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Abstract: Nowadays, the emergence of computation-intensive applications brings benefits to individuals and the commercial 

organization. However, it still faces many challenges due to the limited processing capacity of the local computing resources. 

Besides, the local computing resources require a lot of finance and human forces. This problem, fortunately, has been made 

less severe, thanks to the recent adoption of Cloud Computing (CC) platform. CC enables offloading heavy processing tasks up 

to the "cloud", leaving only simple jobs to the user-end capacity-limited clients. Conversely, as CC is a pay-as-you-go model, it 

is necessary to find out an approach that guarantees the highly efficient execution time of cloud systems as well as the 

monetary cost for cloud resource use. Heretofore, a lot of research studies have been carried out, trying to eradicate problems, 

but they have still proved to be trivial. In this paper, we present a novel architecture, which is a collaboration of the computing 

resources on cloud provider side and the local computing resources (thick clients) on client side. In addition, the main factor 

of this framework is the dynamic genetic task scheduling to globally minimize the completion time in cloud service, while 

taking into account network condition and cloud cost paid by customers. Our simulation and comparison with other 

scheduling approaches show that the proposal produces a reasonable performance together with a noteworthy cost saving for 

cloud customers. 
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1. Introduction 

Despite recent technology advancements that 

manufacture a new generation of devices with 

generous resources, they can offer only limited 

processing capacity because of the complex properties 

e.g., large volume, high frequency and higher 

complexity, of business workflows. One of the ways to 

address these shortcomings is by applying Cloud 

Computing (CC) [22]. CC has recently become a rising 

paradigm in the information and communication 

technology industry, drawing a lot of attentions to 

professionals and researchers. It is an inevitable trend 

in the future computing development of technology 

[30].  The main idea is to move, or offload, heavy data 

processing and storage to powerful, centralized server 

computers resided in data centres, while leaving local 

devices with only little part, if not all, of the work. 

Hence, the efficient utilization of cloud resources for 

achieving high performance is one of the key factors 

for Cloud Service Customers (CSCs).  

Each large-scale workflow contains a set of tasks 

with varied volumes of workloads. Thus, the effective 

workflow processing time depends on delivering a 

good-quality schedule to map tasks of workflow onto 

multiple processing systems so that task-precedence 

requirements are satisfied and the overall completion  

time is minimized. Due to its importance on 

performance, the task scheduling problem in general 

have been extensively carried out and many heuristics 

approaches were introduced in the research literature in 

high performance computing. There are two main 

categories, namely stochastic optimization [11, 26] and 

heuristic-based approaches [6, 13]. The heuristic-based 

solutions are efficient but could not ensure the optimal 

performance [1] whereas stochastic optimization 

ensures the optimal solution with the cost of higher 

time complexity [30].  

Particularly, in the heterogeneous environments 

such as CC, it is difficult to produce a best solution 

without an exhaustive search since workflow 

scheduling problem is NP-Complete [22]. Most of 

previous attempts in task scheduling have focused on 

minimizing workflow completion time 

(makespan/schedule length) [12, 16, 17, 27, 29, 31] 

without considering the monetary cost paid by CSCs.  

Recently, some researchers have investigated to find 

the ways to improve this weakness by trying to reduce 

cost for the use of external resources such as Virtual 

Machines (VMs) rented from different cloud providers. 

A cost-effective method of cloud service provisioning 

with deadline constraint is presented in [4]. A budget 

conscious scheduling algorithms is proposed in [15, 

16, 19] to satisfy the strictly budget constraint. One of 
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the reasons is that, the CSCs have to be charged for 

using their rented resources to execute workflow. For 

example, Amazon EC2 [2] charges CSCs according to 

the number of virtual machines initialized by CSCs and 

how long they have been used. Among those 

scheduling methods, there are some that may produce a 

good performance but not efficient enough, because of 

big monetary cost for using external cloud resources 

being required. This prevents CSCs from fulfilling the 

increasing demands while processing the sophisticated 

applications.  Therefore, it is necessary to find an 

efficient task scheduling to balance the execution time 

and the cloud cost in order to positively affect the 

performance, Quality of Service (QoS) [3], and user 

satisfaction. 

To eradicate the shortcoming of above methods 

while keeping their benefits, in this paper, the main 

technical contribution is a novel genetic algorithm in 

order to globally optimize task scheduling to minimize 

the completion time of the dynamic processing system, 

allowing for tasks to arrive for processing 

continuously. Moreover, our proposal takes the 

network contention and charged monetary cost to 

CSCs into account since these two factors play 

important roles in satisfying user’s expectations [14]. 

