machine

speed PC [13]

 i
ij

j

UT Length
ET

PC

UTi Length: is the length of a user task i in million

instruction

 Completion Time CT: CTj denote the expected time

for VMj for executing all assigned UTs

1

 .

n

j Curtime ij

i

CT S ET

Where S.curtime is the current time of the simulator or the

data center.

CTij denote the expected completion time of UTi on

VMj

 ij j ijCT CT ET

Completion Time of VMs group: the expected

execution time of all queued tasks to a particular VMs

group, VMGg

1

g

ig

VMG j

j

CT CT

 Makespan: denote overall completion time of a UT

[20]

Makespan = | , 1,2, ,
max

 , 1,2, ,

ijCT i UT i n and

j VM j m

 Response Time: the amount of time taken between

the submission of a service request and the first

response.

Response Time of UTi to be handled by VMj:

 ij ij t tRS CT arr delay

Where: arrt is the arrival time of the user request,

delayt is the transmission delay time.

 State of Current Load (CL): CL(VMj,t) denotes

workload of a VMj at a given time t

,

. *
 ,

 j

VM j j

VM t
j

Squeue length PT
CL at time t

PC

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

734 The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021

(16)

Where Squeue.lengthVMj: is the number of UTs in VMj

service queue at time t.

The workload of VMs group at a given time t

 , ,
1

g j

ig

VMG t VM t
j

CL CL

The workload of the whole system at a given time t

 ,
1

j

m

t VM t
j

CL CL

 Load Balance Measurement σt: denote the state of

the system’s workload CL compared with the

system’s PC at time t.

Figure 2. System workload.

To find this relationship, the systems performance

range is divided into quarters. Each quartile represents

a state of system performance. A Θ point is heading

each quarter to make a load balancing decision, Θ1,

Θ2, Θ3 indicating that the workload of the data center

is 25%, 50%, 75% respectively as shown in Figure 2.

For instance, if the total workload CL reached Θ3 then

activate the load balancer. Multiple Θ points are due to

achieving a more flexible load balancing decision

making. However, when the workload exceeding Θ4

then the load balancing is not possible since it becomes

broader than the system’s processing capacity.

 t Sys time tPC CL

Algorithm 1: Load Balancing Decision

1: if σS.curtime ≥ Θ4 then

2: Load Balancing is not possible

3: exit(1);

4: else:

5: when σS.curtime = Θ3 then:

 # Θ determined by system

administrator

6: activate Load Balancer

7: Continue;

 dirig: direction of UTi toward VMGg → task UTi is

at the service queue of VMj, where VMj ∈ VMGg

Direction Boundaries:

 min | , min | g ij j g ij j gMini Avg RS VM VMG CT VM VMG

 j VM , t1
 CL

ig

j
j

g
i

PC

Max
UT Length

The maximum boundary of dirig represents the

available processing capacity of VMGg to serving x of

UTs before getting overloaded, in other words, for

spider monkeys it represents the remaining quantity of

food in that food source after serving all successors

monkeys. While the minimum boundary of dirig

represents the minimum cost (distance and time) for a

spider monkey to be fed. Furthermore, minig boundary

represents the process of finding a serving VM within

the minimum possible response time and the minimum

possible completion time (makespan), which is the

goal of the SMO-LB method (reducing response time

and makespan).

So, a group of spider monkeys (UTG) should forage

for the nearest (Minig) and sufficient enough (Maxg)

region of food sources (VMG), that could be achieved

if and only if the members of the group (UTs) are

heading the best directions (dirig).

Based on the previous conclusion, a Spider Monkey

(SMi) value is the value of its current direction

optimality fitness. Also, spider monkeys should be in a

continuous and dynamic foraging process to find the

best possible directions and to prevent a food source

from being overloaded. That will be achieved through

the phases of the SMO algorithm (previously stated in

section 1.1).

