
The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019 633

A Dynamic Scheduling Method for Collaborated

Cloud with Thick Clients

Pham Phuoc Hung1, Golam Alam2, Nguyen Hai3, Quan Tho3, and Eui-Nam Huh4

1Department of Computer Science, Kent State University, USA
2Department of Computer Science and Engineering, BRAC University, Bangladesh

3Ho Chi Minh City University of Technology, Vietnam National University, Vietnam
4Department of Computer Engineering, Kyung Hee University, Korea

Abstract: Nowadays, the emergence of computation-intensive applications brings benefits to individuals and the commercial

organization. However, it still faces many challenges due to the limited processing capacity of the local computing resources.

Besides, the local computing resources require a lot of finance and human forces. This problem, fortunately, has been made

less severe, thanks to the recent adoption of Cloud Computing (CC) platform. CC enables offloading heavy processing tasks up

to the "cloud", leaving only simple jobs to the user-end capacity-limited clients. Conversely, as CC is a pay-as-you-go model, it

is necessary to find out an approach that guarantees the highly efficient execution time of cloud systems as well as the

monetary cost for cloud resource use. Heretofore, a lot of research studies have been carried out, trying to eradicate problems,

but they have still proved to be trivial. In this paper, we present a novel architecture, which is a collaboration of the computing

resources on cloud provider side and the local computing resources (thick clients) on client side. In addition, the main factor

of this framework is the dynamic genetic task scheduling to globally minimize the completion time in cloud service, while

taking into account network condition and cloud cost paid by customers. Our simulation and comparison with other

scheduling approaches show that the proposal produces a reasonable performance together with a noteworthy cost saving for

cloud customers.

Keywords: Genetic, cloud computing, task scheduling, thick client, distributed system.

Received September 10, 2014; accepted January 20, 2016

1. Introduction

Despite recent technology advancements that

manufacture a new generation of devices with

generous resources, they can offer only limited

processing capacity because of the complex properties

e.g., large volume, high frequency and higher

complexity, of business workflows. One of the ways to

address these shortcomings is by applying Cloud

Computing (CC) [22]. CC has recently become a rising

paradigm in the information and communication

technology industry, drawing a lot of attentions to

professionals and researchers. It is an inevitable trend

in the future computing development of technology

[30]. The main idea is to move, or offload, heavy data

processing and storage to powerful, centralized server

computers resided in data centres, while leaving local

devices with only little part, if not all, of the work.

Hence, the efficient utilization of cloud resources for

achieving high performance is one of the key factors

for Cloud Service Customers (CSCs).

Each large-scale workflow contains a set of tasks

with varied volumes of workloads. Thus, the effective

workflow processing time depends on delivering a

good-quality schedule to map tasks of workflow onto

multiple processing systems so that task-precedence

requirements are satisfied and the overall completion

time is minimized. Due to its importance on

performance, the task scheduling problem in general

have been extensively carried out and many heuristics

approaches were introduced in the research literature in

high performance computing. There are two main

categories, namely stochastic optimization [11, 26] and

heuristic-based approaches [6, 13]. The heuristic-based

solutions are efficient but could not ensure the optimal

performance [1] whereas stochastic optimization

ensures the optimal solution with the cost of higher

time complexity [30].

Particularly, in the heterogeneous environments

such as CC, it is difficult to produce a best solution

without an exhaustive search since workflow

scheduling problem is NP-Complete [22]. Most of

previous attempts in task scheduling have focused on

minimizing workflow completion time

(makespan/schedule length) [12, 16, 17, 27, 29, 31]

without considering the monetary cost paid by CSCs.

Recently, some researchers have investigated to find

the ways to improve this weakness by trying to reduce

cost for the use of external resources such as Virtual

Machines (VMs) rented from different cloud providers.

A cost-effective method of cloud service provisioning

with deadline constraint is presented in [4]. A budget

conscious scheduling algorithms is proposed in [15,

16, 19] to satisfy the strictly budget constraint. One of

634 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

the reasons is that, the CSCs have to be charged for

using their rented resources to execute workflow. For

example, Amazon EC2 [2] charges CSCs according to

the number of virtual machines initialized by CSCs and

how long they have been used. Among those

scheduling methods, there are some that may produce a

good performance but not efficient enough, because of

big monetary cost for using external cloud resources

being required. This prevents CSCs from fulfilling the

increasing demands while processing the sophisticated

applications. Therefore, it is necessary to find an

efficient task scheduling to balance the execution time

and the cloud cost in order to positively affect the

performance, Quality of Service (QoS) [3], and user

satisfaction.

To eradicate the shortcoming of above methods

while keeping their benefits, in this paper, the main

technical contribution is a novel genetic algorithm in

order to globally optimize task scheduling to minimize

the completion time of the dynamic processing system,

allowing for tasks to arrive for processing

continuously. Moreover, our proposal takes the

network contention and charged monetary cost to

CSCs into account since these two factors play

important roles in satisfying user’s expectations [14].

Furthermore, we introduce a solution to exploit the

collaboration between cloud network and the local

computing resources, Thick Clients (TCs), residing on

the system of CSCs, accordingly improve QoS and

user experience. Traditionally TCs have been used for

providing rich user interface functionalities and also

for mobile users who would like to execute functions

without connecting to the network or firewall [25]. In

our architecture, thick clients are the traditional

computer, such as personal computer or laptop, with

powerful processing capacity and available to execute

tasks that are dispatched to them as well as store an

amount of user data for workflow execution if needed.

