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Abstract: The QRS detection is a crucial step in ECG signal analysis; it has a great impact on the beats segmentation and in 
the final classification of the ECG signal. The Pan-Tompkins is one of the first and best-performing algorithms for QRS 
detection. It performs filtering for noise suppression, differentiation for slope dominance, and thresholding for decision 
making. All of the parameters of the Pan-Tompkins algorithm are selected empirically. However, we think that the Pan-
Tompkins method can achieve better performance if the parameters were optimized. Therefore, we propose an adaptive 
algorithm that looks for the best set of parameters that improves the Pan-Tompkins algorithm performance. For this purpose, 
we formulate the parameter design as an optimization problem within a particle swarm optimization framework. Experiments 
conducted on the 24 hours recording of the MIT/BIH arrhythmia benchmark dataset achieved an overall accuracy of 99.83% 
which outperforms the state-of-the-art time-domain algorithms. 
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1. Introduction 

The Electrocardiogram (ECG) is widely used by health 

practitioners for the diagnosis. Recently, it has been 

used for human authentication [8]. It is a graphical 

representation of the electro activity of the heart. It 

comprises three waves, P, QRS, and T. A great 

importance is given to the detection of the QRS wave, 

comprising Q, R, and S waves, as it is essential for 

heart rate determination and beat type recognition and 

segmentation. The detection of the R wave, which is 

the peak of the QRS, is a very difficult task since it has 

a time-varying morphology and is subject to 

physiological variations due to the patient state and 

noise [10]. The RR interval is the interval between two 

successive R peaks; identifying RR intervals permits to 

separate beats. 

Usually, the ECG signal is corrupted by many types 

of noise that occupy different frequency bands. For 

instance, 50/60 Hz noise results from power line 

interference. Patient stress and hyperthyroidism 

introduce undesirable harmonics in a range of 5-2000 

Hz. Other sources of disturbance generate components 

between 0.02 and 2 Hz. Therefore, any ECG analysis 

process is preceded by a denoising step. 

We find a huge number of methods that deal with 

the QRS complex detection in the literature. These 

methods may be divided into three categories, time-

domain methods, frequency-domain methods, and time-

frequency methods. In this work, we will restrict our 

focus to the time-domain algorithms. Several time-

domain algorithms have been developed in the last 

three decades. For example, authors in [7] proposed an 

optimized decision rule process which resulted in 

improved sensitivity and positive predictivity. In [6],  

 
the preprocessing step is different from that one of 

Pan-Tompkins to cope with the requirements of 

accuracy and low resource consumption. 

 

 

 

 

 

 

 

 
 

Figure 1.The five operations of the Pan-Tompkins algorithm. 

In [2], a QRS detection based on fractional-order 

operators is developed where the same filtering steps 

like Pan-Tompkins were used. Xue et al. [27] 

proposed the use of an Artificial Neural Network 

(ANN) noise suppression filter and a matching filter 

adapted with an ANN classifier to detect QRS waves. 

Ruha et al. [19] employed an amplitude gain with a 

cascade of filters and a noise suppression filter with a 

matching filter for QRS positions detection. 

Ravanshad et al. [18] gave special attention to the 

energy consumption, where they exploited the 

efficiency of an analog to digital converter for noise 

suppression; then they introduced a decision stage to 

extract QRS positions by level-crossing. Finally, they 

employed decision rules and two adaptive thresholds 

of an adapted period to reject fast high T-waves 

confused with the QRS complex. Karimipour and 

Homaeinezhad [11] proposed a new QRS detection 

algorithm; they used wavelets for denoising and 

detected QRS using curves interpretation. Recently, 

Castells-Rufas and Carrabina [3] proposed MaMeMi 
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filter, justified by low computational complexity, the 

authors make use of multiple filters and decision rules 

with an adaptive threshold for QRS detection. Saadi et 

al. [20] designed an optimized time-domain algorithm 

evaluated on a large dataset, and then they implemented 

the developed algorithm on an embedded e-Patch 

system. Recently, Yakut and Bolat [28] proposed an 

improved QRS detector with a low computational load. 

Tekeste et al. [24] developed a low power consumption 

system for QRS detection and ECG compression. 

Mourad and Fethi [12] detect QRS complex from 

wavelet coefficients after filtering for denoising. 