 , , 0,1
ig igmini ig max miniSM i j g SM U SM SM

SM is a 3-dimensional vector where: i is the SM id, j is

the group that ith SM belongs to, g is SM’s current

dimension id, U(0,1) is a uniformly distributed random

number in the range [0,1].

 VMs Grouping Strategy: another contribution in this

research paper is our adopted VMs grouping

strategy, which is designed to paralyze VMs

concerning the estimated traffic. We assume that a

data center’s flow of traffic is varying during day’s

hours, to handle this assumption we divide day’s

hours into three intervals based on the intensity of

the working load. Interval 1 (working hours): 08:00

am – 04:00 pm, Interval 2 (evening hours): 04:00

pm – 12:00 am, and Interval 3 (night hours): 12:00

am – 08:00 am. We expect that the flow of UTs

varies decreasingly from Interval 1 to Interval 3.

However, this assumption was used to figure out the

best number of VMs groups for each Interval, in

which those groups work in parallel mode to serve

the traffic flow with minimum possible time.

Measuring estimated traffic during each Interval is

based on statistical information about the data center

traffic flow.

The statistical information is collected from the data

center and the estimated traffic during Interval i is

computed as follows:

 Estimated traffic during Interval i:

UT’s average length in the estimated traffic:

.

_ (_ _ _ sec)
length

TotalTraffic Length during Interval i
estUT

Service rate million instruction per ond

 The average number of UTs in the estimated traffic:

(11)

(12)

(13)

(14)

(15)

(17)

Spider Monkey Optimization Algorithm for Load Balancing in Cloud Computing Environments 735

.
.

 number

length

TotalTraffic Lengthduring Interval i
estUT

estUT

From Equations 17 and 18 we can estimate the

required processing capacity per second for serving

the estimated traffic:

.

. .

 *

Sys

per second

number length

PC
reqPC

estUT estUT

So, VMs are grouped in which the Processing Capacity

of each group should be equal to the reqPC.per second.

Algorithm 2: VMs Grouping

1: Collect statistical information form data center

2: for each Interval i DO:

3: Calculate estUT.number, estUT.length, reqPC.per second, __

 from equations 17,18 and 19

4: Maximum number of VMs groups:mg = PCSys/reqPC.per second

5: if mg≤ m then: # m is number of all VMs in the data

center

6: consider each VM as a VMGg

7: VMG.Int(i) ← set of VMs

8: mg=m;

9: exit(1);

10: else:

11: VMG.Int(i) ← group VMs into mg VMGs,__

 where, PCVMGig ≤ reqPC.per second

12: end for

13: if S.curtime is between 08:00 am and 04:00 pm then:

14: return(VMG.Int(1));

15: elseif S.curtime is between 04:00 pm and 12:00 am then:

16: return(VMG.Int(2));

17: else:

18: return(VMG.Int(3));

 UTs Grouping Strategy: when the load

balancingbegins, UTs in the frontend pool of a data

center will be grabbed in terms of groups, where

each UTs group represents a swarm of Spider

Monkeys. Our grouping strategy of UTs assumes

that the foraging territory contains enough food for

all swarm members. Technically speaking, the

remaining PC of the whole VMs should be enough

to serve the next group of UTs.

Algorithm 3: UTs Grouping

1: Available PC: AvalPC = PCSys - CLS.curtime

2: While (UTGtg.length ≤ AvalPC) Do:

3: Assign UTs to UTGtg

4: end while

5: return (UTGtg);

3.2. SMO-LB Algorithms

We propose the SMO-LB algorithm, its pseudo-code

as follow:

Algorithm 4: SMO - LB

1: # PREPROCESSING PHASE

2: VMG= VMs Grouping (Algorithm 2)

3: DIR: list of all directions to VMs

4: expand list of directions DIR;

5: # THE LOAD BALANCING PHASE

6: Call Load Balancing Decision (Algorithm 1)

7: Initialization:

8: UTGtg= UTs Grouping (Algorithm 3)