Some latest generations of smartphones, though, can

also be considered thick clients as they are resourceful

enough, thanks to their multi-core CPU, large (built-in

and extended) memory and especially the LTE

connection. Additionally, there is a broker functioning

as a centralized management node between thick

clients and cloud resources.

By evaluating our approach using extensive

simulations, we have demonstrated its efficiency and

effectiveness, compared with other existing scheduling

techniques. The simulation result shows improved

performance of the proposed approach, and especially

presented a viable trade-off between workflow

performance and cost-effectiveness.

The organization of rest of the sections of this paper

is as follows: The state-of-the-art methods related to

this research are presented in section 2. System

architecture is demonstrated in section 3. Section 4

details the problem formulation. The implementation

details with performance evaluation are illustrated in

section 5. Section 6 concludes the paper with future

directions.

2. Related Work

A number of research proposals have been anticipated

for efficient task scheduling in heterogeneous as well

as homogeneous systems. Several graph template

based task scheduling methods are presented in [4, 5,

8, 29]. The obliviousness of network contention is the

major shortcoming of those proposals. Although a

network contention based method of task scheduling is

presented in [24], but it ignores the monitory cost of

Cloud Customers (CCs) in utilizing cloud resources.

Despite of numerous research proposals, task

scheduling still remains a challenging open problem in

heterogeneous CC environment [13, 18]. Authors in

[4] introduce a cost-efficient approach to select the

most proper system (private or public cloud) to execute

the workflow according to a deadline constraint as well

as cost savings. Zeng et al. [31] propose budget

conscious scheduling algorithms to satisfy strictly the

budget constrain. Li et al. [13] proposed an algorithm

of scheduling in to schedule applications of massive

graph processing. The schedule length and cost are

considered in that proposal. Su et al. [26] and Pawar

and Wagh [20] present methods to minimize the

schedule length or cost in dynamic cloud computing

but not study global optimality. Jegede et al. [10] and

Zhu et al. [32] demonstrate scheduling algorithms to

solve the global problems however they do not study

the monetary cost. Table 1 presents the overview of the

state-of-the-art scheduling approaches including our

proposed approach.

Table 1. Current scheduling methods and ours.

 Target System

Minimum

Completion

Time

Minimum

Cost

Global

Optimality
Dynamic

Topcuoglu [28] Heterogeneous Yes No No No

Gotoda et al. [9] Cloud Yes No No No

Sinnen [24] Cloud Yes No No No

Canon and

Jeannot [5]
Heterogeneous Yes No No No

Sakellariou and

Zhao [23]

Public & private

cloud
Yes Yes No No

Gopalakrishnan

[8]
Cloud Yes No Yes No

Maguluri and

Srikant [15]

Multicore

processor
Yes No Yes No

Srinivasan [25] Cloud Yes No Yes No

Su et al. [26] Cloud Yes Yes No Yes

Yu and

Buyya[30]
Cloud Yes Yes Yes No

Pawar and

Wagh [20]
Cloud Yes No No Yes

Our approach
Thick clients &

cloud
Yes Yes Yes Yes

According to the presented Table 1, the envisioned

proposal should take into account all the three

efficiency factors:

1. Completion time.

2. Network contention.

A Dynamic Scheduling Method for Collaborated Cloud with Thick Clients 635

3. Cost of cloud resources with the intervention of

thick clients as well as the global optimality in a

dynamic cloud environment.

 This motivates us to provide a Genetic Algorithm

(GA) based task scheduling for global optimality in

dynamic cloud environment while taking account those

factors.

3. System Architecture

The following section gives an insight of our system

architecture to address issues discussed above:

The proposed architecture as depicted in Figure 1,

consists of two layers:

1. Cloud Provider (CP) layer: composed of pool of

VMs.

2. Cloud Customer (CC) layer: resides the thick

clients. In the CC layer, the thick client is

considered as broker, which acts as a centralized

node for management.

The functions of broker in our proposal are as follows:

1. It accepts users’ request of computation.

2. It manages processing resources (e.g., capacity,

cost and bandwidth) and returning query data.

3. It prepares the efficient and effective and optimal

schedule in respect to input workflow.

The broker uploads the data to CP layer through a

single connection but VMs of CP layer send data

towards the CC layer and then broker divides those

data into non-uniform chunks. Afterwards, broker

delivers those chunks to thick clients through multi-

connection links [21].

Figure 1. Layering architecture of the proposal.

We assume the following system requirements:

 A high bandwidth link between cloud VMs and

thick clients for low latency and faster data

communication.

 Among these P2P and thick clients, the

communication library is shared.

4. Problem Domain

Task scheduling of complex systems having

hierarchical topology is analogous to distribution of

jobs or tasks of an application to a group of processors

with heterogeneous processing capabilities for

fulfilling the optimization goal of minimization of

completion time. Therefore, a task graph and a process

graph are feed as the inputs of task scheduling. The

output is a schedule representing the assignment of

tasks to processors.

