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Abstract: Scheduling of tasks is one of the main concerns in the Cloud Computing environment. The whole system 

performance depends on the used scheduling algorithm. The scheduling objective is to distribute tasks between the Virtual 

Machines and balance the load to prevent any virtual machine from being overloaded while other is underloaded. The problem 

of scheduling is considered an NP-hard optimization problem. Therefore, many heuristics have been proposed to solve this 

problem up to now. In this paper, we propose a new Spider Monkeys algorithm for load balancing called Spider Monkey 

Optimization Inspired Load Balancing (SMO-LB) based on mimicking the foraging behavior of Spider Monkeys. It aims to 

balance the load among virtual machines to increase the performance by reducing makespan and response time. Experimental 

results show that our proposed method reduces tasks' average response time to 10.7 seconds compared to 24.6 and 30.8 

seconds for Round Robin and Throttled methods respectively. Also, the makespan was reduced to 21.5 seconds compared to 

35.5 and 53.0 seconds for Round Robin and Throttled methods respectively.  

Keywords: Cloud computing, load balancing, metaheuristic optimization, spider monkeys optimization, tasks scheduling. 

Received April 1, 2020; accepted January 6, 2021 

https://doi.org/10.34028/iajit/18/5/13 
 

1. Introduction 

Cloud computing consists of a pool of IT resources 

scattered over the entire world and available for paying 

users through a pay-as-use model [10, 24]. The 

increasing number of cloud customers has led to an 

increased load over these resources. The tasks must be 

allocated efficiently to ensure that there is no 

overloaded machine while other is idle. 

Load balancing was defined by Patil et al. [19] as 

“load balancing allocates load (work) across multiple 

devices intending to use maximum resources with the 

highest efficiency and minimum response time along 

with preventing single resource overload”. Therefore, 

Load Balancing (LB) has to allocate resources to 

achieve several critical measurements necessary to 

obtain high performance such as resource utilization, 

throughput, response time, and scalability. 

LB is considered one of the NP-complete problems 

in the Cloud Computing environment [9, 22]. Many 

algorithms have been proposed to solve this problem. 

These algorithms can be divided into static, dynamic, 

and optimization-based algorithms [4, 23]. The static 

algorithms work for small variations of workload and 

don’t take into account changes in load during run-

time. The cloud computing environment is dynamic, 

and it needs dynamic algorithms for efficient 

scheduling and load balancing among Virtual 

Machines (VMs) [1, 21]. The nature-inspired 

algorithms are very efficient in solving dynamic real-

time problems that could be hard to solve by classic 

methods. Therefore, Optimization methods in Artificial  

 
intelligence have been used to enhance and optimize 

load balancing concerning execution time.  
Optimization-based algorithms are numerical 

methods using mathematical optimization. They 

adopted Metaheuristics that belong to the mathematical 

optimization family. They are stochastic methods 

based on a search model, attempting to find an optimal 

global solution among a set of feasible solutions. 

Swarm intelligence, mostly inspired by natural 

biological systems that simulate the cooperative 

behavior of an organized group of animals or insects, 

as they struggle to survive [19].  

In this paper, we propose a load balancing approach 

inspired by the foraging behavior of spider monkeys 

[5]. Spider monkeys follow a dynamic and cooperative 

tactic for finding sufficient food sources for all 

members of the swarm (group). The foraging behavior 

of spider monkeys ensures that the process of 

searching for food should be as fast as possible and all 

members of the group should be fed. Thus, the Spider 

Monkey Optimization (SMO) algorithm is applied to 

optimize the load balancing problem in terms of 

distributing users’ tasks among VMs to achieve the 

minimum response time and makespan time. 

To the best of our knowledge, this is the first work 

that applies SMO in load balancing. Therefore, the key 

contribution of this work is: 

 Proposing a mathematical model of the foraging 

behavior of Spider Monkey to be applicable for load 

balancing in cloud computing environments.  

https://doi.org/10.34028/iajit/18/5/13


Spider Monkey Optimization Algorithm for Load Balancing in Cloud Computing Environments                                             731 

 Adopting a grouping strategy for both virtual 

machines and users’ tasks to mimic the nature of 

food sources VMs and the nature of biological 

swarms. 