Nguyen et al. [15] proposed the triangle template 

matching for the determination of the QRS positions. 

Xiang et al. [26] used two Convolutional Neural 

Networks and an MLP for the estimation of the QRS 

positions. 

All of the existing algorithms in the literature that 

detect the QRS complex in the time domain select the 

filtering parameters empirically. As an exception, Poli 

et al. [17] proposed three different architectures for 

QRS detection. They used linear and nonlinear filters to 

enhance the QRS complex and a decision stage. The 

filters coefficients and the parameters of the decision 

stage were optimized by genetic algorithms. However, 

the performance achieved by the optimization approach 

of [17] was poor as it delivered too much false 

detection using the benchmark MIT-BIH dataset. 

 We think that the performance of these algorithms 

could be enhanced if the filtering parameters were 

optimized. In particular, many parameters of the Pan-

Tompkins algorithm [16] are selected empirically. For 

example, the cut off frequencies of the band pass filter 

were determined by knowledge of an estimate band 

frequency of different sources such as muscle artifacts 

and stress. Also, the length of the averaging window 

and the parameters of the threshold are selected 

empirically. Since the problem at hand cannot be 

formulated in a closed-form formula, traditional 

optimization methods that rely on the computation of 

the gradient cannot be used. Therefore, we resort to 

evolutionary computational optimization methods. 

Among these methods, Particle Swarm Optimization 

(PSO) has gained a lot of popularity during the last two 

decades. The popularity of the PSO may be explained 

by its simplicity, few code lines, and it provides 

potential solutions in many complex situations. Thus, 

we propose to use the particle swarm optimization 

algorithm to look for the best values of the parameters 

of the popular Pan-Tompkins algorithm such as cut off 

frequencies of the band pass filter, the length of the 

averaging window, the threshold, etc., to improve its 

capability of detection for the QRS complexes. 

2. The Pan-Tompkins Algorithm 

Since our contribution is about improving the Pan-

Tompkins algorithm, we start by describing the main 

steps involved in this algorithm. The main steps of the 

original Pan-Tompkins algorithm are depicted in 

Figure 1. The algorithm comprises five steps which 

we will briefly describe in the following. The band-

pass filter eliminates noise from the input raw ECG 

signal. The differentiator is introduced to detect abrupt 

variations in the signal. The nonlinear transformation 

is the square of the differentiated signal used to reduce 

the amplitudes of the T and P waves compared to R 

peak amplitude wave (after normalization) and to 

make the values of the signal positive. The aim of the 

moving window integration is to make the P, Q, R, S, 

and T peaks appear together in a unique peak in order 

to reduce the number of false detections.  

The decision strategy relies on the use of two main 

parameters which are the signal level and the noise 

level. The former is computed from a running 

estimation of the signal level whereas the latter is 

computed from a running estimation of the noise level. 

In particular, the first type of thresholding which is a 

running level of the separation between the amplitudes 

of the signal and the amplitudes of noise is formed by 

combining the estimated levels of the signal and noise. 

This type is used in normal cases. When no R peak is 

detected in a long period of time using the first type of 

thresholding, a search back procedure is launched with 

another type of thresholding. This second type of 

thresholding uses new rules for R peak detection. 

In the training phase of our optimization algorithm, 

we estimate the threshold levels of the signal and 

noise from the few first seconds of the ECG input 

signal. First, we search for all the peaks present in this 

time interval and the minimum interval between them. 

We decide that a peak is an R wave if its amplitude is 

greater than the threshold level, and we update the 

level of the signal. Otherwise, if the amplitude of the 

peak is greater than the threshold level and the mean 

of amplitudes in this region is less than or equal to a 

certain percentage of the mean of amplitudes in the 

region of the previously detected R wave, and the 

interval between the current peak and the last detected 

R peak is within a certain value, then the current peak 

is a T wave and we update the noise level. If the 

amplitude of the current peak is less than the level of 

the search back threshold, it is a noise peak; we update 

the level of noise then. At each peak, we test if a 

search back is needed, and we update the threshold 

levels according to the levels of the signal and noise. 

The search back procedure checks if the current RR 

interval is within a predefined interval. Otherwise, we 

reduce the level of the signal, if the current RR 

interval is greater than a predefined limit, then a 

search back is needed, we update the level of the 

signal. If the maximum amplitude between the last 

detected peak and the current peak is greater than or 

equal to the threshold level of the search back 

procedure, the corresponding position is considered as 

an R peak. 