4.1. Problem Formulation

Before problem formulation we state here the used

terms in the problem formulation. Then a genetic

algorithm based task scheduling method is presented

elaborately.

 Definition 1: A processor graph PG=(N,D)

demonstrated in Figure 2 is a graph that represents

the network topology between vertices

(heterogeneous processors) that are Virtual

Machines (VMs) on cloud servers and thick clients.

In this graph, N is the finite set of vertices, and a

directed edge dkl ∈ D means a directed link from

vertex Pk to vertex Pl with Pk,Pl∈N. Each processor

Pk controls the processing rate µk and bandwidth on

the link connecting it to other processors. Due to the

high stability of Local Area Network (LAN)

compared with the Internet, the data transfer rate of

internal communication among thick clients is

always better than that of external communications

between cloud VMs.

Figure 2. A processor graph.

Figure 3. A sample DAG.

 Definition 2: A task graph, as shown in Figure 3, is

denoted by a Directed Acyclic Graph (DAG) G =(
V, E, W, C) where the vertices set V ={v1,v2,...,vk}

presents the parallel operators (subtasks). The edge

eij=(vi,vj)∈E of the DAG symbolized as

636 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

communication link between the task vi and task vj.

The communication time from task vi to task vj is

denoted by C(eij), whereas d(eij) represents the

transferred data. The weight W(vi, Pk) of task vi is

its computation time on processor Pk. It is supposed

here that a task vi contains a set of preceding

subtasks prec(vi) and a set of successive subtasks

succ(vi). A task without any predecessors,

prec(vi)=0, is an start-up task ventry, and a task that

does not have any successors, succ(vi) =0, is an end

task vend. The workload belongs to task vi is

represented as l(vi,Pl), , which delimits amount of

work (e.g the number of instructions) processed

with certain computing resource Pl. Let ts(vi,Pl)

denote Start Time of task vi on processor Pl. Hence,

the finish time of that task is given by tf(vi, Pl)= ts(vi,

Pl)+ w(vi, Pl).

Assume that the conditions mentioned below are

satisfied:

 Condition 1. Application made up of task v1, task v2

…task vn, the broker knows the sequencing of

tasks, e.g. task v1 first, task v2 second.

 Condition 2. When there are several different tasks

are running, if new tasks need to be started anytime,

the broker will check available processors and

allocate the most appropriate processors to the tasks

in order to result in a shortest completion time.

 Condition 3. Some tasks of the task graph are

already scheduled, we may reschedule them upon

the arrival new task.

 Condition 4. A task can start its execution after all

of its parent tasks have already been executed. Each

task appears only once in the schedule.

 Condition 5. The ready time tready(vi,) is the time

that processor Pl completes its last running assigned

task and be ready to execute task vi. Therefore,

, (),

(,)

max{ (,), max ((,) ())}
zi z i

ready i l

kl

f y l f z k i
e E v prec v k N

t v P

t v P t v P c e

Where vy is a task being executed at processor and

prec(vi) is a set of preceding tasks of vi. is the

communication time of connection between processors

and It can be defined as:

1
() if

()

0 .

zikl

kli

do k j
bwc e

otherwise

Here dozi is volume of outgoing data transferred from

Pk to Pl.

 Condition 6. Let [tA,tB]∈[0,∞] be an idle time

interval on processor Pl in which no task is

executed. A free task vi ∈ V can be scheduled on

processor Pl within [tA,tB] if

max{ , (,)} (,) .A ready i l i l Bt t v P w v P t

4.2. GA Task Scheduling

Given a task graph G = (V, E, W, C) and a processor

graph PG=(N,D), our approach uses a genetic

algorithm to produce the most appropriate scheduled

list of tasks. Among the numerous random techniques,

GAs are the most broadly used for the task scheduling

problem [10]. Table 2 demonstrates that GA,

motivated by the natural evolution, is a strong search

procedure allowing a global high-quality result to be

derived from a huge search space in polynomial time.

Meanwhile, most of other algorithms discovery only

local optimal effects. GA combines the best solutions

from past searches with exploration of new regions of

the solution space. In this algorithm, a feasible

solution, represented an individual (chromosomes),

containing a set of processor-task assignments (genes

in chromosomes).

Table 2. Genetic algorithm.

Step Action

1 Generate a random initial population of individuals.

2 Evaluate the fitness of each individual in the initial population if
they satisfy their constraints

3 If yes, return output results.

If no, generate new populations using procedures in steps 4-6

4 Selects two random individuals among the current population

5 Crossover the two selected individuals considering the crossover

probability, to produce the individuals for
the next generation

6 Mutate the one of the selected individuals at each defined mutation

point, considering the mutation probability and place it in the new

population

7 Evaluate the fitness of each of the individuals in the new

population

8 Repeat steps 3-7 until the stopping criteria have been met.

A fitness function is used to measure the quality of

each individual in the population. A higher fitness

level shows a fitter individual, which has a greater rate

to reproduce for a new generation. A new generation

has the same number of individuals as the previous

generation, which dies off once it is replaced with the

new generation. By spreading on genetic operators,

namely selection, crossover and mutation to a

population, quality of individuals can be improved. If

well designed, these new individuals will converge to

an optimal solution. The genetic algorithm is described

in detail in the following section:

 Producing the Initial Population: The initial

population contains individuals produced through a

random heuristic. Each individual (as shown in

Figure 4) is a set of tasks and corresponding

assigned processors. The time frames of each task in

each individual, such as Earliest Start Time, Earliest

Finish Time, and so on, can be modified to amend

those of its successive tasks. These modifications

can generate to an actual multifaceted state during

genetic operators. Thus, our way is to disregard the

time frame through genetic manipulation and allot a

time slot to each assignment so as to achieve a

reasonable schedule well ahead.

lP

()kl

ic e

(1)

(2)

(3)

A Dynamic Scheduling Method for Collaborated Cloud with Thick Clients 637

Figure 4. An individual.