 Testing and comparing the proposed method with 

other algorithms. 

1.1. Spider Monkey Optimization  

SMO algorithm [5] is a swarm intelligence-inspired 

algorithm based on the foraging behavior of spider 

monkeys. Spider monkeys are social animals in which 

live in groups and follow a particular living pattern in 

terms of communication and foraging for food. A 

group of spider monkeys always is led by a female 

leader, foraging for food in which should be enough 

for all group members. In case of insufficient food, the 

leader splits the group into slighter sub-groups which 

in turn foraging in different dimensions and regions to 

increase the opportunity of finding food sources. The 

leader of the whole group called the global leader 

while leaders of subgroups called local leaders. 

The optimization process of the spider monkey 

algorithm is achieved throughout six phases: 

1. Local leader phase: while a sub-group is foraging, 

members changing their positions based on 

information from the local leader and from group 

members. 

2. Global leader phase: members of all sub-groups are 

changing their positions based on information from 

the Global leader and the local leader of the sub-

group. 

3. Global leader learning phase: the global leader 

hadn’t changed his position by applying a greedy 

selection on all members to find the nearest spider 

monkey to a food source, and then his position will 

be the position of the global leader. 

4. Local leader learning phase: same as the previous 

phase but within the domain of the sub-group. 

5. Local leader decision phase: to avoid stagnation, if 

the local leader hadn’t changed her position within a 

prespecified time, then all sub-group members will 

update their positions based on information from the 

global leader and the local leader. 

6. Global leader decision phase: also, if the global 

leader didn’t update her position within a 

prespecified time, then she divided the group into 

two sub-groups in the first iteration and for three 

sub-groups in the second iteration and so on until 

the maximum number of allowed groups is reached. 

If the swarm of spider monkeys has been split into 

the maximum groups' number and the position of 

the global leader hadn’t changed, then she combines 

all sub-groups to form one group. 

During foraging, spider monkeys follow a dynamic 

approach for finding the best food sources with the 

lowest possible time. Thus, SMO is an appropriate 

algorithm to be applied for solving the load balancing 

problem in cloud computing. 

2. Literature Review 

Many load balancing algorithms have been proposed. 

These algorithms can be classified according to the 

utilized approach as static, dynamic, and optimization-

based methods. 

2.1. Static Methods  

In these methods, task distribution is made at compile-

time; they don’t consider the current load of the 

resources. Those methods do not need to monitor or 

acquire information about the behavior of the system 

[17]. One of the first simplest static algorithms is 

Round Robin (RR) [18]. It depends on dividing time 

into slices. It does not take into consideration the 

changing demands for the resources and the node’s 

state. Another algorithm is Throttled Load Balancing 

Algorithm; it depends on a table for allocation and 

deallocation of nodes [11]. It distributes the load 

depending on the index inside the table based on a 

requested service. The problem with this method is that 

it fails to achieve the resource utilization criteria. 

2.2. Dynamic Methods  

In these Methods, the distribution of load depends on 

the current information of the system, which is 

changing over time. The distribution process happens 

at runtime [17]. Shortest Job First (SJF) presented in 

[15], aims to improve the scheduling efficiency of 

jobs’ distribution, minimize the response time, and 

increase virtual machines’ availability. It depends on 

the allocation priority of services to nodes taking into 

consideration the status of the current node. It gave 

better results than RR. 

2.3. Optimization-based Methods  

In the field of computation, optimization techniques 

could be mathematically based as Linear Programming 

techniques or techniques based on Meta-heuristics such 

as Ant colony and Bee colony optimization. Swarm 

intelligence, mostly inspired by biological systems, 

simulates the cooperative behavior of an organized 

group of animals or insects, as they struggle to survive 

[19]. Researches in different computational fields have 

been simulated the behavior of bees, ants, fireflies, and 

other creatures for solving different optimization 

problems [2, 16, 20, 25]. 