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Temesghen%22&searchWithin=%22Last%20Name%22:%22Tekeste%22&newsearch=true
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3. The Particle Swarm Optimization (PSO) 

PSO is a heuristic algorithm, inspired by fish flocking 

and birds flying. It has been used in a variety of 

optimization problems and usually delivers interesting 

results. It involves many characteristics which are 

common to heuristics search algorithms such as initial 

population, calculation of the current outputs, and 

mutation of the population to potentially reach better 

solutions. 

The PSO algorithm has many advantages; among 

them, we cite fast convergence, simplicity of 

implementation using only a few lines of code, and a 

reduced number of parameters. The potential solutions 

of the population of the PSO are called particles; they 

are usually initialized with random values. Each 

particle (pi) has its proper knowledge of its 

environment, represented by the present values which 

are the input values to the fitness function, and the 

values which are the best set of parameters that give the 

best output value (pbi) for a certain particle. The present 

values of a particle are adjusted at each generation by 

the velocity vector (vi).  

The algorithm possesses a global best (pg) which is 

updated during each generation; it represents the best 

solution found so far, which is a social knowledge. The 

steps involved in the PSO algorithm are illustrated in 

the block diagram of Figure 2. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. The steps involved in the PSO algorithm. 

During each generation, the PSO algorithm updates 

its velocity vector and particles positions according to 

the following two equations. 

vi(t +1) = w vi(t) + c1.r1 (t) (pbi(t) -pi(t)) + 

c2.r2 (t) (pg(t) - pi(t))  

pi(t + 1) = pi(t) + vi(t)  

w stands for the inertia factor introduced as a 

regularization factor in (1) to prevent premature 

convergence. r1 and r2 are random numbers drawn from 

a uniform distribution in [0, 1], c1 and c2 are constants. 

 

 

 

4. The Proposed Optimization Approach 

4.1. PSO Setup 

As mentioned above the parameters of the Pan-

Tompkins are selected empirically. In particular, the 

coefficients involved in the design of the low pass and 

high pass filters are chosen to be integers in order to 

reduce the computation load of the algorithm and 

make it appropriate for real-time implementation on 

microprocessors. 

Also, the frequency response of the final resulting 

band pass filter is approximately 5-11 Hz [16]. We 

think that this range is so narrow to represent the QRS 

wave complex which needs a wider range to represent 

its abrupt change in the time domain. Hence, we 

propose a new procedure to look for optimal values of 

the Pan-Tompkins algorithm which allows better QRS 

detection. For this purpose, we formulate the 

optimization problem as a space of parameters 

searched by means of the PSO algorithm. 

Given the raw ECG signal which contains 24 hours 

of recording of the MIT-BIH Dataset, we applied the 

Pan-Tompkins algorithm with initial values of [16]. 

Our PSO-based algorithm tries to change the values of 

the Pan-Tompkins parameters to look for potential 

new best values for the next iteration. The main steps 

of the proposed optimization procedure are depicted in 

Figure 3. The proposed scheme is driven by the 

performance of the ability of the Pan-Tompkins 

algorithm to detect the QRS complex. The PSO 

adjusts the parameters of the Pan-Tompkins algorithm 

in such a way that the detection of the QRS complex 

improves with the course of time. 

 

 

 

 

 

Figure 3. Flowchart showing the steps involved in the proposed 

optimization scheme. 

In general, the most challenging thing in the 

application of the PSO is finding the appropriate 

fitness function. In our optimization scheme which 

relies on the PSO algorithm, in order to explore the 

solution space which depends on many parameters, we 

investigated three different fitness functions. 

The first fitness function is the total error, the 

second and the third ones use the sensitivity and the 

specificity with different weights. In particular, the 

first fitness function is given by  

(𝑋) =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁
1𝐹 

Where X is the vector of the parameters, here we 

consider only the total detection error. In Equation (3), 

TP stands for true positive beats, which is the number 
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(FP) is the number of beats detected by the algorithm, 

but not effectively present in the record. False Negative 

(FN) is the number of beats not detected by the 

algorithm, but present in the record. The second fitness 

function is given by 

F2(X) = (100 − Se)2 + (100 − Sp)2  

Which is the Euclidian distance of the error based on 

the Sensitivity (Se) and the Specificity (Sp).  

