
The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019 651

A Black-Box and Contract-Based Verification of

Model Transformations

Meriem Lahrouni1,2, Eric Cariou2, and Abdelaziz El Fazziki1

1Computer Science Department, University Cadi Ayyad, Morocco
2Computer Science Laboratory, University of Pau and Pays de l’Adour, France

Abstract: The main goal of Model-Driven Engineering (MDE) is to manipulate productive models to build software. In this

context, model transformation is a common way to automatically manipulate models. It is then required to ensure that

transformation has been correctly processed. In this paper, we propose a contract-based method to verify that a target model

is a valid result of a source model with respect to the transformation specification. The verification is made in a black-box

mode, independently of the implementation and the execution of the transformation. The method allows the contract to be

written in any constraint language. In association with this method, we have implemented a tool that partially generates

contracts written in OCL and manages their evaluation for both endogenous and exogenous transformations.

Keywords: MDE, model transformation, contract, verification.

Received October 26, 2015; accepted July 19, 2017

1. Introduction

The main goal of Model-Driven Engineering (MDE) is

to manipulate productive models to build software.

MDE-based software is being more and more prevalent

since it can be applied to all domains for different

purposes. For example, Nouzri and El-Fazziki [15]

proposed a methodology that could make the

development of complex information systems better

aligned, easier and less costly, and Tounsi et al. [19]

defined a MDE-based approach for the simulation of a

supply chain. In this context, models must be precisely

defined for being automatically manipulated by tools.

The most common manipulation of models is a model

transformation where a target model is generated based

on a source model1. Model transformations are

implemented through dedicated languages and, as for

any programming task, are subject to errors or

implementation bugs. For this reason, a lot of works

focus on verifying or validating model transformations.

For instance, Rahim and Whittle [17] have studied no

less than 57 model transformation verification

approaches. Verification is based on contracts, testing,

model-checking or theorem proving. Boehm [3]

defines verification as building the thing right and

validation as building the right thing. In other words,

verification consists in ensuring that a software artifact

respects its specification and validation assures that

this specification is the expected one.

1All the explanations of this paper are based on a single

source model and a single target model of a transformation.

However, the presented approach and the associated tool are

easily and directly generalizable to handle several source

and target models.

Programming and design by contract are well-

known lightweight verification approaches [1, 12, 13].

In [5, 6, 7], we have applied the principles of contracts

to the context of model transformation, defining in this

way model transformation contracts. Contracts aim at

ensuring that a target model (the model after the

transformation) is valid regarding a source model (the

model before the transformation).

In this paper, we extend our previous works on

contracts by proposing a framework and a tool2 for

implementing model transformation contracts. The tool

has been developed for Ecore metamodels and is using

by default Object Constraint Language (OCL) [16] for

the contract implementation. The verification is made

in a black-box mode and has been designed for being

open and independent. We ensure the following

properties:

 The verification is carried out independently of the

transformation execution and implementation.

 Both endogenous and exogenous transformations

can be verified. Endogenous transformations are

transformations between models expressed in the

same modeling language and exogenous

transformations are transformations between models

expressed in different languages.

 The evaluation of the contract is exploitable: in case

of problems, the model elements that do not respect

their part of the contract are clearly identified.

White-box verification is strongly linked with the

implementation or the execution of the transformation.

2The contract tool and implementation of examples

presented in this paper are available online:

http://web.univ-pau.fr/ecariou/iajit/

652 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

It cannot then be used for verifying manual

transformations. On the other side, black-box

verification offers a wider scope of verification for a

couple of models (source and target models of a

transformation). For instance, it can ensure that models

manually modified by the designer respect the

excepted constraints.

The rest of this paper is organized as follows. The

next section introduces the principles of model

transformation contracts and presents two

transformation examples to illustrate our approach.

Section 3 presents the framework of contract definition

ensuring the above properties and how models and

metamodels are handled in this context. Section 4

describes the mappings of elements between a source

and a target model. In our context, mappings define

how considering equivalent elements of different

models. They are required for expressing constraints

on the evolution of the elements through the

transformation. Finally, related work is discussed

before concluding.