A load-balancing method inspired by Honeybee 

behavior was proposed in [12]. It focused on reducing 

execution time and waiting time of tasks in the queue 

taking into consideration tasks’ priorities. They found 

significant improvement in makespan when compared 

to Weighted Round Robin (WRR), First in First out 

(FIFO), and dynamic load balancing. Some 
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modification is made over the bee colony algorithm to 

enhance load balancing over VMs, to minimize 

makespan and to decrease VM migration [25]. The 

algorithm is modified by adding two concepts, 

honeybees (overloaded VMs) and food sources (under 

loaded VMs). Experiments showed better results than 

the original bee colony algorithm. 

The firefly algorithm is also used to maximize 

resource utilization and for better load balancing in 

cloud servers [8]. Two algorithms for dynamic load 

balancing, Fuzzy Logic, and Particle Swarm 

Optimization algorithm are combined [3] to reduce the 

makespan. The proposed model was tested using 

CloudSim and the results were compared with the 

results of First Come First Serve (FCFS) and Particle 

Swarm Optimization (PSO) methods. 

A hybrid algorithm that combined three algorithms: 

ant colony, particle swarm, and honeybee algorithm 

presented in [29]. The proposed algorithm gave 

superior results when compared to the results of the 

artificial bee colony, ant colony optimization, and PSO 

algorithms. It reduced the makespan and improved 

resource utilization. The Scheduling Algorithm is a 

popular meta-heuristic that is easy to implement as 

indicated in [31], the authors solve this problem by 

PSO because it is easy to trap into a locally optimal 

solution. The work presented in [30] is more efficient 

than other traditional algorithms in terms of energy-

saving and load-balancing. They use a new coalitional 

game approach for optimizing the energy efficiency of 

VM consolidation in heterogeneous cloud datacenters. 

Partitioning the cloud into many parts with several 

nodes and using the bee colony algorithm to optimize 

the waiting time was the idea proposed in [7]. 

Simulation results proved that the Completion Time 

(CT) of overall tasks was less than CT in Honey Bee 

Behavior Inspired Load Balancing (HBB-LB), WRR, 

and FCFS algorithms. 

Sundararaj [28] combined the bee and ant colony 

approaches to assign tasks to process in the cloud 

computing for the mobile users. The proposed 

approach deals with two-way mobile cloud computing 

with offloading technique. This technique uses the Ant 

Colony Optimization ACO algorithm to minimize the 

overhead problems and the delay in the response time. 

Mansouri et al. [14] proposed a hybrid task 

scheduling approach by combining the modified 

particle swarm optimization and fuzzy theory. This 

algorithm used important issues for example speed of 

CPU, and total execution time in the fuzzy system for 

the calculation of the fitness. 

Sreenu and Malempati [26] proposed a fractional 

gray wolf optimization technique with modification on 

the position of each task. This technique uses multi-

objective task scheduling. The algorithm addressed 

multiple objectives such as the execution of time, cost, 

consumption of energy, and resource utilization. 

Su et al. [27] proposed cost-efficient task 

scheduling that executed a large number of programs 

on the cloud. The researchers applied this algorithm 

through two heuristic approaches. This method 

dynamically combined tasks and the virtual machine. 

Also, the service providers of a cloud environment 

may rent the cloud resources as payable services. 

On mimicking the dynamicity in the foraging 

behavior of spider monkeys in terms of the dynamic 

combining and splitting of the group members until 

feeding all of them. This mimicry is achieved through 

the continuous grouping and splitting of tasks 

according to the balance state of VMs (overloaded, 

balanced, underloaded) until assigning every task in 

the group to a VM. We develop our SMO-inspired 

Load Balancing to solve dynamic load balancing 

problems in cloud computing, Spider Monkeys (SMs) 

maintaining a dynamic foraging behavior by avoiding 

stagnation. Therefore, mimicking this smart behavior 

in the cloud environment will lead to optimizing load 

balancing in terms of dynamicity. 