9: SMswarms: list of all SM swarms __

 #each swarm represents a group of UTs

10: SMS: swarm of SMs

11: SMG: group of SMs within SMS

12: MaxGr: maximum allowed number of SM groups per

swarm

13: GlobalLeaderLimit = GTs, __

 LocalLeaderLimit = LTs; # Thresholds

14: Initialize new swarm SMSc __

 where its population =sizeof (UTGtg)

15: for each UT in UTGtg Do:

16: assign SM use equations 14, 15 and 16

17: add SM to SMSc

18: end for

19: Combine all members of SMSc to form one group

SMG1

20: add SMSc to SMswarms

21: GlobalLearder of SMSc= LocalLeader of__

 SMG1 =min{SM │ for all SMs in SMG1}

22: for each swarm SMSc in SMswarms Do:

23: While (any SM in SMSc is not executed) Do:

24: generate new positions using Local Leader Phase

25: generate new positions using Global Leader Phase

26: update position of GlobalLeader using_

 Global Leader Learning Phase

27: update position of LocalLeader using__

 Local Leader Learning Phase

28: Call Local Leader Decision Phase

29: Call Global Leader Decision Phase

30: end While

31: end for

3.3. Complexity Analysis

The overall computational complexity of our approach

can be analyzed by examining the update/generate

positions, group, and migrate/assign operations. In

Algorithm 2, assuming that the number of VMs is m,

then the group operation's time complexity is O(m).

Similarly, in Algorithm 3 assuming that the number of

UTs is n, then the group operation’s time is O(n). To

Algorithm 4 (the main algorithm), the time complexity

of balancing the load of one SMS is composed of the

following: the main loop will be repeated until n UTs

SMs are executed, the time complexity for local leader

phase and local leader decision phase is the same

which is O(n×m), where for the global leader phase is

O(n). The time complexity for the other SMO phases is

not considered since they are composed of fewer not

repeated operations. Thus we can figure out that the

time complexity is O(n×(n×m + n + n×m)). Finally,

the whole time complexity is O(n+m+n2+2mn2).

4. Simulation Results and Evaluation

The performance of the SMO-LB algorithm has been

evaluated through simulation done using CloudSim

[6]. The version of the system is Intel Core i7 8th

Generation processor, 1.8 GHz CPU, and 16 GB RAM

running on Microsoft Windows 10 platform. Different

experiments were performed with different

autogenerated datasets and different parameter values.

(19)

(18)

736 The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021

The performance of the SMO-LB was assessed in

comparison to the existing methods in CloudSim that

are Round-Robin and Throttled methods. Different

configuration settings for different experiments are

utilized to assess the performance of the proposed

methods in balancing different tasks load concerning

the processing capacity of a cloud datacenter. Three

different factors have been taken into consideration

during the design of experiments that are: the number

of tasks, the number of VMs, and the length of

generated tasks. Accordingly, three different testing

scenarios are designed that are light load, medium

load, and heavy load scenario. Each scenario

encompasses 15 experiments that vary either in the

number of tasks or the number of VMs. But each

scenario has a different range of task length.

1. Light task scenario: the length of tasks is ranged

from 100 to 1000 instructions. Simulation results for

this scenario shown that there is a slight difference

in performance between the SMO-LB and Round-

Robin, while both are surpassing the throttled

method. Table 1 shows the average performance

results for all experiments conducted in this

scenario.

Table 1. Light task scenario simulation results.

Algorithm

Parameter
Throttled Round-Robin SMO-LB

Makespan (Sec) 40.02 12.36 8.01

Response Time (Sec) 21.56 7.81 3.28

2. Medium task scenario: the length of tasks is ranged

from 1000 to 2000 instructions. The results for this

scenario experiments show that the performance gap

between the SMO-LB method and other tested

methods starts to increase when the load becomes

heavier. Table 2 shows the average results

correspond to this scenario.

Table 2. Medium task scenario simulation results.