Furthermore, we introduce a solution to exploit the 

collaboration between cloud network and the local 

computing resources, Thick Clients (TCs), residing on 

the system of CSCs, accordingly improve QoS and 

user experience. Traditionally TCs have been used for 

providing rich user interface functionalities and also 

for mobile users who would like to execute functions 

without connecting to the network or firewall [25]. In 

our architecture, thick clients are the traditional 

computer, such as personal computer or laptop, with 

powerful processing capacity and available to execute 

tasks that are dispatched to them as well as store an 

amount of user data for workflow execution if needed. 

Some latest generations of smartphones, though, can 

also be considered thick clients as they are resourceful 

enough, thanks to their multi-core CPU, large (built-in 

and extended) memory and especially the LTE 

connection. Additionally, there is a broker functioning 

as a centralized management node between thick 

clients and cloud resources.  

By evaluating our approach using extensive 

simulations, we have demonstrated its efficiency and 

effectiveness, compared with other existing scheduling 

techniques. The simulation result shows improved 

performance of the proposed approach, and especially 

presented a viable trade-off between workflow 

performance and cost-effectiveness.  

The organization of rest of the sections of this paper 

is as follows: The state-of-the-art methods related to 

this research are presented in section 2. System 

architecture is demonstrated in section 3. Section 4 

details the problem formulation.  The implementation 

details with performance evaluation are illustrated in 

section 5. Section 6 concludes the paper with future 

directions. 

2. Related Work 

A number of research proposals have been anticipated 

for efficient task scheduling in heterogeneous as well 

as homogeneous systems. Several graph template 

based task scheduling methods are presented in [4, 5, 

8, 29]. The obliviousness of network contention is the 

major shortcoming of those proposals. Although a 

network contention based method of task scheduling is 

presented in [24], but it ignores the monitory cost of 

Cloud Customers (CCs) in utilizing cloud resources. 

Despite of numerous research proposals, task 

scheduling still remains a challenging open problem in 

heterogeneous CC environment [13, 18]. Authors in 

[4] introduce a cost-efficient approach to select the 

most proper system (private or public cloud) to execute 

the workflow according to a deadline constraint as well 

as cost savings. Zeng et al. [31] propose budget 

conscious scheduling algorithms to satisfy strictly the 

budget constrain. Li et al. [13] proposed an algorithm 

of scheduling in to schedule applications of massive 

graph processing. The schedule length and cost are 

considered in that proposal. Su et al. [26] and Pawar 

and Wagh [20] present methods to minimize the 

schedule length or cost in dynamic cloud computing 

but not study global optimality. Jegede et al. [10] and 

Zhu et al. [32] demonstrate scheduling algorithms to 

solve the global problems however they do not study 

the monetary cost. Table 1 presents the overview of the 

state-of-the-art scheduling approaches including our 

proposed approach.   

Table 1. Current scheduling methods and ours. 

 Target System 

Minimum 

Completion 

Time 

Minimum 

Cost 

Global 

Optimality 
Dynamic 

Topcuoglu [28] Heterogeneous Yes No No No 

Gotoda et al. [9] Cloud Yes No No No 

Sinnen [24] Cloud Yes No No No 

Canon and 

Jeannot [5] 
Heterogeneous Yes No No No 

Sakellariou and 

Zhao [23] 

Public & private 

cloud 
Yes Yes No No 

Gopalakrishnan 

[8] 
Cloud Yes No Yes No 

Maguluri and 

Srikant [15] 

Multicore 

processor 
Yes No Yes No 

Srinivasan [25] Cloud Yes No Yes No 

Su et al. [26] Cloud Yes Yes No Yes 

Yu and 

Buyya[30] 
Cloud Yes Yes Yes No 

Pawar and 

Wagh [20] 
Cloud Yes No No Yes 

Our approach 
Thick clients & 

cloud 
Yes Yes Yes Yes 

According to the presented Table 1, the envisioned 

proposal should take into account all the three 

efficiency factors: 

1. Completion time. 

2.  Network contention. 
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3. Cost of cloud resources with the intervention of 

thick clients as well as the global optimality in a 

dynamic cloud environment. 