The third fitness function is given by 

F3(X) = 0.75 ∗ (100 − Se)2 + 

0.25 ∗ (100 − Sp)2 

Which is the weighted Euclidian distance of the error. 

In Equation (5) more importance is given to the 

sensitivity as compared to the specificity due to the 

major attention given to this ratio by medical 

practitioners. In Equations (4) and (5); the sensitivity 

and the specificity are defined as 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Sensitivity expressed by Equation (6) measures the 

ability of our detector to extract QRS complex 

positions. Indeed, the sensitivity increases with the 

reduction of the number of missed beats. Likewise, the 

specificity described by Equation (7) measures the 

ability of our detector to reduce false detections; this is 

reflected by an increase in specificity when FP 

decreases. Equations (6) and (7) are exploited in 

Equations (4) and (5) with different weights to measure 

their effectiveness in driving the optimization 

algorithm. 

Applying our proposed procedure using the adopted 

three fitness functions on the MIT-BIH dataset has led 

to the results shown in Figure 4. It is the variation of 

the fitness value as a function of the iteration number. 

We can see that F3(X) converges faster than F1(X) 

and F2(X). Moreover, from Figure 5, Equations (4) and 

(5) minimize better the error rate, and Equation (5) 

converges much faster than Equation (4). Furthermore, 

from Figures 6 and 7, which represent the evolution of 

the sensitivity and specificity, respectively, it is clear 

that using Equation (5) for optimization allows both the 

sensitivity and the specificity increasing faster, while 

Equation (3) does not achieve a considerable 

improvement of the specificity which gives rise to 

higher error rate than the other variants. 

In summary, after extensive simulations, for the 

rapid convergence, and for the best approximation of 

the minimum error rate, we selected (5) as a fitness 

function for our proposed optimization approach. 

4.2. Procedure 

The main steps of the proposed scheme are detailed in 

the following algorithm. 

 Initialization 

1. Set initial values for different parameters of the 

Pan-Tompkins algorithm (e.g., low cut off 

frequency, high cut off frequency, filter order, 

number of samples for the integration window, 

etc.,) to be the initial population of the PSO 

algorithm. 

 

 

 

 

Number of iterations 

Figure 4. The fitness function vs. the number of iterations. 

 

 
 

 

 

 

 

 

 
Number of iterations 

Figure 5. The total error vs. the number of iterations. 

 

 

 

 

 

Number of iterations 

Figure 6. The sensitivity vs. the number of iterations. 

 

 

 

 

Number iterations 

Figure 7. The specificity vs. the number of iterations. 
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vector. For each particle evaluate the fitness 

function given by (5) 
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the best local position. 
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fitness function value as the best global position. 
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1. Update the values of the velocity of each particle 

using (1). 

2. Update the position of each particle using (2).  

3. Using the new particle coordinates compute the 

new fitness function of each particle. 

4. Update the best local positions and save the 

coordinates of the particle with the minimum 

fitness function as the best global position. 

 Convergence check 

1. Repeat the “search process” steps until the user 

pre-defined number of iterations or prede fined 

accuracy is reached (convergence check). 

5. Experimental Results and Discussions 

5.1. Dataset Description 

For the sake of the assessment of the proposed 

optimization procedure, we conducted experiments on 

the basis of the benchmark MIT-BIH dataset available 

online at [21]. It consists of 48 records acquired from 

47 subjects. Each record is 30 minutes long. The total 

number of beats used in our experiments is 109494.  

It covers a wide range of arrhythmia; hence, it 

contains a wide range of QRS shapes which represent a 

big challenge for any detection system. The dataset was 

annotated independently by two experts. 

5.2. Experimental Setup 

The PSO empirical parameters were selected according 

to the following configuration: The size of the swarm 

was fixed to 20 and the number of iteration was set to 

550. The number of iterations has been set after many 

trials where it has been observed that the proposed 

algorithm converges after 500 iterations. The inertia 

weight was set to w=0.4 and both the cognitive 

coefficient c1 and the social coefficient c2 are set to 1. 

It is worth noting that the band-pass filter used in our 

optimization scheme is a Finite Impulse Response 

(FIR) filter. We preferred the FIR filter because of its 

intrinsic characteristics of stability. Though Infinite 

Impulse Response (IIR) filters design results in a lower 

filter order, it is necessary to check for stability every 

time the filter coefficients are updated. 