 Constructing a Fitness Function: Based on fitness

value, a fitness function can be used to represent the

quality of each individual in a population. The

fitness function has to depend on Earliest Finish

Time (EFT) and cloud costs paid by CCs because

our method tries to minimize the completion time

while considering the network contention and cloud

cost. The following section exemplifies formation of

EFT and the cost of task vi on a processor from its

Earliest Start Time (EST) as well as the element

costs.

EST of a task vi executed on a processors Pl can be

calculated as follows:

Suppose that pil is probability of task vi processed at

processor Pl, then the overall task arrival rate at

processor Pl can be calculated as:

Thus, computation time to execute task vi on

processor Pl is defined as:

Consequently, EFT of the task vi is designed as:

Additionally, the algorithm also takes into account the

cloud cost for using cloud resources to finish the tasks.

The cost C (vi,Pl) to execute task vi at VM Pl or local

thick client Pl is defined by:

In Equation (7), each cost is calculated as follows:

Processing cost is expressed as:

Where c1 is the processing cost per time unit of

workflow execution on processor Pl.

Let tassign be the time point when task vi is assigned

to processor Pl. c2 be the queuing cost per time unit of

the task vi until it can be executed. Then the queuing

cost is as:

 Assume that the amount of money per time unit for

transferring outgoing data from processor Pk to Pl is c3,

then the communication cost is defined as follows:

We presume that the distribution of disconnection

events between a cloud and clients is a Poisson

distribution with parameter µT, which represents the

stability of the network. The expected number of

arrivals over an interval of length τ is E[NT]= µT*τ . Let

L be a random variable for the length of an offline

event, µL be the mean length and c4 be the

disconnection cost per unit time. Therefore, the

expected duration of a disconnection event, which can

affect the completion time of task vi, is µT*τ*µL.

Hence, the cost of disconnection can be derived as:

Let c5 be the storage cost per data unit and sti be the

storage size of task vi on processor Pl. Then we can

present the storage cost of task vi on processor Pl as:

In addition, the memory cost of processor Pl for task vi

is computed as follows:

Where smem is the size of the memory used and c6 is the

memory cost per data unit.

Lastly, a fitness function that calculates the tradeoff

U can be formulated as a convex combination of EFT

and monetary cost for each individual of the population

where task vi ϵ E running on processor PI ϵ N as

follows:

Where a is a cost-conscious factor that represents a

user’s preference for the completion time and the

monetary cost.

By considering the above fitness function that

combines cost (vi, Pl) and EFT(vi, Pl), we can

determine which individual in a population is the most

appropriate to satisfy the function. This indicates that

its combination of cost(vi, Pl) and EFT(vi, Pl) should

demonstrate the minimum value of the tradeoff U.

 Genetic Operators

 Selection: An individual with highest fitness value

is chosen from the population. Here, the fitness

value of an individual is determined through trade-

off values utility function U. Probability of selection

is higher for those individuals which have lower

trade-off utility value and vice versa. However, the

fittest individual propagates its strength to the

evolve generations strongly. Conversely, sub-

optimal solution may returns because of the biasness

of selection operators with overly strong fitness.

(,) (,) (,).i l i l i lEFT v P w v P EST v P

(,) (,) (,) (,) (,) (,)

(,) (,)

(,)

, VMs

, thick clients

i l i l i l i l i l i l

i l i l

i l

v P v P v P v P v P v P

proc queue comm disc str mem

v P v P

comm disc

C v P

C C C C C C

C C

 (,)

1 ,,*i lv P

proc i lC c w v P

(,)

4 *(* *).i lv P

disc T LC c

(,)

5 * .i lv P

str iC c st

(,)

6 * ,i lv P

mem memC c s

 (,), if
, 0, otherwise()

ready i l i entry

i l

t v P v v
PEST v

(,)

3

(() ())

1
*()i l

z i

v P

comm zi

v prec v exec k kl

C c do
bw

(,)

5 *((,) (,))i lv P

queue i l assign i lC c EST v P t v P

, ,

(,) [(,)]
(

[(,)] [(,)]
,

(,) [(,)]
(1))

[(,)] [(,)]

[0,1],

i j k

i l j k

j k j k

v v V P N i l j k

j k j k

EFT v P Min EFT v P

Max EFT v P Min EFT v P
U Min

C v P Min C v P

Max C v P Min C v P

il ilp

()
(,) i

i l

l il il

l v
w v P

p

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

638 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

 Crossover: Crossover is used to generate new

offspring from two randomly selected individuals in

the current population in order to result in an even

better individual in the subsequent generation.