Algorithm

Parameter
Throttled Round-Robin SMO-LB

Makespan (Sec) 48.04 37.43 13.39

Response Time (Sec) 27.28 27.36 7.91

3. Heavy tasks: the length of tasks is long; it is ranged

from 2000 to 5000 instructions. This case is the

most general case that maybe happen in the real

cloud with high processing requirements. The

results proved that SMO-LB is very efficient

whenever the workload is getting larger. Table 3

presents the reduction of the SMO-LB method for

the average response times and makespan in

comparison to other tested methods.

Table 3. Heavy task scenario simulation results.

Algorithm

Parameter
Throttled Round-Robin SMO-LB

Makespan (Sec) 71.15 56.95 29.18

Response Time (Sec) 43.63 38.87 18.0

The SMO-LB method reduced the response times of

tasks and Makespan in comparison to the two other

methods. The average performance results for all

experimental scenarios, as illustrated in Figure 3,

exhibiting a significant reduction in response times by

24.7% and 30.8% compared with Round-Robin and

Throttled respectively to 10.7%. Furthermore, the

SMO-LB method reduced makespan by 35.5%, and

53.0% in comparison with Round-Robin and Throttled

respectively to 21.5%.

Figure 3. Overall average performance results.

We want to show that for a big number of tasks the

response time and the makespan will be improved and

better than other algorithms. It is proved also that

Spider Monkey performs better with large values of

swarms as indicated in [5].

Simulation results indicated that the SMO-LB

method is efficient in keeping VMs in a balanced state

for long processes, which is due to the continuous

grouping and splitting of spider monkeys (user tasks)

during the foraging behavior (VMs allocation).

5. Conclusions

In this paper, we have developed a load balancing

method SMO-LB for cloud computing environments

inspired by the foraging behavior of Spider Monkeys.

To make the Spider Monkey Optimization algorithm

applicable for finding the optimal load balance of tasks

via virtual machines, a mathematical model was also

developed for job mapping using the SMO-LB

algorithm over the cloud environment.

The developed method not only handling the issue

of load balancing but also takes into consideration the

capability and accessibility of the resource through the

proposed grouping strategies of tasks and virtual

machines. The SMO-LB was tested using the

CloudSim simulator with various testing scenarios and

evaluated in comparison with two other existing load

balancing methods, Round-Robin and Throttled.

Spider Monkey Optimization Algorithm for Load Balancing in Cloud Computing Environments 737

Results have shown that the SMO-LB method is a

competing method for approaching an optimal load

balance state in terms of reducing task response time

and makespan. Furthermore, results show that the

SMO-LB method becomes more efficient whenever

the load is getting heavier for available processing

resources, which is due to mimicking the fission and

fusion social system of spider monkeys. Future

directions for this study could be carried out through

an expanded investigation of performance

improvement of load balancing achieved by using the

SMO-LB method concerning other nature-inspired

methods’ improvements such as the Bee Colony or the

Firefly method.

References

[1] Abunaser A. and Alshattnawi S., “Mobile Cloud

Computing and other Mobile Technologies:

Survey,” Journal of Mobile Multimedia, vol. 8,

no. 4, pp. 241-252, 2013.

[2] AbuNaser A., Doush I., Mansour N., and

Alshattnawi S., “Underwater Image

Enhancement Using Particle Swarm

Optimization,” Journal of Intelligent Systems,

vol. 24, no. 1, pp. 99-115, 2015.

[3] Alla H., Alla S., Ezzati A., and Mouhsen A., “A

Novel Architecture With Dynamic Queues Based

on Fuzzy Logic and Particle Swarm Optimization

Algorithm for Task Scheduling in Cloud

Computing,” in Proceedings of International

Symposium on Ubiquitous Networking,

Casablanca, pp. 205-217, 2016.

[4] Balla H., Sheng C., and Weipeng J., “Reliability-

Aware: Task Scheduling in Cloud Computing

Using Multi-Agent Reinforcement Learning

Algorithm and Neural Fitted Q,” International

Arab Journal of Information Technology, vol. 18,

no. 1, pp. 36-47, 2021.