It is common to adopt as measures for the 

performance assessment of any QRS detection 

algorithm three measures, which are the total error 

represented by Equation (3), the sensitivity represented 

by Equation (6), and the specificity given by Equation 

(7). 

5.3. Results 

The obtained results at convergence for the optimized 

parameters of the Pan-Tompkins algorithm are 

summarized in Table 1. We note that most of the 

original Pan-Tompkins parameters were not optimal as 

the obtained results confirm. This is because the 

parameters were selected empirically. Our claim is 

supported by the results obtained by the proposed 

optimization scheme evaluated on the MIT-BIH 

dataset shown in Table 2. As expected, the obtained 

band-pass filter cut off frequencies by our procedure 

[4, 24] Hz are wider than the ones of the original Pan-

Tompkins algorithm, [5, 15] Hz. This allowed 

detecting many QRS waves that were missed by the 

Pan-Tompkins algorithm. Overall, our scheme failed 

in detecting 185 beats only. Whereas, the optimization 

scheme converged to the same length of the averaging 

window (30 samples) and the same number of the 

average RR intervals (8 intervals). 

Table 1. Obtained Parameters of the Pan-Tompkins Algorithm at 

Convergence Using the Proposed Optimization Scheme. Initial 
Value Refers to The Value of The Parameter In Pan-Tompkins. 

Record Nb. of beats 

The low cutoff frequency of the bandpass filter 4 (5) (Hz) 

The high cutoff frequency of the bandpass filter 24 (15) (Hz) 

Order of the FIR bandpass filter 250 (3 IIR) 

Window length of the integrator 30 (30) (samples) 

Minimum two successive peaks distance 99 (72) (samples) 

Length of the window RR averaging 8 (8) (samples) 

Search back signal level percentage from normal signal 

level 
1.5326 (2) 

Current peak update factor in the search back 

procedure 
0.4427 (0.25) 

Signal level update factor in the search back procedure 0.7546 (0.75) 

Distance between the current sample and the last 

detected R peak in the search back procedure 
139 (72) (samples) 

Distance between the current sample and the current 

peak in the search back procedure 
83 (72) (samples) 

RR LOW LIMIT percentage from RR AVERAGE2 90.7% (92%) 

RR HIGH LIMIT percentage from RR AVERAGE2 116.74 % (116%) 

RR MISSED LIMIT percentage from RR AVERAGE2 160.44 % (166%) 

Distance between the current peak and the last detected 

R peak 
119 (130) (samples) 

Length of the current peak region 31 (27) (samples) 

Factor of mean amplitudes of the R peak region 0.5634 (0.5) 

Current peak update factor for noise level estimation 0.2316 (0.125) 

Signal level update factor for noise level estimation 1.8228 (0.875) 

Current peak update factor for signal level estimation 0.1074 (0.125) 

Signal level update factor for signal level estimation 0.8673 (0.875) 

Second current peak update factor for noise level 

estimation 
0.1514 (0.125) 

Second signal level update factor for noise level 

estimation 
0.8745 (0.875) 

The low cutoff frequency of the bandpass filter 4 (5) (Hz) 

The high cutoff frequency of the bandpass filter 24 (15) (Hz) 

Order of the FIR bandpass filter 250 (3 IIR) 

Window length of the integrator 30 (30) (samples) 

Minimum two successive peaks distance 99 (72) (samples) 

Length of the window RR averaging 8 (8) (samples) 

Search back signal level percentage from normal signal 

level 
1.5326 (2) 

Current peak update factor in the search back 

procedure 
0.4427 (0.25) 

Signal level update factor in the search back procedure 0.7546 (0.75) 

Distance between the current sample and the last 

detected R peak in the search back procedure 
139 (72) (samples) 

Distance between the current sample and the current 

peak in the search back procedure 
83 (72) (samples) 

RR LOW LIMIT percentage from RR AVERAGE2 90.7% (92%) 

RR HIGH LIMIT percentage from RR AVERAGE2 116.74 % (116%) 

RR MISSED LIMIT percentage from RR AVERAGE2 160.44 % (166%) 

Distance between the current peak and the last detected 

R peak 
119 (130) (samples) 
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Table 2. QRS Detection Results by the Proposed Optimization 
Scheme. Here Error (%)=100*(FP+FN)/(TP+FP+FN). 