Usually, the selected two individuals (called

parents) with strong fitness produce fittest offspring.

Crossover can be single-point, multi-point or

uniform. The crossover rate usually in the range

between 0.6 to1. As shown in Figures 5, 6, and 7,

crossover operators used is determined through the

following procedure:

 Single or multiple points are randomly chosen from

selected parents.

 Each of the selected points divides the parent in left

and right segments.

 Through crossover, the segments are swapped

between the selected feasible two parents.

 Therefore, two new offspring are generated by

recombining swapped segments.

 Figure 5. Single-point crossover.

The single-point crossover is shown in Figure 5.

The crossover point is determined randomly.

Afterwards, swapping is performed. Therefore, the tail

of the first parent is added as the tail of the second

parent and the tail of the second parent is added as the

tail of the first parent. In the meantime, in a multi-point

(e.g., two points) crossover operator, two positions in

the individuals are determined randomly as shown in

Figure 6. The benefit of multi-point crossover is to

avoid the inherent problem of single-point crossover,

wherein the segment at the head and the segment at the

tail of a certain individual are always split when

recombined.

Figure 6. Multi-point crossover.

The uniform crossover is shown in Figure 7. Firstly,

a mask of individuals is generated with random binary

values. Afterwards, crossover is performed between

the individuals only at the non-zero bit positions of the

mask. The density or sparsity of uniform crossover is

maintained through the masking bits.

Figure 7. Uniform crossover.

 Mutation: Mutation is the self–replicating process in

genetic algorithm. Therefore, offspring’s are

reproduced through the single parent. It is a way of

exploring diversity of individuals for better

generations. In algorithmic aspect, mutation resists

local optima which may be caused by the crossover

operation. However, the rate of mutation in a

particular individual is little (approximately 0.001).

The mutation can be replacing or swapping.

Figure 8. Replacing mutation.

Figure 9. Swapping mutation.

The replacing mutation is shown in Figure 8. In

replacing mutation, other than task swapping, the

assigned processor is replaced with new processor.

Therefore, the task is reallocated to a new processor.

The processor replaced is chosen randomly (e.g., task

v4 is previously assigned to P4 but after applying

replacing mutation task v4 is reallocated to processor

P2). On the other hand, in the case of swapping

mutation as Figure 9 shows, the initial position of task

v4 on processor P4 in parent individual is occupied by

the task v6 on processor P2 and vice versa. A task is

selected at random from a processor and if it is smaller

than a task in the most heavily loaded processor, a

swap is implemented.

Due to evaluate the performance of the proposal, we

have compared our genetic algorithm based scheduling

with state-of-the-art task scheduling algorithms. These

minimize the total completion time of the workflow or

reduce the cloud’s task processing cost. Algorithm 1 is

Greedy approach for cost reduction, which allocates

tasks to processors following greedy principal that

minimizes cloud cost. In algorithm 2, network

contention aware task scheduling [24] is presented.

And a dynamic Time aware Genetic method [26] has a

fitness function based on only EFT. In the meantime,

algorithm 4 shows that our approach, a dynamic Cost-

Time aware Genetic method, stands on both network

contention and cloud cost. Therefore, it can justify the

A Dynamic Scheduling Method for Collaborated Cloud with Thick Clients 639

tradeoff of cloud cost and completion time. Moreover,

it also ensures a global optimal scheduled list of tasks.

Algorithm 1: Greedy approach for cost reduction

Input: Task graph G, processor graph PG

Output : Scheduled list of tasks

Function greedyForCostScheduling(G, PG)

1. Sort task vn in the descending order by its priority;

2. for each vn ∈V do

3. Find the most appropriate processor Pl that minimizes the

cost for accomplishing the task vn ;

4. Assign vn to Pl;

5. end

6. return scheduled list of tasks;

Algorithm 2: Contention aware task scheduling

Input: Task graph G, processor graph PG

Output : Scheduled list of tasks

Function networkCostScheduling (G, PG)

1. Sort task vn in the descending order by its priority;

2. for each vn ∈V do

3. Find the most appropriate processor Pl that allows EFT of

vn, considering network bandwidth usage;

4. Assign vn to Pl;

5. end

6. return scheduled list of tasks;

Algorithm 3. Dynamic Cost-Time aware Genetic

Input : Task graph G, processor graph PG

Output : Scheduled list of tasks

Function DCTGScheduling (G, PG)

1. Generate random population and determine the population

size as p_size;

2. Evaluate the fitness for each individual based on the fitness

function (14)

3. repeat //create a new population

4. for p_size do

5. From current generation, select two parents;

6. // better fitness has a bigger chance to be selected

7. Recombine parents for two offspring //with

operators;

8. Evaluate fitness of offspring;

9. Insert offspring into new generation

10. end

11. until population has converged

5. Implementation and Analysis

5.1. Experimental Settings

A number of different experiments have been

performed to evaluate the efficiency of our approach

with varying communication cost and upcoming tasks:

the Dynamic Cost-Time aware Genetic algorithm

(DCTaG), and compare its performance with the

existing ones: Contention aware Task Scheduling

(CaTS) [8] just taking account of network contention,

Greedy approach for Cost Reduction (RCR)

concerning the monetary cost, and a dynamic Time

aware Genetic method DTaG [26] having a fitness

function based on only EFT.