2. Model Transformation Contracts

In this section, we first introduce the principles of

model transformation contracts and then, two examples

of model transformations and their associated contracts

are presented.

2.1. Definition of Model Transformation

Contracts

Programming and design by contract consist in

specifying what a software component, a program or a

model does, in order to know how to properly use it.

Design by contract also allows at runtime the

assessment of what has been computed with respect to

the expressed contracts. A contract is composed of two

kinds of constraints:

 Invariants that have to be respected by software

elements.

 Specification of operations on the software elements

through pre and post-conditions. A precondition

defines the state of a system to be respected before

its associated operation can be called in a safe

mode. Post-conditions establish the state of a system

to respect after calls. If a pre-condition is violated,

post-conditions are not ensured and the system can

be in an abnormal state.

In the MDE context, a metamodel is a structural

diagram defining the types of model elements and their

relationships. But this structural view is rarely

sufficient for expressing all relations among elements;

we need to complement it with well-formedness rules,

which are additional constraints expressed in a

dedicated language such as OCL. Contract invariants

can be typically rules or any supplementary

constraints. Operations specified through a contract

could be any kind of model manipulation and

modification, such as model transformations.

In [7], an approach for specifying contracts on

model transformation operations using OCL has been

proposed. These contracts describe expected model

transformation behavior. Formally, constraints on the

state of a source model are offered. Similar constraints

on the state of the target model are offered as well.

Post-conditions guarantee that a target model is a valid

result of a transformation with respect to a source

model. Pre-conditions ensure that a source model can

effectively be transformed. A couple of pre- and post-

conditions for specifying a transformation can also be

organized via three distinct sets of constraints:

 Constraints on the source model: constraints that a

model must respect for being able to be

transformed.

 Constraints on the target model: general constraints

(independent of the source model) to be respected

by a model for being a valid result of the

transformation.

 Constraints on element evolution: constraints on the

evolution of elements between the source and the

target models. They ensure that the target model is

the correct transformation result according to the

source model content.

2.2. Examples of Model Transformations

As an illustration, we describe two examples of

transformations and their associated contracts. The first

transformation is endogenous whereas the second is

exogenous. These transformations are based on a basic

class diagram metamodel and on a database metamodel

that are first described.

2.2.1. A Basic Class Diagram and a Database

Schema Metamodels

The basic class diagram metamodel is shown in Figure

1, left part. A class diagram consists of classes,

associations and data types (String Type, Integer Type

and Boolean Type). A class contains zero or more

attributes and can specialize other classes. An attribute

type is a data type. An association between classes is

defined by two ends. Each end has a lower bound, an

upper bound and is associated with one class.

The metamodel for the database schema models is

shown in Figure 1, right part. A relational schema

consists of tables and a set of types (IntType,

VarcharType and BoolType). A table consists of zero

or more columns, keys and foreign keys. Some of these

columns can be included in a key to indicate that the

column forms a part of the table’s key. Each foreign

key refers to the key of the table it identifies, and

indicates one or more columns in the table as being

part of the foreign key. Each column is typed.

A Black-Box and Contract-Based Verification of Model Transformations 653

These metamodels are augmented with OCL

invariants for expressing the well-formedness rules.

For instance for class diagrams, there is no cycle in the

specialization of classes and classes have a unique

name. Due to lack of space, they are not presented.

Figure1. Class diagram and database schema metamodels.

2.2.2. Removing Super-Classes

An example of endogenous transformation is a class

diagram refactoring. It consists in removing all the

inheritance links between classes. For that, it duplicates

the attributes of a super-class into its leaf sub-classes. In

the same way, associations coming from super-classes

are moved to their leaf sub-classes. Figure 2 gives an

example of such refactoring. One can notice that the

Person super-class has been removed and that all its

attributes have been duplicated in the Student and

Professor sub-classes. The association livesAt is also

duplicated for both subclasses.