3. Spider Monkey Optimization Inspired 

Load Balancing 

Cloud computing environments are empowered by 

Virtualization technology. Virtualization enables a 

single processing machine (such as a Server) to be 

turned into a network of virtual machines. The job of a 

load balancer is mapping the flow of clients’ tasks into 

those VMs and to keep VMs in a balanced state. This 

could be achieved by reducing response time and 

makespan. Response time is the interval of time taken 

for a user request to be responded to, while makespan 

is the interval of time that elapses from the start of 

tasks processing to the end [12], it is called also 

completion time. 

Considering the problem of load balancing as the 

problem of food foraging for spider monkeys, where 

users' tasks are spider monkeys and they should forage 

to find adequate food sources VMs. The general 

concept of the adopted Spider Monkey Optimization 

Inspired Load Balancing (SMO-LB) approach is based 

on mimicking the dynamicity in the foraging behavior 

of spider monkeys in terms of the dynamic combining 

and splitting of the group members until feeding all of 

them. This mimicry is achieved through the continuous 

grouping and splitting of tasks according to the balance 

state of VMs (overloaded, balanced, underloaded) until 

assigning every task in the group to a VM. 

We develop our Spider Monkey Optimization-

inspired Load Balancing to solve the dynamic load 

balancing problem in cloud computing, SMs 

maintaining a dynamic foraging behavior by avoiding 

stagnation. Therefore, mimicking this smart behavior 

in the cloud environment will lead to optimizing load 

balancing in terms of dynamicity. 
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To apply SMO in load balancing, we reconfigure 

the cloud environment in terms of grouping 

assumptions. The goal of our grouping assumption is 

to mimic the nature of food sources VMs and the 

nature of biological swarms. Thus, we follow a 

grouping strategy for both VMs and Users’ Tasks 

(UTs). On one hand, VMs are grouped based on their 

processing capacity which depends on the allocated 

resources Random Memory acces (RAM), processing 

units, bandwidth) concerning the length of estimated 

traffic flow. Each VMs group represents a region of 

food sources with a direction to each food source VM. 

On the other hand, the flow of tasks is grabbed through 

groups, where each group represents a spider monkeys’ 

group. This grouping strategy paves for the load 

balancer to reach an optimal balance state. Figure 1 

shows the general framework of the SMO-LB. 

 

Figure 1. SMO-LB general framework. 

3.1. Mathematical Model for Load Balancing  

The mathematical model encompasses all necessary 

terms, formulas, and calculations for the SMO-LB 

algorithm. 

Set of Virtual Machines: 
1 2{ , ,....., }mVM VM VMVM  

Set of Users Tasks:  1 2   ,   ,   .. ,    tUT UT UT UT  

Set of VM groups:  1 2   ,   ,   .. ,    mgVMG VMG VMG VMG   

Set of UT groups:  1 2   ,   ,   .. ,    tgUTG UTG UTG UTG   

Group of VMs: 

 
1

  ,    .. ,      |             :                     
mg

g i ig i g c
c

VMG VM VM VM VM where VMG VMG


   

Group of UTs:  

 
1

    ,    .. ,      |             :           
tg

i iu i u c

c

UT UT UT UT where UTG UTG


   uUTG

 
Where, as stated earlier here, each VMGg is 

corresponding to a region of multi food sources, while 

each UTGu is corresponding to a group of foraging 

spider monkeys.  

Processing Capacity (PC) of VMj [1]:  

PCj = Pnumj * Ppwrj + Cspdj  

Where: Pnumj: number of processing elements on 

VMj,  

Ppwrj: millions instruction per second for all 

processors allocated for VMj, and Cspdj: 

communication bandwidth handling speed of VMj 

Processing Capacity of VMG:  

   

1

         
g

ig

VMG j

j

PC PC



 
 

Processing Capacity of the System:  

m

Sys j

j=1

PC =      PC∑
  

 Execution Time ET: ETij denotes the expected 

execution time of UTi in VMj , which can be defined 

as the load (length) of the task divided into machine 

speed PC [13] 

 
 

  i
ij

j

UT Length
ET

PC
   

UTi Length: is the length of a user task i in million 

instruction 

 Completion Time CT: CTj denote the expected time 

for VMj for executing all assigned UTs 

 
1

    .    

n

j Curtime ij

i

CT S ET



   

Where S.curtime is the current time of the simulator or the 

data center. 