[5] Bansal J., Sharma H., Jadon S., and Clerc M.,

“Spider Monkey Optimization Algorithm for

Numerical Optimization,” Memetic Computing,

vol. 6, no. 1, pp. 31-47, 2014.

[6] Calheiros R., Ranjan R., De-Rose C., and Buyya

R., “Cloudsim: A Novel Framework for

Modeling and Simulation of Cloud Computing

Infrastructures and Services,” arXiv preprint

arXiv: 0903.2525, 2009.

[7] Ehsanimoghadam P. and Effatparvar M., “Load

Balancing based on Bee Colony Algorithm with

Partitioning of Public Clouds,” International

Journal of Advanced Computer Science and

Applications, vol. 9, no. 4, pp. 450-455, 2018.

[8] Florence A. and Shanthi V., “A Load Balancing

Model Using Firefly Algorithm in Cloud

Computing,” Journal of Computer Science, vol.

10, no. 7, pp. 1156-1165, 2014.

[9] Gopinath P. and Vasudevan S., “An In-Depth

Analysis and Study of Load Balancing

Techniques in The Cloud Computing

Environment,” Procedia Computer Science, vol.

50, pp. 427-432, 2015.

[10] Hung P., Alam M., Nguyen H., Quan T., and

Huh E., “A Dynamic Scheduling Method for

Collaborated Cloud with Thick Clients,” The

International Arab Journal of Information

Technology, vol. 16, no. 4, pp. 633-643, 2019.

[11] Kumar A. and Raj A., “A New Static Load

Balancing Algorithm in Cloud Computing,”

International Journal of Computer Applications,

vol. 132, no. 2, pp. 13-18, 2015.

[12] LD D. and Krishna P., “Honey Bee Behavior

Inspired Load Balancing of Tasks In Cloud

Computing Environments,” Applied Soft

Computing, vol. 13, no. 5, pp. 2292-2303, 2013.

[13] Mahmood A., Khan S., and Bahlool R., “Hard

Real-Time Task Scheduling in Cloud Computing

Using an Adaptive Genetic Algorithm,”

Computers, vol. 6, no. 2, pp. 15, 2017.

[14] Mansouri N., Zade B., and Javidi M., “Hybrid

Task Scheduling Strategy for Cloud Computing

by Modified Particle Swarm Optimization and

Fuzzy Theory,” Computers and Industrial

Engineering, vol. 130, pp. 597-633, 2019.

[15] Mondal R., Nandi E., and Sarddar D., “Load

Balancing Scheduling with Shortest Load First,”

International Journal of Grid and Distributed

Computing, vol. 8, no. 4, pp. 171-178, 2015.

[16] Naser A. and Alshattnawi S., “An Artificial bee

Colony (abc) Algorithm for Efficient Partitioning

of Social Networks,” International Journal of

Intelligent Information Technologies, vol. 10, no.

4, pp. 24-39, 2014.

[17] Oktian Y., Lee S., Lee H., and Lam J.,

“Distributed SDN Controller System: A Survey

on Design Choice,” Computer Networks, vol.

121, pp. 100-111, 2017

[18] Pasha N., Agarwal A., and Rastogi R., “Round

Robin Approach for VM Load Balancing

Algorithm in Cloud Computing Environment,”

International Journal of Advanced Research in

Computer Science and Software Engineering,

vol. 4, no. 5, pp. 34-39, 2014.

[19] Patil A., Gala H., and Kapoor J., “Dynamic Load

Balancing in Cloud Computing using Swarm

Intelligence Algorithms,” International Journal

of Computer Applications, vol. 130, no. 15, pp.

15-21, 2015.

[20] Patnaik S., Yang X., and Nakamatsu K., Nature-

Inspired Computing and Optimization,

Heidelberg: Springer, 2017.