Figure 2. Example of super-classes removing.

The contract associated with this transformation is

the following:

 Constraints on the source model: none, any class

diagram can be transformed.

 Constraints on the target model: no super-class for

any class.

 Constraints on element evolution from the source

model towards the target model: all classes without

sub-classes are maintained, others are removed. Each

remaining class has the same attribute (resp.

association) set augmented with the attributes (resp.

associations) of its super-classes.

2.2.3. From Classes to Database Tables

The exogenous transformation is the classic example

of translation of a class diagram to a relational

database schema: each class becomes a table with its

primary key, each attribute becomes a column of a

table and each association is transformed to foreign

keys in the associated tables. For instance, the class

Professor of Figure 2, right side, leads to a table

definition Professor (int professor_id, int address_fk,

int salary, varchar (40) name, varchar (40) email, int

phone) with professor_id the primary key of the table

and address_fk is a foreign key referencing the

Address table.

The contract associated with this transformation is

the following:

 Constraints on the source model: no super-class for

any class.

 Constraints on the target model: none.

 Constraints on element evolution from the source

model towards the target model: each source

element has its corresponding target element

according to the transformation correspondences

and keys are generated for tables.

3. Model and Metamodel Management

As stated in the introduction, we want a contract to be

implementable in any language. It can be based on a

common programming language or, in a more suitable

way, on a constraint language. The most common

MDE-related constraint language is OCL but there are

other ones such as EVL3. The problem is the

3Epsilon Validation Language:

654 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

expression of constraints on the element evolution

during the transformation. Indeed, it implies expressing

constraints simultaneously on elements of both source

and target models. If EVL can express constraints for

several models at the same time, this is not the case for

OCL. Therefore, in order to make our approach as open

as possible, we must rely on the most restricted context.

Concretely, OCL implies the evaluation of constraints

on a single model. As we need to express constraints on

two models, the solution is then to concatenate these

models into a single one. This later is made conforming

to a global metamodel (the result of concatenation of

source and target metamodels) that contains meta-

elements that allow the contract evaluation. The

concatenation is made automatically by the tool and

constitutes the key of our transformation verification

approach. Indeed, it gathers all source and target

elements in one global model that conforms to an

extended metamodel allowing thus the contract

evaluation, which will be explained in this section.

3.1. The Contract Evaluation Process

Figure 3 shows the process enabling the definition and

the evaluation of a contract, based on automatic

manipulations of models and metamodels. The first part

of the process consists in modifying the metamodel(s)

for processing the automatic concatenation of the

source and the target models into a global model. This

is achieved in different ways depending on the

endogenous or exogenous nature of the transformation.

A contract written in any language can then be

evaluated on the global model. We propose to integrate

the result of this evaluation directly in the global model

leading to a result model.

Figure 3. Contract definition and evaluation process.

In the context of OCL as the contract language, we

use a partially generated ATLAS Transformation

Language (ATL) transformation for evaluating the

contract. This transformation integrates the designer’s

constraints forming the contract and its mapping

3 Epsilon Validation Language:

https://www.eclipse.org/epsilon/doc/evl/

choices (enabling correspondences between the source

and the target model elements).

The rest of the section details the points of this

process, except the mappings which are defined in the

next section.

3.2. Metamodel and Model Management for

Endogenous Transformations

In the context of an endogenous transformation,

concatenating the source and the target models is

technically simple. However, we need to keep a trace

of the origin of each element in the global model. For

instance, when concatenating the two models shown

in Figure 2, the global model contains two classes

named “Student” and it is important to know which

one is coming from the source model and which one

from the target model. To achieve this, the contract

tool realizes an automatic extension of the metamodel

without modifying its original elements. A model

conforming to a metamodel will also directly conform

to its extended version. This extension adds into each

meta-class an attribute called "modelName" and used

for tagging each element of the global model with a

"source" or "target" value.