CTij denote the expected completion time of UTi on 

VMj 

     ij j ijCT CT ET    

Completion Time of VMs group: the expected 

execution time of all queued tasks to a particular VMs 

group, VMGg  

   

1

      
g

ig

VMG j

j

CT CT



   

 Makespan: denote overall completion time of a UT 

[20] 

Makespan =   |  ,   1,2, ,    
max 

     ,   1,2, ,

ijCT i UT i n and

j VM j m

    
 

    

 

 Response Time: the amount of time taken between 

the submission of a service request and the first 

response. 

Response Time of UTi to be handled by VMj:  

            ij ij t tRS CT arr delay     

Where: arrt is the arrival time of the user request, 

delayt is the transmission delay time.  

 State of Current Load (CL): CL(VMj,t) denotes 

workload of a VMj at a given time t 

   

 

,  

. *  
    ,      

 j

VM j j

VM t
j

Squeue length PT
CL at time t

PC
  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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(16) 

Where Squeue.lengthVMj: is the number of UTs in VMj 

service queue at time t. 

The workload of VMs group at a given time t 

     ,   ,   
1

       
g j

ig

VMG t VM t
j

CL CL



    

The workload of the whole system at a given time t  

 ,   
1

        
j

m

t VM t
j

CL CL



   

 Load Balance Measurement σt: denote the state of 

the system’s workload CL compared with the 

system’s PC at time t.  

 

Figure 2. System workload. 

To find this relationship, the systems performance 

range is divided into quarters. Each quartile represents 

a state of system performance. A Θ point is heading 

each quarter to make a load balancing decision, Θ1, 

Θ2, Θ3 indicating that the workload of the data center 

is 25%, 50%, 75% respectively as shown in Figure 2. 

For instance, if the total workload CL reached Θ3 then 

activate the load balancer. Multiple Θ points are due to 

achieving a more flexible load balancing decision 

making. However, when the workload exceeding Θ4 

then the load balancing is not possible since it becomes 

broader than the system’s processing capacity. 

    t Sys time tPC CL     

Algorithm 1: Load Balancing Decision 

1:  if  σS.curtime  ≥  Θ4  then 

2:          Load Balancing is not possible  

3:          exit(1); 

4:  else: 

5:          when σS.curtime = Θ3 then:  

                                  # Θ determined by system 

administrator 

6:                       activate Load Balancer  

7:                       Continue; 

 dirig: direction of UTi toward VMGg → task UTi is 

at the service queue of VMj, where VMj ∈ VMGg 

Direction Boundaries: 

        min  |          ,  min   |        g ij j g ij j gMini Avg RS VM VMG CT VM VMG      

 j  VM ,  t1
         CL

      
 

ig

j
j

g
i

PC

Max
UT Length



 
 

 



  

The maximum boundary of dirig represents the 

available processing capacity of VMGg to serving x of 

UTs before getting overloaded, in other words, for 

spider monkeys it represents the remaining quantity of 

food in that food source after serving all successors 

monkeys. While the minimum boundary of dirig 

represents the minimum cost (distance and time) for a 

spider monkey to be fed. Furthermore, minig boundary 

represents the process of finding a serving VM within 

the minimum possible response time and the minimum 

possible completion time (makespan), which is the 

goal of the SMO-LB method (reducing response time 

and makespan). 

So, a group of spider monkeys (UTG) should forage 

for the nearest (Minig) and sufficient enough (Maxg) 

region of food sources (VMG), that could be achieved 

if and only if the members of the group (UTs) are 

heading the best directions (dirig). 