 This motivates us to provide a Genetic Algorithm 

(GA) based task scheduling for global optimality in 

dynamic cloud environment while taking account those 

factors.  

3. System Architecture 

The following section gives an insight of our system 

architecture to address issues discussed above:  

The proposed architecture as depicted in Figure 1, 

consists of two layers: 

1. Cloud Provider (CP) layer:  composed of pool of 

VMs. 

2.  Cloud Customer (CC) layer: resides the thick 

clients. In the CC layer, the thick client is 

considered as broker, which acts as a centralized 

node for management. 

The functions of broker in our proposal are as follows: 

1. It accepts users’ request of computation. 

2.  It manages processing resources (e.g., capacity, 

cost and bandwidth) and returning query data. 

3. It prepares the efficient and effective and optimal 

schedule in respect to input workflow. 

The broker uploads the data to CP layer through a 

single connection but VMs of CP layer send data 

towards the CC layer and then broker divides those 

data into non-uniform chunks. Afterwards, broker 

delivers those chunks to thick clients   through multi-

connection links [21]. 

 

Figure 1. Layering architecture of the proposal.  

We assume the following system requirements: 

 A high bandwidth link between cloud VMs and 

thick clients for low latency and faster data 

communication.  

 Among these P2P and thick clients, the 

communication library is shared. 

4. Problem Domain 

Task scheduling of complex systems having 

hierarchical topology is analogous to distribution of 

jobs or tasks of an application to a group of processors 

with heterogeneous processing capabilities for 

fulfilling the optimization goal of minimization of 

completion time. Therefore, a task graph and a process 

graph are feed as the inputs of task scheduling. The 

output is a schedule representing the assignment of 

tasks to processors. 

4.1. Problem Formulation 

Before problem formulation we state here the used 

terms in the problem formulation. Then a genetic 

algorithm based task scheduling method is presented 

elaborately. 

 Definition 1: A processor graph PG=(N,D) 

demonstrated in Figure 2 is a graph that represents 

the network topology between vertices 

(heterogeneous processors) that are Virtual 

Machines (VMs) on cloud servers and thick clients. 

In this graph, N is the finite set of vertices, and a 

directed edge dkl ∈ D means a directed link from 

vertex Pk to vertex Pl with Pk,Pl∈N. Each processor 

Pk controls the processing rate µk and bandwidth on 

the link connecting it to other processors. Due to the 

high stability of Local Area Network (LAN) 

compared with the Internet, the data transfer rate of 

internal communication among thick clients is 

always better than that of external communications 

between cloud VMs. 

 

 

 

 

 

Figure 2. A processor graph. 

 

 

 

 

 

Figure 3. A sample DAG. 

 Definition 2: A task graph, as shown in Figure 3, is 

denoted by a Directed Acyclic Graph (DAG) G =( 
V, E, W, C ) where the  vertices set V ={v1,v2,...,vk} 

presents the parallel operators (subtasks).  The edge 

eij=(vi,vj)∈E of the DAG symbolized as 
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communication link between the task vi and task vj. 

The communication time from task vi to task vj is 

denoted by C(eij), whereas  d(eij) represents the 

transferred data.  The weight W(vi, Pk) of  task vi is 

its computation time on processor Pk. It is supposed 

here that a task vi contains a set of preceding 

subtasks prec(vi) and a set of successive subtasks 

succ(vi). A task without any predecessors, 

prec(vi)=0, is an start-up task ventry, and a task that 

does not have any successors, succ(vi) =0, is an end 

task vend. The workload belongs to task vi is 

represented as l(vi,Pl), , which delimits amount of 

work (e.g the number of instructions) processed 

with certain computing resource Pl.  Let ts(vi,Pl) 

denote Start Time of task vi on processor Pl. Hence, 

the finish time of that task is given by tf(vi, Pl)= ts(vi, 

Pl)+ w(vi, Pl). 

Assume that the conditions mentioned below are 

satisfied:  

 Condition 1. Application made up of task v1, task v2 

…task vn,   the broker knows the sequencing of 

tasks, e.g. task v1 first, task v2 second. 

 Condition 2. When there are several different tasks 

are running, if new tasks need to be started anytime, 

the broker will check available processors and 

allocate the most appropriate processors to the tasks 

in order to result in a shortest completion time. 

 Condition 3. Some tasks of the task graph are 

already scheduled, we may reschedule them upon 

the arrival new task. 