To generate the global model, the tool takes as

input source and target models as well as the extended

metamodel. It adds all elements of the source model

and all elements of the target model into a third global

model conforming to the extended metamodel. During

this step, each element is tagged with “source” or

“target” string value4, depending on the model it

belongs to. As output, our tool returns the global

model containing all elements of both source and

target models with indication of their origin.

3.3. Metamodel and Model Management for

Exogenous Transformation

In the context of an exogenous transformation, the

metamodel extension is not sufficient. The issue is

that the elements of the global model are conforming

either to the source metamodel or to the target

metamodel. As it is not possible for a model to

conform to two metamodels at the same time, the

solution is to create a metamodel to which all the

elements of either the source or the target model can

conform. This is achieved by concatenating all the

meta-elements of the source and the target metamodel

within a third global metamodel. This can however

lead to a problem if two meta-elements have the same

name in each metamodel. To avoid this problem, the

4In case of multiple source and multiple target models, it is

necessary to differentiate between source models in one

hand and target models in the other hand. Element are then

tagged with "source1", "source2"..., "target1", "target2"...

string values, depending on the order of the model they

belong to.

A Black-Box and Contract-Based Verification of Model Transformations 655

tool renames all the meta-elements with a prefix “S_”

or “T_” that indicates whether the meta-element comes

from the source or the target metamodel. For example,

if a transformation takes as source model a class

diagram, the global metamodel will contain

S_Association meta-element that is the renaming of

Association meta-element of the class diagram

metamodel.

In addition to the metamodel concatenation, the tool

extends also the obtained global metamodel in the same

way as for an endogenous transformation. When the

source and the target models are concatenated, their

elements are tagged and their instantiation links are

modified. For instance, if we consider the class diagram

of Figure 2, right part, as a source model of an

exogenous transformation, the instance of Class named

“Student” will become in the global model an instance

of S_Class named “Student” and tagged as model name

with the “source” string value.

3.4. Contract Implementation and Evaluation

The evaluation of the contract written in any language

can be processed once source and target models are

concatenated through our tool. In order to facilitate the

interpretation of the result of contract evaluation, we

propose to integrate it directly within the concatenated

model. For that, the metamodel extension defines a set

of meta-elements for expressing the result of the

contract evaluation: ContractError, ContractWarning

and ContractCorrect. Each one contains a comment and

references an element of the global model. This enables

to precisely specifying for each element, either from the

source or the target model, if it is respecting or not its

part of the contract. Details concerning the metamodel

extension and the added elements can be found in our

previous work [8].

Figure 4. ATL code generation for the meta-element Class.

Moreover, a transformation operation can take

parameters and the contract can integrate these

parameters in its definition. Elements of the global

model are referenced for specifying parameters (as

well as the return value of operations). These elements

are not necessarily elements of the source or the target

model, but they can be additional elements. In this

case, they have to be tagged with a string value

different from “source” or “target”.

Finally, the tool can generate a skeleton of contract

implementation with OCL as contract language. For

that, it generates an endogenous ATL5
 transformation.

This verification transformation takes as input the

global model and generates the result model that

contains the contract evaluation results. ATL is a

transformation language based on OCL. It can be used

to define and evaluate OCL constraints on models [2]

and then to define an OCL contract. For each meta-

element of the metamodel which conforms to the

global model, the tool generates an empty OCL helper

of Boolean type and a couple of transformation rules

(Figure 4). These rules fully duplicate the element

content, but in case of non-respect of the contract, an

error message that references the current element is

generated in addition. This generic comment can of

course be modified by the designer to express a more

accurate error message. The idea is that the OCL

helper, that returns a boolean, will contain the part of

the contract for this kind of meta-element.

All the three types of constraints can be directly

implemented within these helpers. For example, any

instance of Class from the target model must have an

empty set of super-classes, that is, does not have any

super-class. This constraint on the target models of the

class diagram refactoring is simply expressed as

shown in Figure 8 (line 7).

Figure 5. The contract evaluation.