Based on the previous conclusion, a Spider Monkey 

(SMi) value is the value of its current direction 

optimality fitness. Also, spider monkeys should be in a 

continuous and dynamic foraging process to find the 

best possible directions and to prevent a food source 

from being overloaded. That will be achieved through 

the phases of the SMO algorithm (previously stated in 

section 1.1).  

        ,   ,        0,1    
ig igmini ig max miniSM i j g SM U SM SM     

SM is a 3-dimensional vector where: i is the SM id, j is 

the group that ith SM belongs to, g is SM’s current 

dimension id, U(0,1) is a uniformly distributed random 

number in the range [0,1].  

 VMs Grouping Strategy: another contribution in this 

research paper is our adopted VMs grouping 

strategy, which is designed to paralyze VMs 

concerning the estimated traffic. We assume that a 

data center’s flow of traffic is varying during day’s 

hours, to handle this assumption we divide day’s 

hours into three intervals based on the intensity of 

the working load. Interval 1 (working hours): 08:00 

am – 04:00 pm, Interval 2 (evening hours): 04:00 

pm – 12:00 am, and Interval 3 (night hours): 12:00 

am – 08:00 am. We expect that the flow of UTs 

varies decreasingly from Interval 1 to Interval 3. 

However, this assumption was used to figure out the 

best number of VMs groups for each Interval, in 

which those groups work in parallel mode to serve 

the traffic flow with minimum possible time. 

Measuring estimated traffic during each Interval is 

based on statistical information about the data center 

traffic flow. 

The statistical information is collected from the data 

center and the estimated traffic during Interval i is 

computed as follows: 

 Estimated traffic during Interval i:  

UT’s average length in the estimated traffic: 

.

         
 

_ ( _ _ _ sec )
length

TotalTraffic Length during Interval i
estUT

Service rate million instruction per ond
  

 The average number of UTs in the estimated traffic: 

(11) 

(12) 

(13) 

(14) 

(15) 

(17) 
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.
.

         
 number

length

TotalTraffic Lengthduring Interval i
estUT

estUT


 

From Equations 17 and 18 we can estimate the 

required processing capacity per second for serving 

the estimated traffic:  

.  

. .

 
   *   

Sys

per second

number length

PC
reqPC

estUT estUT


  

So, VMs are grouped in which the Processing Capacity 

of each group should be equal to the reqPC.per second.  

Algorithm 2: VMs Grouping 

1: Collect statistical information form data center  

2: for each Interval i DO: 

3:     Calculate  estUT.number, estUT.length,  reqPC.per second, __ 

                                                  from equations 17,18 and 19 

4:     Maximum number of VMs groups:mg =  PCSys/reqPC.per second  

5:     if  mg≤ m then:    # m is number of all VMs in the data 

center 

6:                 consider  each VM as a VMGg 

7:                 VMG.Int(i) ← set of VMs    

8:                 mg=m; 

9:                 exit(1); 

10:    else: 

11:              VMG.Int(i)  ← group VMs into mg VMGs,__ 

                                            where, PCVMGig ≤  reqPC.per second 

12: end for  

13: if  S.curtime  is between 08:00 am and 04:00 pm   then:  

14:                    return(VMG.Int(1)); 

15:  elseif  S.curtime  is between 04:00 pm and 12:00 am   then: 

16:                    return(VMG.Int(2)); 

17:  else:  

18:                    return(VMG.Int(3)); 

 UTs Grouping Strategy: when the load 

balancingbegins, UTs in the frontend pool of a data 

center will be grabbed in terms of groups, where 

each UTs group represents a swarm of Spider 

Monkeys. Our grouping strategy of UTs assumes 

that the foraging territory contains enough food for 

all swarm members. Technically speaking, the 

remaining PC of the whole VMs should be enough 

to serve the next group of UTs. 