Task graphs are created with number of tasks in the

graph ranging from 10 to 90. The individual size is in

range from 20 to 50. The task graphs are scheduled on

a multiprocessor system a combination between 22

heterogeneous VMs with the different configurations

and 8 thick clients located at the local system of CCs

for the above algorithms as shown in Table 2. The

parameters for genetic algorithm chosen are population

size of 30, crossover rate of 0.7 and the mutation rate

of 0.001, number of generations of 60. The metrics

used for comparison are the completion time and

monetary cost. We assume the communication network

is fully connected. Each communication link has its

own randomly generated cost. And simulation settings

are developed in Java with JDK-7u7-i586 and

Netbeans-7.2 using CloudSim [7]. CloudSim is a

framework for modeling and simulation of cloud

computing infrastructures and services. In our

simulation, we use Millions of Instructions (MI) and

Million Instructions per Second (MIPS) to represent

the processing capacity of processors.

Table 2. Features of the simulated system.

Parameter Value

Topology model LAN, fully connected

Operating system Windows 10 professional

Number of processors [4, 32]

Number of tasks [10, 100]

Processing rate [15, 800]

Bandwidth [20, 100, 512, 1024] Mbps

Cost per a time unit executed on processor Pl [0.2, 0.6]

Cost per outgoing data unit from processor Pl [0.1, 0.5]

Cost of waiting time [0.2, 0.5]

Cost of a disconnection time [0,03, 0.3]

5.2. Experimental Results

In the following figures, we present the experimental

results to demonstrate that our method, DCTaG, can be

more efficiency in term of schedule length and cloud

cost. Figures 10 and 11 shows that although GCR

obtains the worst result regarding the completion time,

it provides the highest cost saving for CCs. In contrast,

CaTS delivers the best performance but maximum

cost. In the meantime, our solution conduces to the

benefits of balance between acceptable completion

time for workflow and the corresponding cost for

utilizing cloud resources. In particular, compared with

CaTS, our method can save nearly 23% cost for CCs

and it is 22% faster than GCR.

Figure 10. Schedule length comparison.

640 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

Figure 11. Cost comparison.

Figure 12. Schedule length with numbers of processors.

The evaluation of the effect on varying number of

processors on the cloud cost and the schedule length

only in DCTaG with a stable number of tasks is aslo

made and given in Figures 12 and 13, respectively. It is

clear to see that there is a great improvement in the

speed obtained through DCTaG. This improvement

rises as the number of processors increases. However,

the cost is higher. It is conspicuous to see that the

monetary cost increases from 272500 G$ to 297500 G$

as the number of processors goes up from 15 to 20.

Figure 13. Cost with numbers of processors.

Figure 14. Schedule length with numbers of individuals.

Figures 14 and 15 show the case where the number

of individuals is changed from 30 to 90. We observer

that the increasing of the population size does not

meaningfully have emotional impact in the cloud cost

of the schedule but probability of producing a better

performance is greater. The cost just varies from 50000

to 55000 G$. Conversely, completion time displays a

descending movement between 74 minutes and 45

minutes.

Figure 15. Cost with numbers of individuals.

As a final point, we measure the performance of the

DCTaG when the number of generations changes.

Similar to the above simulation regarding the amount

of individuals, results from the Figures 16 and 17 show

that the completion time of the schedule is decreased

with the slightly reduction of the execution cost when

the number of the generations rises. This is for the

reason that each individual selected has to reflect the

tradeoff of completion time and cloud cost.

Figure 16. Schedule length with numbers of generations.

Figure 17. Cost with numbers of generations.

A Dynamic Scheduling Method for Collaborated Cloud with Thick Clients 641

6. Conclusions

This paper proposes a co-operation of local thick

clients and cloud resources in cloud platform to take

advantage of the total computing power from both

internal and external infrastructure. Furthermore, we

presented a novel genetic method to expand the

dynamic task scheduling in order to achieve desired

completion time while balancing the system

performance and cloud service cost. Moreover, we

conducted simulations to evaluate our approach and

compare with other methods. The experimental results

demonstrate that the proposed scheduling approach can

bring a better performance whilst spending less

monetary cost. In future, we will enhance our

scheduling method in numerous circumstances such as

energy consumption to achieve higher trustworthiness

and effectiveness with maximum agreement.

Acknowledgement

This research is funded by Vietnam National

Foundation for Science and Technology Development

(NAFOSTED) under grant number 102.01-2015.16.

This research was also supported by the MSIP

(Ministry of Science, ICT and Future Planning), Korea,

under the Information Technology Research Center

(ITRC) support program (IITP-2016-H8501-16-1015)

supervised by the Institute for Information &

communications Technology Promotion (IITP). The

corresponding author is professor Eui-Nam Huh.

References

[1] Ababneh M., Hassan S., and Bani-Ahmad S.,

“On Static Scheduling of Tasks in Real Time

Multiprocessor Systems: An Improved GA-

Based Approach,” The International Arab

Journal of Information Technology, vol. 11, no.

6, pp. 560-572, 2013.

[2] Amazon Web Services.

http://aws.amazon.com/ec2/, Last Visited, 2015.