Figure 5 shows two screenshots of the result model

in the two cases. The contract is evaluated as true in

the top part of the figure. After removing the attribute

salary from the target class Professor, the contract was

evaluated as false for the class Professor because it

does not contain all its previous attributes and for the

salary attribute because it has no equivalent in the

target model. This self-contained result model can

5http://www.eclipse.org/atl/

656 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

then directly be read by a tool aiming at presenting the

contract evaluation.

4. Mapping for Element Evolution

Specification

Constraints on elements of source and target models are

easy to implement as seen in the previous section.

However, constraints on the evolution of elements

between the source and the target models raise a

problem. With a standard operation specification with

pre and post-conditions, it is possible to reference in the

post-condition of a transformation operation both

elements of the source and of the target models, thanks

to the @pre construction in OCL. However, this

requires to verify the transformation only during its

execution and to implement the contract jointly with the

transformation. These requirements are incompatible

with our choice of black-box verification. They also

prevent the verification of target models that have been

manually modified by the designer.

Expressing the evolution between source and target

elements is based on mappings that allow finding, for

each element of the source-(resp. target) model, its

corresponding element in the target (resp. source)

model. Mapping functions are defined as relationships

between source and target elements and are

implemented through OCL helpers. Mappings can be

defined in endogenous and exogenous contexts. Our

tool helps the contract designer by generating the OCL

helpers based on his mapping choices.

4.1. Endogenous Mappings

Endogenous mappings and their implementation

through the first version of our contract tool have been

presented in [7]. The current implementation of the tool

has mainly enhanced the management of associations

between elements depending on the association

properties (unique, ordered, etc.). Below is an

introduction and example of endogenous mappings.

Figure 6. Screenshot of the contract tool in the context of

endogenous mappings selection.

Endogenous mappings aim at finding, within the

global model, an element from a model (source or

target) that has a corresponding element of the same

type in the other model. For instance, for verifying

that the Student class has after the transformation the

right set of attributes, it is required to first obtain the

Student class of the source model so that expected

attributes could be obtained. These two elements are

from the same type (the Class meta-element) but one

is tagged “source” and the other one “target”. In

addition, the designer needs to select, for each

required meta-element, the attributes and references

on the other related meta-element and their contents

that make sure, with equality of their values, that the

two elements are mapped. For classes, it simply

consists of comparing their names as they must be

unique but this is not as simple for other meta-

elements.

Figure 6 is a screenshot of our contract tool in the

context of endogenous mapping selection. The left

part lists all the meta-elements and the right part

allows the designer to make his mappings for each

meta-element. The figure shows the mappings

selected for the meta-element Attribute. The tool

displays, in the form of a tree, all features of the meta-

element with their types and cardinalities. The

designer can select mapping criteria for each meta-

element by simply checking some features. A selected

meta-element feature has to remain with the same

value both in source and target models. Criteria in the

example mean that two attributes are considered

equivalent if they have the same name and type and

belong to the same class. The same class and same

type are defined as comparing their respective names.

Figure 7. Mapping functions generated for the meta-element

attribute.

A Black-Box and Contract-Based Verification of Model Transformations 657

Figure 8. Excerpt of the contract invariant for the meta-element

Class and the class diagram refactoring.

Figure 7 presents the ATL code of the mapping

functions generated for the meta-element Attribute

based on the designer choice of Figure 6. The helpers

hasMappingOnOtherSide_Attribute (line 1) and

getMappedOnOtherSide_Attribute (line 9) aim at

looking for or getting the attribute of the other model

mapped with the current attribute. For that, the attribute

search is made depending on the modelName value and

based on the attribute mapping function. This helper is

defined at line 17 and checks the equality of the

attribute’s name and of the mapping of their owners and

types through the mapping helpers

mappingAttribute_owner and mappingAttribute_type

defined respectively at lines 22 and 25. They simply

compare the names of classes and types.

Figure 9. Mapping functions generated for the relationship Class-

Table.