Algorithm 3: UTs Grouping 

1: Available PC:  AvalPC = PCSys - CLS.curtime 

2: While (UTGtg.length ≤ AvalPC) Do:  

3:           Assign UTs to UTGtg  

4: end while 

5: return (UTGtg); 

3.2. SMO-LB Algorithms 

We propose the SMO-LB algorithm, its pseudo-code 

as follow:  

Algorithm 4: SMO - LB 

1: # PREPROCESSING PHASE 

2:   VMG= VMs Grouping (Algorithm 2)  

3:   DIR:  list of all directions to VMs 

4:   expand list of directions DIR;  

5: # THE LOAD BALANCING PHASE  

6:  Call Load Balancing Decision (Algorithm 1) 

7: Initialization:  

8:  UTGtg= UTs Grouping (Algorithm 3) 

9:  SMswarms: list of all SM swarms __ 

                           #each swarm represents a group of UTs 

10:  SMS: swarm of SMs 

11:  SMG: group of SMs within SMS 

12:  MaxGr: maximum allowed number of SM groups per 

swarm 

13:  GlobalLeaderLimit = GTs, __ 

       LocalLeaderLimit = LTs;   # Thresholds 

14:  Initialize new swarm SMSc __ 

             where its population =sizeof (UTGtg) 

15: for each UT in UTGtg Do: 

16:    assign SM use equations 14, 15 and 16 

17:    add SM to SMSc 

18: end for  

19:   Combine all members of SMSc to form one group 

SMG1  

20:   add   SMSc to SMswarms  

21:   GlobalLearder of SMSc= LocalLeader of__ 

          SMG1 =min{SM │ for all SMs in SMG1} 

22: for each swarm SMSc in SMswarms Do: 

23:   While (any SM in SMSc is not executed) Do: 

24:      generate new positions using Local Leader Phase  

25:      generate new positions using Global Leader Phase  

26:      update position of GlobalLeader using_  

                                   Global Leader Learning Phase  

27:      update position of LocalLeader using__ 

                                     Local Leader Learning Phase  

28:      Call Local Leader Decision Phase  

29:      Call Global Leader Decision Phase  

30:   end While  

31: end for 

3.3. Complexity Analysis 

The overall computational complexity of our approach 

can be analyzed by examining the update/generate 

positions, group, and migrate/assign operations. In 

Algorithm 2, assuming that the number of VMs is m, 

then the group operation's time complexity is O(m).  

Similarly, in Algorithm 3 assuming that the number of 

UTs is n, then the group operation’s time is O(n). To 

Algorithm 4 (the main algorithm), the time complexity 

of balancing the load of one SMS is composed of the 

following: the main loop will be repeated until n UTs 

SMs are executed, the time complexity for local leader 

phase and local leader decision phase is the same 

which is O(n×m), where for the global leader phase is 

O(n). The time complexity for the other SMO phases is 

not considered since they are composed of fewer not 

repeated operations. Thus we can figure out that the 

time complexity is O(n×( n×m + n + n×m)). Finally, 

the whole time complexity is O(n+m+n2+2mn2). 

4. Simulation Results and Evaluation  

The performance of the SMO-LB algorithm has been 

evaluated through simulation done using CloudSim 

[6]. The version of the system is Intel Core i7 8th 

Generation processor, 1.8 GHz CPU, and 16 GB RAM 

running on Microsoft Windows 10 platform. Different 

experiments were performed with different 

autogenerated datasets and different parameter values. 

(19) 

(18) 
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The performance of the SMO-LB was assessed in 

comparison to the existing methods in CloudSim that 

are Round-Robin and Throttled methods. Different 

configuration settings for different experiments are 

utilized to assess the performance of the proposed 

methods in balancing different tasks load concerning 

the processing capacity of a cloud datacenter. Three 

different factors have been taken into consideration 

during the design of experiments that are: the number 

of tasks, the number of VMs, and the length of 

generated tasks. Accordingly, three different testing 

scenarios are designed that are light load, medium 

load, and heavy load scenario. Each scenario 

encompasses 15 experiments that vary either in the 

number of tasks or the number of VMs. But each 

scenario has a different range of task length.  