[3] Bhattacharya A., Wu W., and Yang Z., “Quality

of Experience Evaluation of Voice

Communication: An Affect-Based Approach,”

Human-centric Computing and Information

Sciences, vol. 2, no. 7, pp. 1-18, 2012.

[4] Binh H., “Multi-objective Genetic Algorithm for

Solving the Multilayer Survivable Optical

Network Design Problem,” Journal of

Convergence, vol. 5, no. 1, pp. 20-25, 2014.

[5] Bossche R., Vanmechelen K., and Broeckhove J.,

“Cost-Efficient Scheduling Heuristics for

Deadline Constrained Workloads on Hybrid

Clouds,” in Proceedings of IEEE 3rd

International Conference on Cloud Computing

Technology and Science, Athens, pp. 320-327,

2011.

[6] Canon L. and Jeannot E., “Evaluation and

Optimization of the Robustness of DAG

Schedules in Heterogeneous Environments,”

IEEE Transactions on Parallel and Distributed

Systems, vol. 21, no. 4, pp. 532-546, 2010.

[7] Cloudsim, https://code.google.com/p/cloudsim/

downloads/list, Last Visited, 2014.

[8] Gopalakrishnan A., “A Subjective Job Scheduler

Based on A Backpropagation Neural Network,”

Human-centric Computing and Information

Sciences, vol. 3, no. 17, 2013.

[9] Gotoda S., Ito M., and Shibata N., “Task

Scheduling Algorithm For Multicore Processor

System for Minimizing Recovery Time in Case

of Single Node Fault,” in Proceedings of 12th

IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, Ottawa, pp. 260-

267, 2012.

[10] Jegede O., Kaiser T., Ferens K., and Ferens K.,

“A Genetic Algorithm for Multiprocessor Task

Scheduling,” in Proceedings of International

Conference on Genetic and Evolutionary

Methods, Las Vegas, 2013.

[11] Kim B., Youn C., Park Y., Lee Y., and Choi W.,

“An Adaptive Workflow Scheduling Scheme

Based on an Estimated Data Processing Rate for

Next Generation Sequencing in Cloud

Computing,” Journal of Information Processing

Systems, vol. 8, no. 4, pp. 555-566, 2012.

[12] Lee Y. and Zamaga A., “A Novel State

Transition Method for Metaheuristic-Based

Scheduling in Heterogeneous Computing

Systems,” IEEE Transactions on Parallel and

Distributed Systems, vol. 19, no. 9, pp. 1215-

1223, 2008.

[13] Li J., Su S., Cheng X., Huang Q., and Zhang Z.,

“Cost-Conscious Scheduling for Large Graph

Processing in the Cloud,” in Proceedings of IEEE

International Conference on High Performance

Computing and Communications, Banff, pp. 808-

813, 2011.

[14] Li Q. and Guo Y., “Optimization of Resource

Scheduling in Cloud Computing,” in Proceedings

of 12th International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing,

Timisoara, pp. 315-320, 2010.

[15] Maguluri S., Srikant R., and Ying L., “Stochastic

Models of Load Balancing and Scheduling in

Cloud Computing Clusters,” IEEE Infocom,

Orlando, pp. 702-710, 2012.

[16] Man N. and Huh E., “Cost and Efficiency-based

Scheduling on a General Framework Combining

between Cloud Computing and Local Thick

Clients,” in Proceedings of International

Conference on Computing, Management and

Telecommunications, Ho Chi Minh City, pp. 258-

263, 2013.

http://aws.amazon.com/ec2/

642 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

[17] Munir E., Ijaz S., Anjum S., Khan A., Anwar W.,

and Nisar W., “Novel Approaches for Scheduling

Task Graphs in Heterogeneous Distributed

Computing Environment,” The International

Arab Journal of Information Technology, vol. 12,

no. 3, pp. 270-277, 2014.

[18] Omara F. and Arafa M., “Genetic Algorithms for

Task Scheduling Problem,” Journal of Parallel

and Distributed Computing, vol. 70, no. 1, pp.

13-22, 2010.

[19] Oprescu A. and Kielmann T., “Bag-of-tasks

Scheduling under Budget Constraints,” in

Proceedings of IEEE 2nd International

Conference on Cloud Computing Technology and

Science, Indianapolis, pp. 351-359, 2010.

[20] Pawar C. and Wagh R., “Priority Based Dynamic

Resource Allocation in Cloud Computing,” in

Proceedings of International Symposium on

Cloud and Services Computing, Mangalore, pp.

1-6, 2012.

[21] Phuoc Hung P., Bui T., Morales M., Nguyen M.,

and Huh E., “Optimal Collaboration of Thin-

Thick Clients and Resource Allocation in Cloud

Computing,” Personal and Ubiquitous

Computing, vol. 18, no. 3, pp. 563-572, 2014.

[22] Qi H. and Abdullah G., “Research on Mobile

Cloud Computing: Review, Trend and

Perspectives,” in Proceedings of International

Conference on Digital Information and

Communication Technology and its Applications,

Bangkok, pp. 195-202, 2012.

[23] Sakellariou R. and Zhao H., “Scheduling

Workflows with Budget Constraints,” in

Proceedings of Integrated Research in Grid

Computing, Boston, pp. 189-202, 2007.