Now, if we suppose that the designer has defined the

mappings between classes (hasMappingOnOther-

Side_Class/getMappedOnOtherSide_Class generated

helpers that simply compare the class names), the

contract invariant for classes can be completed as

shown in Figure 8. A class on the source side (line 2)

with sub-classes must be removed and then has no

mapping on the target side (line 3). Otherwise, it is kept

and then has a mapping (line 4). On the target side (line

6), a class has no super-class (line 7), must correspond

to an existing class on the source side (line 8) and

must have a consistent set of attributes and

associations based on its mapped class on the source

side (line 9). A target class must contain all its

previous attributes (resp. associations) in addition to

all the attributes (resp. associations) of its previous

super-classes (lines 13 to 16)-due to lack of space,

only the helper hasPreviousAttributes (line 18) is

presented. It checks whether each attribute of the class

passed as parameter has an equivalent attribute (with

same name and type) in the current class.

4.2. Exogenous Mappings

Exogenous mappings consist in expressing

correspondences between elements of different types

that belong to different models (source or target

models). Several tools exist for automatically

generating mappings between models or metamodels

based on the similarities of element contents [18]. Our

tool is currently using the AMW matching6 but could

be easily extended to work with other matching tools

or techniques. The tool takes an AMW weaving

model to generate the mapping functions in the case

of an exogenous model transformation. These

mapping functions are generated within the ATL

verification transformation that is used to evaluate the

contract. The AMW weaving model can be obtained

in several ways, either written by hand by the designer

or based on an automatically defined one. Indeed,

AMW generates automatically, by executing a series

of heuristic algorithms, a weaving model that contains

relationships between source and target metamodels.

Produced relationships can be manually modified in

order to get correct and consistent mappings.

For our exogenous example, a class of the class

diagram metamodel is transformed to a table of the

database metamodel with the same name. Figure 9

shows the generated mapping functions. Line 4,

hasMappingOnOtherSide_S_Class_T_Tabe helper

verifies that there is a target table mapping the source

class by checking that these two elements have the

same name through the mapping_S_Class_T_Table

mapping function (line 1). getMappedOnOther-

Side_S_Class_T_Table (line 7) returns this target

table.

4.3. Mappings as Part of the Contract

The main goal of the mappings is to be able to get a

corresponding element of a current one in order to

express constraints between them. However, simply

having or not having a mapping between source and

target elements can also be directly a part of the

contract. Indeed, in an endogenous case, no mapping

can mean that the element has been removed and

6Atlas Model Weaver (AMW):

http://www.eclipse.org/gmt/amw/

658 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

having an element of the same type with some identical

values is a constraint on the evolution of the element

content: some of its attributes and relations must not

change. For our example, mappings are used to express

that a class on the target side has its equivalent class in

the source model (i.e., it is not created from nowhere)

and that a source class with subclasses must not have a

corresponding class on the target side as it must be

removed by the transformation.

More generally, endogenous mappings can define

constraints on unmodification of elements during the

transformation. As a consequence, based on mapping

choices, our tool can generate automatically, still under

the form of an ATL verification transformation, an

unmodification contract ensuring that some parts of the

model are not modified during the transformation.

Depending on the transformations, such unmodification

verification of a part of a model can form an important

part of the complete contract.

In an exogenous context, constraining the target

element to have an equivalent source element of a

different type indicates that this source element has

been correctly transformed. For our exogenous

example, mappings will ensure that a class has a

corresponding table, an attribute has a corresponding

column, etc. For this transformation, mappings form the

major part of the contract.

5. Related Work

There are several surveys on the state of art of model

transformation verification [4, 17]. Contract approaches

are cited as one way of verifying model

transformations. Part of the interests of contracts is that

they can be used solely as a verification approach or as

an oracle in model transformation testing.

There are several contract-based approaches in the

context of model transformations. A lot of them have

also chosen OCL for implementing the contracts. For

example, authors in [10] define transformation contracts

for the properties that need to be checked and uses them

to check input test models automatically transformed

into output models. Van Gorp defines in OCL

transformation contracts for ensuring model consistency

[20]. Mottu et al. [14] propose to use model

transformation contracts written in OCL to specify a

transformation test oracle. Almost all of these

approaches are dedicated to particular software

environments and for specific purposes. For example in

[10], test models are checked using the USE tool [9],

after an automatic transformation into output models.