1. Light task scenario: the length of tasks is ranged 

from 100 to 1000 instructions. Simulation results for 

this scenario shown that there is a slight difference 

in performance between the SMO-LB and Round-

Robin, while both are surpassing the throttled 

method. Table 1 shows the average performance 

results for all experiments conducted in this 

scenario. 

Table 1. Light task scenario simulation results. 

Algorithm 

Parameter 
Throttled Round-Robin SMO-LB 

Makespan (Sec) 40.02 12.36 8.01 

Response Time (Sec) 21.56 7.81 3.28 

2. Medium task scenario: the length of tasks is ranged 

from 1000 to 2000 instructions. The results for this 

scenario experiments show that the performance gap 

between the SMO-LB method and other tested 

methods starts to increase when the load becomes 

heavier. Table 2 shows the average results 

correspond to this scenario.  

Table 2. Medium task scenario simulation results. 

Algorithm 

Parameter 
Throttled Round-Robin SMO-LB 

Makespan (Sec) 48.04 37.43 13.39 

Response Time (Sec) 27.28 27.36 7.91 

3. Heavy tasks: the length of tasks is long; it is ranged 

from 2000 to 5000 instructions. This case is the 

most general case that maybe happen in the real 

cloud with high processing requirements. The 

results proved that SMO-LB is very efficient 

whenever the workload is getting larger. Table 3 

presents the reduction of the SMO-LB method for 

the average response times and makespan in 

comparison to other tested methods. 

 

 

Table 3. Heavy task scenario simulation results. 

Algorithm 

Parameter 
Throttled Round-Robin SMO-LB 

Makespan (Sec) 71.15 56.95 29.18 

Response Time (Sec) 43.63 38.87 18.0 

The SMO-LB method reduced the response times of 

tasks and Makespan in comparison to the two other 

methods. The average performance results for all 

experimental scenarios, as illustrated in Figure 3, 

exhibiting a significant reduction in response times by 

24.7% and 30.8% compared with Round-Robin and 

Throttled respectively to 10.7%. Furthermore, the 

SMO-LB method reduced makespan by 35.5%, and 

53.0% in comparison with Round-Robin and Throttled 

respectively to 21.5%. 

 

Figure 3. Overall average performance results. 

We want to show that for a big number of tasks the 

response time and the makespan will be improved and 

better than other algorithms. It is proved also that 

Spider Monkey performs better with large values of 

swarms as indicated in [5]. 

Simulation results indicated that the SMO-LB 

method is efficient in keeping VMs in a balanced state 

for long processes, which is due to the continuous 

grouping and splitting of spider monkeys (user tasks) 

during the foraging behavior (VMs allocation).  

5. Conclusions  

In this paper, we have developed a load balancing 

method SMO-LB for cloud computing environments 

inspired by the foraging behavior of Spider Monkeys. 

To make the Spider Monkey Optimization algorithm 

applicable for finding the optimal load balance of tasks 

via virtual machines, a mathematical model was also 

developed for job mapping using the SMO-LB 

algorithm over the cloud environment.  

The developed method not only handling the issue 

of load balancing but also takes into consideration the 

capability and accessibility of the resource through the 

proposed grouping strategies of tasks and virtual 

machines. The SMO-LB was tested using the 

CloudSim simulator with various testing scenarios and 

evaluated in comparison with two other existing load 

balancing methods, Round-Robin and Throttled. 
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Results have shown that the SMO-LB method is a 

competing method for approaching an optimal load 

balance state in terms of reducing task response time 

and makespan. Furthermore, results show that the 

SMO-LB method becomes more efficient whenever 

the load is getting heavier for available processing 

resources, which is due to mimicking the fission and 

fusion social system of spider monkeys. Future 

directions for this study could be carried out through 

an expanded investigation of performance 

improvement of load balancing achieved by using the 

SMO-LB method concerning other nature-inspired 

methods’ improvements such as the Bee Colony or the 

Firefly method.  
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