Record Nb. of beats TP FP FN Error (%) Sp % Se % 

100m 2273 2273 0 1 0.04 100 99.96 

101m 1865 1865 0 0 0 100 100 

102m 2187 2187 0 0 0.0 100 100 

103m 2084 2084 0 0 0.0 100 100 

104m 2229 2224 5 0 0.22 99.78 100 

105m 2572 2551 21 1 0.86 99.18 99.96 

106m 2027 2027 0 0 0.0 100 100 

107m 2137 2137 0 3 0.14 100 99.86 

108m 1763 1755 8 0 0.45 99.54 100 

109m 2532 2532 0 0 0 100 100 

111m 2124 2124 0 1 0.05 100 99.95 

112m 2539 2539 0 0 0.0 100 100 

113m 1795 1791 4 1 0.28 99.78 99.94 

114m 1879 1875 4 1 0.27 99.79 99.95 

115m 1953 1953 0 1 0.05 100 99.95 

116m 2412 2407 0 14 0.58 100 99.42 

117m 1535 1535 0 0 0 100 100 

118m 2278 2277 1 0 0.04 99.96 100 

119m 1987 1986 0 0 0 100 100 

121m 1863 1863 0 1 0.05 100 99.95 

122m 2476 2476 0 0 0 100 100 

123m 1518 1518 0 0 0.0 100 100 

124m 1619 1619 0 0 0.0 100 100 

200m 2601 2599 2 2 0.15 99.92 99.92 

201m 1963 1960 3 10 0.66 99.85 99.49 

202m 2136 2136 0 3 0.14 100 99.86 

203m 2980 2977 3 17 0.67 99.9 99.43 

205m 2656 2656 0 3 0.11 100 99.89 

207m 1860 1856 4 5 0.48 99.79 99.73 

208m 2955 2951 2 10 0.41 99.93 99.66 

209m 3005 3005 0 0 0 100 100 

210m 2650 2649 1 7 0.3 99.96 99.74 

212m 2748 2748 0 0 0 100 100 

213m 3251 3251 0 1 0.31 100 99.97 

214m 2262 2262 0 1 0.04 100 99.96 

215m 3363 3365 0 3 0.09 100 99.91 

217m 2208 2206 0 0 0 100 100 

219m 2148 2158 0 0 0 100 100 

220m 2048 2048 0 0 0 100 100 

221m 2427 2427 0 1 0 100 100 

222m 2483 2463 19 0 0.77 0.24 100 

223m 2605 2605 0 0 0.0 100 100 

228m 2053 2047 8 1 0.44 99.61 99.95 

230m 2256 2256 0 0 0.0 100 100 

231m 1571 1998 0 0 0.0 100 100 

232m 1780 1768 11 0 0.73 99.38 100 

233m 3079 3079 0 1 0.03 100 99.97 

234m 2753 2752 1 0 0.04 99.96 100 

Total 109494 109397 97 88 0.169 99.91 99.92 

 

For a fair comparison with the existing methods, we 

compared our optimization scheme with the state-of-

the-art methods. As shown in Table 3, our optimization 

scheme outperforms all time-domain methods including 

the well-known Pan-Tompkins algorithm when using 

approximately the same number of test beats. The only 

exception which produced the best result (0.15% of 

error) used only 101579 beats, which is less than our 

total umber of test beats by more than 7900 beats. It is 

worth noting that our optimization produced 99.92% of 

sensitivity and 99.91% of predictivity. 

We developed this optimization approach to enhance 

the monitoring of heart disease which is the leading 

cause for death and to contribute to the improvement of 

the detection process. Generally, repeated failures of 

the QRS detector influence the disease detection 

process and this has a bad influence on the diagnosis 

result. The obtained results for QRS detection presented 

in this manuscript give us more confidence in the 

computerized methods for disease identification. 

 

 

Table 3. Comparison of the Performance of the Proposed Scheme 

with State-of-the-Art Methods. Here Error 
(%)=100*(FP+FN)/(TP+FP+FN. 