However, no method or tool is proposed, starting from

two models (obtained in an unspecified way), for

automatically defining a model in conformity with this

representation. The other difference is that most of

these approaches define mappings between elements of

the source and the target models in an ad hoc way and

sometimes only implicitly. For example, the designer

writes manually mapping functions for the considered

context. In contrast, we propose a general method and

a tool that explicitly define and generate mappings

between elements.

Guerra et al. [11] propose a model transformation

contract approach in a black-box mode as we do.

They go further by implementing a testing tool based

on their contracts. Contracts are defined using a visual

language making them easier to define than with a

textual constraint language such as OCL, thus

avoiding the necessity of model concatenation.

However, the restriction is that the contract must be

defined using their own language and verified by their

tool.

6. Conclusions

In this paper, we present a contract-based black-box

method to verify that a model transformation has been

correctly carried out (including manual

transformations), starting from a couple of models,

one being the source and the other the target of a

transformation. The approach has been designed to be

more independent of tools and languages, either from

the transformation implementation or the writing of

the contract. For this purpose, we have developed a

contract tool that processes manipulation and

modification of models and metamodels for

concatenating within a global model the source and

the target models of a transformation. Indeed, some

constraint languages, such as OCL, can only express

constraints on a single model. For expressing

constraints on the evolution of elements between the

source and the target models, these elements need to

be within the same model. We then show the need and

interest of mapping functions after criteria selection

by the designer. Mappings help in writing a contract

by defining equivalent elements between the source

and the target models within the global model.

Moreover, mappings are also part of the contract

definition. The contract tool generates in the context

of Ecore metamodels and OCL, an ATL

transformation embedding the generated mappings

and the contract defined by the designer. This

transformation adds within the global model the result

of the contract evaluation referencing precisely each

element causing problem. Compared to the first

version of the contract tool presented in [7], the tool

can now manage exogenous transformations and

generates this ATL evaluation transformation.

In the future, we plan to extend our tool to write

contracts in other constraint languages such as EVL or

to use other matching definition files in addition to

AMW. The tool has also to be repackaged for being

available as an Eclipse plugin. We also intend to use

contracts for other purposes than model

transformation. For example, we could use contracts

written in Temporal Object Constraint Language

A Black-Box and Contract-Based Verification of Model Transformations 659

(TOCL) [21] to specify constraints on the temporal

evolution of model execution that is considered as a

sequence of model transformations as explained in [8].

Contracts could also be applied to co-evolution in order

to verify the respect of constraints on the evolution of a

model following the evolution of its metamodel.

References

[1] Beugnard A., Jezequel J., Plouzeau N., and

Watkins D., “Making Components Contract

Aware,” IEEE Computer, vol. 32, no. 7, pp. 38-

45, 1999.

[2] Bézivin J. and Jouault F., “Using ATL for

Checking Models,” Electronic Notes in

Theoretical Computer Science, vol. 152, pp. 69-

81, 2006.

[3] Boehm B., “Verifying and Validating Software

Requirements and Design Specifications,” IEEE

Software, vol. 1, no. 1, pp. 75-88, 1984.

[4] Calegari D. and Szasz N., “Verification of Model

Transformations: A Survey of the State-of-the-

Art,” Electronic Notes in Theoretical Computer

Science, vol. 292, pp. 5-25, 2013.

[5] Cariou E., Marvie R., Seinturier L., and Duchien

L., “Model Transformation Contracts and their

Definition in UML and OCL,” Technology, vol. 8,

pp. 1-17, 2004.

[6] Cariou E., Marvie R., Seinturier L., and Duchien

L., “OCL for the Specification of Model

Transformation Contracts,” in Proceedings of

Workshop OCL and Model Driven Engineering,

Lisbon, 2004.