 Condition 4. A task can start its execution after all 

of its parent tasks have already been executed. Each 

task appears only once in the schedule. 

 Condition 5. The ready time tready(vi,   ) is the time 

that processor Pl completes its last running assigned 

task and be ready to execute task vi. Therefore, 

, ( ),

( , )

max{ ( , ), max ( ( , ) ( ))}
zi z i

ready i l

kl

f y l f z k i
e E v prec v k N

t v P

t v P t v P c e
  




 

Where vy is a task being executed at processor and 

prec(vi) is a set of preceding tasks of vi.      is the 

communication time of connection between processors 

and It can be defined as: 

1
( ) if 
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0 .

zikl
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Here dozi is volume of outgoing data transferred from 

Pk to Pl. 

 Condition 6. Let [tA,tB]∈[0,∞] be an idle time 

interval on processor Pl in which no task is 

executed. A free task vi ∈ V can be scheduled on 

processor Pl within [tA,tB] if 

max{ , ( , )} ( , ) .A ready i l i l Bt t v P w v P t   

 

4.2. GA Task Scheduling 

Given a task graph G = (V, E, W, C) and a processor 

graph PG=(N,D), our approach uses a genetic 

algorithm to produce the most appropriate scheduled 

list of tasks. Among the numerous random techniques, 

GAs are the most broadly used for the task scheduling 

problem [10]. Table 2 demonstrates that GA, 

motivated by the natural evolution, is a strong search 

procedure allowing a global high-quality result to be 

derived from a huge search space in polynomial time. 

Meanwhile, most of other algorithms discovery only 

local optimal effects. GA combines the best solutions 

from past searches with exploration of new regions of 

the solution space. In this algorithm, a feasible 

solution, represented an individual (chromosomes), 

containing a set of processor-task assignments (genes 

in chromosomes). 

Table 2. Genetic algorithm. 

Step Action 

1 Generate a random initial population of individuals. 

2 Evaluate the fitness of each individual in the initial population if 
they satisfy their constraints 

3 If yes, return output results. 

If no, generate new populations using procedures in steps 4-6 

4 Selects two random individuals among the current population  

5 Crossover the two selected individuals considering the crossover 

probability, to produce the individuals for 
the next generation 

6 Mutate the one of the selected individuals at each defined mutation 

point, considering the mutation probability and place it in the new 

population 

7 Evaluate the fitness of each of the individuals in the new 

population 

8 Repeat steps 3-7 until the stopping criteria have been met. 

A fitness function is used to measure the quality of 

each individual in the population. A higher fitness 

level shows a fitter individual, which has a greater rate 

to reproduce for a new generation. A new generation 

has the same number of individuals as the previous 

generation, which dies off once it is replaced with the 

new generation. By spreading on genetic operators, 

namely selection, crossover and mutation to a 

population, quality of individuals can be improved. If 

well designed, these new individuals will converge to 

an optimal solution. The genetic algorithm is described 

in detail in the following section: 

 Producing the Initial Population: The initial 

population contains individuals produced through a 

random heuristic. Each individual (as shown in 

Figure 4) is a set of tasks and corresponding 

assigned processors. The time frames of each task in 

each individual, such as Earliest Start Time, Earliest 

Finish Time, and so on, can be modified to amend 

those of its successive tasks.  These modifications 

can generate to an actual multifaceted state during 

genetic operators. Thus, our way is to disregard the 

time frame through genetic manipulation and allot a 

time slot to each assignment so as to achieve a 

reasonable schedule well ahead. 

lP

( )kl

ic e

(1) 

(2) 

(3) 
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Figure 4. An individual. 

 Constructing a Fitness Function: Based on fitness 

value, a fitness function can be used to represent the 

quality of each individual in a population. The 

fitness function has to depend on Earliest Finish 

Time (EFT) and cloud costs paid by CCs because 

our method tries to minimize the completion time 

while considering the network contention and cloud 

cost. The following section exemplifies formation of 

EFT and the cost of task vi on a processor from its 

Earliest Start Time (EST) as well as the element 

costs. 

EST of a task vi executed on a processors Pl can be 

calculated as follows: 
  

            

 

Suppose that pil is probability of task vi processed at 

processor Pl, then the overall task arrival rate at 

processor Pl can be calculated as:  

Thus, computation time to execute task vi on 

processor Pl is defined as:  

 

 

 

Consequently, EFT of the task vi is designed as:  
     

 

Additionally, the algorithm also takes into account the 

cloud cost for using cloud resources to finish the tasks. 