[21] Rahman M., Hassan R., Ranjan R., and Buyya

R., “Adaptive Workflow Scheduling for

Dynamic Grid and Cloud Computing

Environment,” Concurrency and Computation:

738 The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021

Practice and Experience, vol. 25, no. 13, pp.

1816-1842, 2013.

[22] Singh A., Sahu S., Tiwari M., and Katare R.,

“Scheduling Algorithm with Load Balancing in

Cloud Computing,” International Journal of

Scientific Engineering and Research, vol. 2, no.

1, pp. 38-43, 2014.

[23] Shafi U., Shah M., Wahid A., Abbasi, K., Javaid

Q., Asghar M., and Haider M., “A Novel

Amended Dynamic Round Robin Scheduling

Algorithm for Timeshared Systems,” The

International Arab Journal of Information

Technology, vol. 17, no. 1, pp. 90-98, 2020.

[24] Shukla A., Kumar S., and Singh H., “Fault

Tolerance Based Load Balancing Approach for

Web Resources in Cloud Environment,” The

International Arab Journal of Information

Technology, vol. 17, no. 2, pp. 225-232, 2020.
[25] Snášel V., Abraham A., Krömer P., Pant M., and

Muda A., “Innovations in Bio-Inspired

Computing and Applications,” in Proceedings of

the 6th International Conference on Innovations

in Bio-Inspired Computing and Applications,

Kochi, pp. 16-18, 2015.

[26] Sreenu K. and Malempati S., “MFGMTS:

Epsilon Constraint-Based Modified Fractional

Grey Wolf Optimizer For Multi-Objective Task

Scheduling In Cloud Computing,” IETE Journal

of Research, vol. 65, no. 2, pp. 201-215, 2019.

[27] Su S., Li J., Huang Q., Huang X., Shuang K., and

Wang J., “Cost-Efficient Task Scheduling for

Executing Large Programs in the Cloud,”

Parallel Computing, vol. 39, no. 4-5, pp. 177-

188, 2013.

[28] Sundararaj V., “Optimal Task Assignment in

Mobile Cloud Computing by Queue Based Ant-

Bee Algorithm,” Wireless Personal

Communications, vol. 104, no. 1, pp. 173-197,

2019.

[29] Tawfeek M. and Elhady G., “Hybrid Algorithm

Based on Swarm Intelligence Techniques for

Dynamic Tasks Scheduling in Cloud

Computing,” International Journal of Intelligent

Systems and Applications, vol. 8, no. 11, pp. 61-

69, 2016.

[30] Xiao X., Zheng W., Xia Y., Sun X., Peng Q., and

Guo Y., “A Workload-Aware VM Consolidation

Method Based on Coalitional Game for Energy-

Saving in Cloud,” IEEE Access, vol. 7, pp.

80421-80430, 2019

[31] Yuan H., Bi J., Tan W., Zhou M., Li B., and Li

J., “Ttsa: An Effective Scheduling Approach for

Delay Bounded Tasks in Hybrid Clouds,” IEEE

Transactions on Cybernetics, vol. 47, no. 11, pp.

3658-3668, 2017.

Sawsan Alshattnawi is an

Associate Professor in the

Department of Computer Science at

Yarmouk University (Jordan) since

August 2015. She joined Yarmouk

University academic staff as an

assistant professor in 2009. She has

received her Ph.D. degree in Computer Science from

Henri Poincaré University -Nancy 1(France) in 2009,

she received her B.Sc and M.Sc. degrees in computer

science from Yarmouk University in 1994 and 2003,

respectively. Her research interests include Distributed

Systems, Cloud Computing, Mobile Computing,

Internet of things, security and data science. She has

been granted many research and capacity development

grants.

Mohammad Al-Marie is pursuing

his M.Sc. from Yarmouk University

in Artificial Intelligence. He received

his B.Sc. Degree in Computer

Science from Zarqa University in

2005. His interest includes

Optimization, Machine Learning,

Computer Vision, Fuzzy Logic, and Pattern

Recognition.