[7] Cariou E., Belloir N., Barbier F., and Djemam N.,

“OCL Contracts for the Verification of Model

Transformations,” Electronic Communications of

the EASST, vol. 24, 2010.

[8] Cariou E., Ballagny C., Feugas A., and Barbier F.,

“Contracts for Model Execution Verification,” in

Proceedings of European Conference on

Modelling Foundations and Applications,

Birmingham, pp. 3-18, 2011.

[9] Gogolla M., Büttner F., and Richters M., “USE: A

UML-based Specification Environment for

Validating UML and OCL,” Science of Computer

Programming, vol. 69, no. 1, pp. 27-34, 2007.

[10] Gogolla M. and Vallecillo A., “Tractable Model

Transformation Testing,” in Proceedings of

European Conference on Modelling Foundations

and Applications, Birmingham, pp. 221-235,

2011.

[11] Guerra E., Lara J., Wimmer M., Kappel G., Kusel

A., Retschitzegger W., Schönböck J., and

Schwinger W., “Automated Verification of Model

Transformations Based on Visual Contracts,”

Automated Software Engineering, vol. 20, no. 1,

pp. 5-46, 2013.

[12] Le Traon Y., Baudry B., and Jézéquel J.,

“Design by Contract to Improve Software

Vigilance,” IEEE Transactions on Software

Engineering, vol. 32, no. 8, pp. 571-586, 2006.

[13] Meyer B., “Applying Design by Contract,”

Computer, vol. 25, no. 10, pp. 40-51, 1992.

[14] Mottu J., Baudry B., and Le Traon Y.,

“Reusable MDA Components: A Testing-for-

Trust Approach,” in Proceedings of

International Conference on Model Driven

Engineering Languages and Systems, Genova,

pp. 589-603, 2006.

[15] Nouzri S. and El-Fazziki A., “A Mapping from

BPMN Model to JADEX Model,” The

International Arab Journal of Information

Technology, vol. 12, no. 1, pp. 77-85, 2015.

[16] OMG, “Object Constraint Language (OCL)

Specification, version 2.2,”

http://www.omg.org/spec/OCL/2.2/, Last

Visited, 2010.

[17] Rahim L. and Whittle J., “A Survey of

Approaches for Verifying Model

Transformations,” Software and System

Modeling, vol. 14, no. 2, pp. 1003-1028, 2013.

[18] Stephan M. and Cordy J., “A Survey of Methods

and Applications of Model Comparison,”

Technical Report, Queen’s University, 2011.

[19] Tounsi J., Boissière J., and Habchi G.,

“Multiagent Decision Making for SME Supply

Chain Simulation,” in Proceedings of 23rd

European Conference on Modeling and

Simulation, Madrid, pp. 203-211, 2009.

[20] Van Gorp P., “Model-Driven Development of

Model Transformations,” in Proceedings of

International Conference on Graph

Transformation, Leicester, pp. 517-519, 2008.

[21] Ziemann P. and Gogolla M., “OCL Extended

with Temporal Logic,” in Proceedings of

Conference on Perspectives of System

Informatics, Novosibirsk, pp. 351-357, 2003.

http://www.omg.org/spec/OCL/2.2/
https://link.springer.com/conference/gg
https://link.springer.com/conference/gg

660 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

Meriem Lahrouni is a member in the

research laboratory (Computer

System Engineering) of the Computer

Science Department at the Faculty of

Semlalia (Marrakech, Morocco) for

the preparation of her thesis; she

worked on the contract-based

verification of model transformations.

Eric Cariou is an associate professor

of computer science at the University

of Pau (France). His research interests

include software architecture, model-

driven engineering, contract-based

verification of transformations, model

execution, and software adaptation.

Cariou received a PhD in computer science from the

University of Rennes (France).

Abdelaziz El Fazziki is a Professor

of computer science at Marrakech

University, where he has been since

1985. He received an MS from the

University of Nancy (France) in

1985. He received his PhD in

computer science from the University

of Marrakech in 2002. His research

interests are in software engineering, focusing on

information system development.