The cost C (vi,Pl) to execute task vi  at VM Pl or local 

thick client Pl  is defined by: 

 

 
 

   

In Equation (7), each cost is calculated as follows: 

Processing cost is expressed as: 
    

 

Where c1 is the processing cost per time unit of 

workflow execution on processor Pl. 

Let tassign be the time point when task vi is assigned 

to processor Pl. c2 be the queuing cost per time unit of 

the task vi until it can be executed. Then the queuing 

cost is as: 
                                              

 

  Assume that the amount of money per time unit for 

transferring outgoing data from processor Pk  to Pl is c3, 

then the communication cost is defined as follows: 
                                                   

                    

 

We presume that the distribution of disconnection 

events between a cloud and clients is a Poisson 

distribution with parameter µT, which represents the 

stability of the network. The expected number of 

arrivals over an interval of length τ is E[NT]= µT*τ . Let 

L be a random variable for the length of an offline 

event, µL be the mean length and c4 be the 

disconnection cost per unit time. Therefore, the 

expected duration of a disconnection event, which can 

affect the completion time of task vi, is µT*τ*µL. 

Hence, the cost of disconnection can be derived as: 
            

 

Let c5 be the storage cost per data unit and sti be the 

storage size of task vi on processor Pl. Then we can 

present the storage cost of task vi on processor Pl as: 
 

 

In addition, the memory cost of processor Pl for task vi 

is computed as follows: 

 
 

Where smem is the size of the memory used and c6 is the 

memory cost per data unit. 

Lastly, a fitness function that calculates the tradeoff 

U can be formulated as a convex combination of EFT 

and monetary cost for each individual of the population 

where task vi ϵ E running on processor PI ϵ N as 

follows: 
 

 

 

 

 

 

Where      a is a cost-conscious factor that represents a 

user’s preference for the completion time and the 

monetary cost. 

By considering the above fitness function that 

combines cost (vi, Pl) and EFT(vi, Pl), we can 

determine which individual in a population is the most 

appropriate to satisfy the function. This indicates that 

its combination of cost(vi, Pl) and EFT(vi, Pl)  should 

demonstrate the minimum value of the tradeoff U. 

 Genetic Operators 

 Selection: An individual with highest fitness value 

is chosen from the population.  Here, the fitness 

value of an individual is determined through trade-

off values utility function U. Probability of selection 

is higher for those individuals which have lower 

trade-off utility value and vice versa. However, the 

fittest individual propagates its strength to the 

evolve generations strongly. Conversely, sub-

optimal solution may returns because of the biasness 

of selection operators with overly strong fitness. 
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 Crossover: Crossover is used to generate new 

offspring from two randomly selected individuals in 

the current population in order to result in an even 

better individual in the subsequent generation. 

Usually, the selected two individuals (called 

parents) with strong fitness produce fittest offspring. 

Crossover can be single-point, multi-point or 

uniform. The crossover rate usually in the range 

between 0.6 to1. As shown in Figures 5, 6, and 7, 

crossover operators used is determined through the 

following procedure: 

 Single or multiple points are randomly chosen from 

selected parents.   

 Each of the selected points divides the parent in left 

and right segments.  

 Through crossover, the segments are swapped 

between the selected feasible two parents. 

 Therefore, two new offspring are generated by 

recombining swapped segments. 

 

 

 

 

 

 

 

 Figure 5. Single-point crossover. 

The single-point crossover is shown in Figure 5. 

The crossover point is determined randomly. 

Afterwards, swapping is performed. Therefore, the tail 

of the first parent is added as the tail of the second 

parent and the tail of the second parent is added as the 

tail of the first parent. In the meantime, in a multi-point 

(e.g., two points) crossover operator, two positions in 

the individuals are determined randomly as shown in 

Figure 6. The benefit of multi-point crossover is to 

avoid the inherent problem of single-point crossover, 

wherein the segment at the head and the segment at the 

tail of a certain individual are always split when 

recombined. 
 

 

 

 

 

 

 

Figure 6. Multi-point crossover. 

The uniform crossover is shown in Figure 7. Firstly, 

a mask of individuals is generated with random binary 

values. Afterwards, crossover is performed between 

the individuals only at the non-zero bit positions of the 

mask. The density or sparsity of uniform crossover is 

maintained through the masking bits. 