[24] Sinnen O. and Sousa L., “Communication

Contention in Task Scheduling,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 16, no. 6, pp. 503-515, 2005.

[25] Srinivasan S., “Why Thick Clients Are Relevant

in Cloud Computing,” http://cloudcomputing.sys-

con.com/node/ 1694221, Last Visited, 2014.

[26] Su S., Li J., Huang Q., Huang X., Shuang K., and

Wang J., “Cost-Efficient Task Scheduling for

Executing Large Programs in the Cloud,”

Parallel Computing Journal, vol. 39, no. 4-5, pp.

177-188, 2013.

[27] Tawfeek M., El-Sisi A., Keshk A., and Torkey

F., “Cloud Task Scheduling Based on Ant

Colony Optimization,” The International Arab

Journal of Information Technology, vol. 12, no.

2, pp. 129-137, 2014.

[28] Topcuoglu H., Hariri S., and Wu M.,

“Performance-Effective and Low-Complexity

Task Scheduling for Heterogeneous Computing,”

IEEE Transactions on Parallel and Distributed

Systems, vol. 13, no. 3, pp. 260-274, 2002.

[29] Wolf J., Bansal N., Hildrum K., Parekh S., Rajan

D., Wagle R., Wu K., and Fleischer L., “SODA:

An Optimizing Scheduler for Large-Scale

Stream-Based Distributed Computer Systems,” in

Proceedings of International Conference on

Middleware, Berlin, pp. 306-325, 2008.

[30] Yu J. and Buyya R., “A Budget Constrained

Scheduling of Workflow Applications on Utility

Grids using Genetic Algorithms,” in Proceedings

of Workshop on Workflows in Support of Large-

Scale Science, Paris, pp. 1-10, 2006.

[31] Zeng L., Veeravalli B., and Xiaorong L.,

“ScaleStar: Budget Conscious Scheduling

Precedence-Constrained Many-task Workflow

Applications in Cloud,” in Proceedings of IEEE

26th International Conference on Advanced

Information Networking and Applications,

Fukuoka, pp. 534-541, 2012.

[32] Zhu K., Song H., Liu L., Gao J., and Cheng G.,

“Hybrid Genetic Algorithm for Cloud Computing

Applications,” in Proceedings of IEEE Asia-

Pacific Services Computing Conference, Jeju

Island, pp. 182-187, 2011.

A Dynamic Scheduling Method for Collaborated Cloud with Thick Clients 643

Pham Phuoc Hung received the

B.S. degree in Computer

Engineering from Ho Chi Minh

National University, University of

Sciences, Vietnam, Master's degree

in Computer Science from

Dongguk University, Korea, Ph.D

degree in Computer Engineering

from KyungHee University, Korea. He used to be a

director, a project manager in some software

companies. At present, he is also working as a

Postdoctoral Researcher in Department of Computer

Science at Kent State University, USA where he has

been working on several large-scale R&D funded

projects, including their proposals. His research

interests include Resource Allocation, Parallel and

Distributing Computing, High Performance

Computing, Data Analysis, Cluster and Grid

Computing, Cloud Computing, Fog Computing, Sensor

Network.

Golam Alam received his B.S., M.S

and Ph.D. degrees in Computer

Science and Engineering,

Information Technology, and

Computer Engineering respectively.

He is currently working as an

Assistant Professor in Computer

Science and Engineering department at BRAC

University, Bangladesh. His research interest includes

health informatics, mobile cloud computing, ambient

intelligence and persuasive technology.

Nguyen Hai is a PhD Student in the

Faculty of Computer Science and

Engineering, Ho Chi Minh City

University of Technology

(HCMUT), Vietnam. He received

his B.Eng. degree in Information

Technology from HCMUT in 2007

and received his Master degree in 2010 from Bordeaux

I University, France. His current research areas include

formal methods, program analysis/verification,

malware analysis, security and dynamic scheduling.

Quan Tho is an Associate Professor

in the Faculty of Computer Science

and Engineering, Ho Chi Minh City

University of Technology

(HCMUT), Vietnam. He received

his B.Eng. degree in Information

Technology from HCMUT in 1998

and received Ph.D degree in 2006 from Nanyang

Technological University, Singapore. His current

research interests include formal methods, program

analysis/verification, the Semantic Web, machine

learning/data mining and intelligent systems.

Currently, he heads the Department of Software

Engineering of the Faculty. He is also serving as the

Chair of Computer Science Program (undergraduate

level).

Eui-Nam Huh has earned B.S.

degree from Busan National

University in Korea, Master's degree

in Computer Science from

University of Texas, USA in 1995

and Ph.D degree from the Ohio

University, USA in 2002. He was a

director of Computer Information Center and Assistant

Professor in Sahmyook University, South Korea during

the academic year 2001 and 2002. He has also served

for the WPDRTS/IPDPS community as program chair

in 2003. He has been an editor of Journal of Korean

Society for Internet Information and Korea Grid

Standard group chair since 2002. He was also an

Assistant Professor in Seoul Women's University,

South Korea. Now he is with Kyung Hee University,

South Korea as Professor in Dept. of Computer

Engineering. His interesting research areas are: High

Performance Network, Sensor Network, Distributed

Real Time System, Grid, Cloud Computing, and

Network Security.