Method Nb of beats 
Error 

(%) 
Se % Sp % 

Geometrical matching [23] 60431 2.92 97.94 99.13 

Zero crossing [18] 109428 1.71 97.44 99.13 

Short Time Fourier Transform 

[25] 
109982 1.3 99.1 99.6 

Moving average [4] 102654 0.96 99.6 99.78 

STFT using Adap. Threshold 

[22] 
109011 0.93 99.56 99.52 

MaMeMi filter [3] 109494 0.88 99.68 99.44 

AdaptativeThresholding [6] 109949 0.72 99.54 99.74 

Pan-Tompkins [16] 109809 0.68 99.76 99.56 

Hamilton [7] 109267 0.54 99.69 99.77 

Low cost [15] 109494 0.49 99.8 99.71 

Morphological filtering(VLSI) 

[30] 
109510 0.43 99.76 99.82 

Multiscale morphological 
filtering [29] 

109510 0.39 99.81 99.8 

Two moving averages [5] 109985 0.35 99.78 99.87 

CNN Detector [26] 105078 0.32 99.77 99.91 

Efficient Detection [12] 106310 0.29 99.76 99.95 

Fractional order operator [2] 107632 0.29 99.86 99.86 

Shannon energy envelope 

estimation [14] 
109809 0.2 99.93 99.88 

Proposed optimized 

Pan-Tompkins algorithm 
109494 0.17 99.92 99.91 

Wavelet Detection [13] 101579 0.15 99.89 99.94 

Concerning the execution time, the proposed 

scheme requires 1.3 seconds to detect 2273 beats from 

the 100m MIT/BIH record, which has a duration of 30 

minutes and contains 650000 samples, using an Intel 

i5 M480 2.67 GHz with 4GB of RAM running on 

MATLAB software, corresponding to 57.19 ms to 

detect a beat, or 2 µs to process a sample, making our 

scheme suitable for real-time and embedded systems. 

Our detector outperforms all existing methods except 

two works, Nguyen et al. [15] with 0.16 seconds to 

process 30 minutes of recording, and 0.43 seconds at 

mean reported by Elgendi [5]. However, the proposed 

scheme is superior in detection and accuracy. On the 

benchmark MIT arrhythmia, our algorithm generates 

0.17% of DER error, where Nguyen et al. [15] 

reported 0.49% of error. Also, in terms of sensitivity 

and specificity, the work of Elgendi [5] is inferior to 

ours with 99.78% of sensitivity and 99.87% of 

specificity, where our detector achieved 99.92% of 

sensitivity and 99.91% of specificity. 

For the other knowledge works, no method is faster 

than our scheme. For instance, the method of Bal et al. 

[1] spends 1.92 seconds, Hashim et al. [9] spends 2.97 

seconds, Xiang et al. [26] spends 14.53 seconds, and 

Karimipour et al. [11] spends 18.18seconds to process 

30 minutes ECG record, respectively. Also, the 

algorithm of Kholkhal et al. [12] requires 1476 

seconds to detect 15027 beats, which means that it 

needs 223.26 seconds to process 2273 beats. Finally, 

the work of Saadi et al. [20] requires 2.3 hours to 

process 4271185 samples, which is equivalent to 

1260.07 seconds to process 650000 samples. 

Therefore, our scheme is the best and is suitable for 

low cost and mobile devices. 
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6. Conclusions 

In this paper, we proposed an optimization scheme that 

exploits the features of the PSO algorithm to search for 

the optimized parameters of the well-known Pan-

Tompkins algorithm. Though the PSO algorithm is very 

simple, it allowed us to find a set of optimal parameters 

for enhancing the QRS complex and then setting the 

value of the thresholding to minimize then umber of 

false detection all in only one global optimization 

approach. In particular, the proposed scheme efficiently 

determines a set of parameters using an optimization 

algorithm driven by sensitivity and specificity. The 

main contribution of this paper is the generation of the 

parameters of the detection algorithm automatically. 

Whereas, the parameters of other algorithms are set 

empirically. 

To the best of our knowledge, the PSO algorithm has 

not been used to optimize the parameters of the QRS 

detection scheme. Our proposed scheme outperforms 

the state-of-the-art time-domain algorithms that are 

published in the literature so far.  

The high detection rate achieved by our proposed 

approach may help clinicians in improving the 

heartbeat segmentation process which is time-

consuming if done manually. Further work could be 

something related to developing a parallel scheme to 

reduce the processing time. 
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