 
 

 

 

 

 

 

 

 
 

Figure 7. Uniform crossover. 

 Mutation: Mutation is the self–replicating process in 

genetic algorithm. Therefore, offspring’s are 

reproduced through the single parent. It is a way of 

exploring diversity of individuals for better 

generations. In algorithmic aspect, mutation resists 

local optima which may be caused by the crossover 

operation. However, the rate of mutation in a 

particular individual is little (approximately 0.001).  

The mutation can be replacing or swapping. 

 

 

 
 

Figure 8. Replacing mutation. 

 

 

 

 
 

Figure 9. Swapping mutation. 

The replacing mutation is shown in Figure 8. In 

replacing mutation, other than task swapping, the 

assigned processor is replaced with new processor. 

Therefore, the task is reallocated to a new processor. 

The processor replaced is chosen randomly (e.g., task 

v4 is previously assigned to P4 but after applying 

replacing mutation task v4 is reallocated to processor 

P2). On the other hand, in the case of swapping 

mutation as Figure 9 shows, the initial position of task 

v4 on processor P4 in parent individual is occupied by 

the task v6 on processor P2 and vice versa. A task is 

selected at random from a processor and if it is smaller 

than a task in the most heavily loaded processor, a 

swap is implemented. 

Due to evaluate the performance of the proposal, we 

have compared our genetic algorithm based scheduling 

with state-of-the-art task scheduling algorithms. These 

minimize the total completion time of the workflow or 

reduce the cloud’s task processing cost. Algorithm 1 is 

Greedy approach for cost reduction, which allocates 

tasks to processors following greedy principal that 

minimizes cloud cost. In algorithm 2, network 

contention aware task scheduling [24] is presented. 

And a dynamic Time aware Genetic method [26] has a 

fitness function based on only EFT. In the meantime, 

algorithm 4 shows that our approach, a dynamic Cost-

Time aware Genetic method, stands on both network 

contention and cloud cost. Therefore, it can justify the 
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tradeoff of cloud cost and completion time. Moreover, 

it also ensures a global optimal scheduled list of tasks. 

Algorithm 1: Greedy approach for cost reduction  

Input: Task graph G, processor graph PG  

Output    : Scheduled list of tasks  

Function greedyForCostScheduling(G, PG)  

1. Sort task vn in the descending order by its priority; 

2. for each vn ∈V do 

3.    Find the most appropriate processor Pl that minimizes the 

cost for accomplishing the task vn ; 

4.   Assign vn to Pl; 

5. end 

6. return scheduled list of tasks; 

Algorithm 2: Contention aware task scheduling 

Input: Task graph G, processor graph PG  

Output    : Scheduled list of tasks 

Function networkCostScheduling (G, PG)  

1. Sort task vn in the descending order by its priority; 

2. for each vn ∈V do 

3.    Find the most appropriate processor Pl  that allows EFT of 

vn, considering network bandwidth usage; 

4.   Assign vn to Pl; 

5. end 

6. return scheduled list of tasks; 

Algorithm 3. Dynamic Cost-Time aware Genetic  

Input    : Task graph G, processor graph PG  

Output    : Scheduled list of tasks  

Function DCTGScheduling (G, PG)  

1. Generate random population and determine the population 

size as p_size; 

2. Evaluate the fitness for each individual based on the fitness 

function (14) 

3. repeat //create a new population 

4.         for p_size do  

5.          From current generation, select two parents; 

6.           // better fitness has a bigger chance to be selected  

7.           Recombine parents for two offspring //with 

operators; 

8.           Evaluate fitness of offspring; 

9.           Insert offspring into new generation 

10.       end 

11. until population has converged 

5. Implementation and Analysis 

5.1. Experimental Settings 

A number of different experiments have been 

performed to evaluate the efficiency of our approach 

with varying communication cost and upcoming tasks: 

the Dynamic Cost-Time aware Genetic algorithm 

(DCTaG), and compare its performance with the 

existing ones: Contention aware Task Scheduling 

(CaTS) [8] just taking account of network contention, 

Greedy approach for Cost Reduction (RCR) 

concerning the monetary cost, and a dynamic Time 

aware Genetic method DTaG [26] having a fitness 

function based on only EFT. 

Task graphs are created with number of tasks in the 

graph ranging from 10 to 90. The individual size is in 

range from 20 to 50. The task graphs are scheduled on 

a multiprocessor system a combination between 22 

heterogeneous VMs with the different configurations 

and 8 thick clients located at the local system of CCs 

for the above algorithms as shown in Table 2. The 

parameters for genetic algorithm chosen are population 

size of 30, crossover rate of 0.7 and the mutation rate 

of 0.001, number of generations of 60. The metrics 

used for comparison are the completion time and 

monetary cost. We assume the communication network 

is fully connected. Each communication link has its 

own randomly generated cost. And simulation settings 

are developed in Java with JDK-7u7-i586 and 

Netbeans-7.2 using CloudSim [7]. CloudSim is a 

framework for modeling and simulation of cloud 

computing infrastructures and services. In our 

simulation, we use Millions of Instructions (MI) and 

Million Instructions per Second (MIPS) to represent 

the processing capacity of processors. 

Table 2. Features of the simulated system. 

Parameter Value 

Topology model LAN, fully connected 

Operating system Windows 10 professional 

Number of processors [4, 32] 

Number of tasks [10, 100] 

Processing rate [15, 800] 

Bandwidth [20, 100, 512, 1024] Mbps 

Cost per a time unit executed on processor Pl [0.2, 0.6] 

Cost per outgoing data unit from processor Pl [0.1, 0.5] 

Cost of waiting time [0.2, 0.5] 

Cost of a disconnection time [0,03, 0.3] 

5.2. Experimental Results 

In the following figures, we present the experimental 

results to demonstrate that our method, DCTaG, can be 

more efficiency in term of schedule length and cloud 

cost.  Figures 10 and 11 shows that although GCR 

obtains the worst result regarding the completion time, 

it provides the highest cost saving for CCs. In contrast, 

CaTS delivers the best performance but maximum 

cost.  In the meantime, our solution conduces to the 

benefits of balance between acceptable completion 

time for workflow and the corresponding cost for 

utilizing cloud resources. In particular, compared with 

CaTS, our method can save nearly 23% cost for CCs 

and it is 22% faster than GCR. 

 

 

 

 

 

 

 

 

 

 
 

Figure 10. Schedule length comparison. 

 



640                                                             The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019 

 

 

 

 

 

 

 

 

 

 

Figure 11. Cost comparison. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Schedule length with numbers of processors. 

The evaluation of the effect on varying number of 

processors on the cloud cost and the schedule length 

only in DCTaG with a stable number of tasks is aslo 

made and given in Figures 12 and 13, respectively. It is 

clear to see that there is a great improvement in the 

speed obtained through DCTaG. This improvement 

rises as the number of processors increases. However, 

the cost is higher. It is conspicuous to see that the 

monetary cost increases from 272500 G$ to 297500 G$ 

as the number of processors goes up from 15 to 20. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Cost with numbers of processors. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Schedule length with numbers of individuals. 

Figures 14 and 15 show the case where the number 

of individuals is changed from 30 to 90. We observer 

that the increasing of the population size does not 

meaningfully have emotional impact in the cloud cost 

of the schedule but probability of producing a better 

performance is greater. The cost just varies from 50000 

to 55000 G$. Conversely, completion time displays a 

descending movement between 74 minutes and 45 

minutes. 

 

 

 

 

 

 

 

 

 

 

Figure 15. Cost with numbers of individuals. 

As a final point, we measure the performance of the 

DCTaG when the number of generations changes. 

Similar to the above simulation regarding the amount 

of individuals, results from the Figures 16 and 17 show 

that the completion time of the schedule is decreased 

with the slightly reduction of the execution cost when 

the number of the generations rises. This is for the 

reason that each individual selected has to reflect the 

tradeoff of completion time and cloud cost. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Schedule length with numbers of generations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Cost with numbers of generations. 
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6. Conclusions 

This paper proposes a co-operation of local thick 

clients and cloud resources in cloud platform to take 

advantage of the total computing power from both 

internal and external infrastructure. Furthermore, we 

presented a novel genetic method to expand the 

dynamic task scheduling in order to achieve desired 

completion time while balancing the system 

performance and cloud service cost. Moreover, we 

conducted simulations to evaluate our approach and 

compare with other methods.  The experimental results 

demonstrate that the proposed scheduling approach can 

bring a better performance whilst spending less 

monetary cost.  In future, we will enhance our 

scheduling method in numerous circumstances such as 

energy consumption to achieve higher trustworthiness 

and effectiveness with maximum agreement. 
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