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Abstract: Nowadays, biometric recognition has been widely applied in various aspects of security applications because of its 

safety and convenience. However, unlike passwords or tokens, biometric features are naturally noisy and cannot be revoked 

once they are compromised. Overcoming these two weaknesses is an essential and principal demand. With a hybrid approach, 

we propose a scheme that combines the Artificial Neural Network (ANN) and the Secure Sketch concept to generate strong 

keys from a biometric trait while guaranteeing revocability, template protection and noisy tolerance properties. The ANN with 

high noisy tolerance capacity enhances the recognition by learning the distinct features of a person, assures the revocable and 

non-invertible properties for the transformed template. The error correction ability of a Secure Sketch concept’s construction 

significantly reduces the false rejection rate for the enroller. To assess the scheme’s security, the average remaining entropy is 

measured on the generated keys. Empirical experiments with standard datasets demonstrate that our scheme is able to achieve 

a good trade-off between the security and the recognition performance when being applied with the face biometrics.  
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1. Introduction 

Nowadays, the biometrics has tremendously risen in the 

use for security purposes because of its safety and 

convenience. However, the biometrics faces the 

challenges of heavy noise and non-cancellable issues. 

Noisy biometric templates cause difficulties in 

discriminating different people, while non-cancellable 

property does not allow user to reuse the biometric trait 

once a biometric template is compromised. 

Our motivation is to construct a biometric-based 

strong key generator satisfying the low error rates, 

revocable template together with the high template 

protection ability which ensures the original biometric 

traits cannot be exploited even if the biometric key is 

cracked. Our method is a hybrid approach-based 

scheme flexibly combining and modifying two well-

known models: the Artificial Neural Network (ANN) 

[8, 17] and the Secure Sketch concept [6]. There are 

some researches utilizing the ANN for improving the 

recognition performance [1, 18]. Apart from this 

purpose, our ANN is applied to primarily assure the 

revocable and non-invertible properties for the 

transformed template. A construction of the Secure 

Sketch concept significantly provides the error 

correction ability which reduces the false rejection rate 

for the enroller. In our experiments, face biometrics and 

the Average Remaining Entropy (ARE) are chosen to 

evaluate the performance and security of the proposed  

scheme. The ARE is defined as the average number of 

bits of the generated key, which distinguishes an 

individual from a given population. This measurement 

is bounded by A Lower Bound ARE (LARE) and an 

Upper Bound ARE (UARE). Aside from that, a trade-

off between the recognition performance and the 

remaining entropy when applying the proposed 

scheme is also presented. Maintaining a good balance 

between the efficiency and safety is significant since 

the higher performance a method achieves, the lower 

security level it gains. The experiments showed that 

the proposed method achieves a good trade-off when 

applying with the face biometrics. 

Our scheme can be utilized for both authentication 

and data protection purposes. For examples, it is able 

to be implemented as a checking system placed at an 

office door to verify employees through their faces; or 

a mobile/desktop application to authenticate users and 

encrypt data. 

The remaining parts of this paper are organized as 

follows. Section 2 reviews related works, followed by 

our proposal in section 3 and security analysis in 

section 4. The next section demonstrates experiments 

about the performance and the remaining entropy. 

Section 6 presents some intense discussions about our 

scheme. Finally, section 7 provides conclusions. 
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2. Related Work 

A biometrics-based security system should possess the 

four following properties: diversity, revocability, 

template protection and performance [15]. However, 

these properties are satisfied with different degrees 

depending on the method applied by the system. In 

general, a biometrics-based security method could be 

classified into two categories: Feature Transformation 

(FT) and Biometric Cryptosystem (BC) [9]. 

The FT approach applies a transform function, 

which uses a random key or a user-specific password to 

convert the biometric template to the transformed 

template. The FT approach could provide the diversity 

and revocability properties since with a biometric 

template of an individual, many keys and 

corresponding transformed templates could be issued. 

The FT is categorized into Invertible or Non-invertible 

transform. 

The BC approach combines Biometrics and 

Cryptography for the purpose of either protecting 

cryptographic key by using biometric features called 

Key Binding or directly generating a cryptographic key 

from biometric features called Key Generating. 

 Key Binding: The main advantage is the 

independency between the cryptographic key and the 

biometric feature. Therefore, the key is easily 

reissued with high entropy. However, the drawback 

of this approach is that the diversity, revocability and 

template protection properties are not guaranteed in 

general when the key is compromised. The typical 

works in this approach are Fuzzy Commitment [11] 

and Fuzzy Vault [10]. 

 Key Generating: A secret key is directly produced 

from biometrics. This method is especially 

appropriate for cryptography applications and 

template protection property. However, one of the 

principal challenges of this approach is how to 

optimize the tradeoff between key stability and key 

entropy. A typical research for this approach is the 

combination of secure sketch and fuzzy extractor 

[6]. Several constructions for the Secure Sketch 

concept are in [13, 20]. 

Another approach called hybrid scheme that combines 

two or more fundamental methods introduced above. 

Nagar et al. [14] and Chafia et al. [4] integrated the 

concept of the Fuzzy Commitment in the construction 

of fingerprint Fuzzy Vault in order to improve the 

trade-off between authentication performance and 

security of the biometric templates. Chen and Chen [5] 

introduced a hybrid scheme integrating Key Binding 

and Non-invertible transformation to satisfy diversity, 

template protection and revocability requirements. 

Nandakumar et al. [16] combines key binding and 

salting when applying fuzzy vault together with 

password enhanced the revocability and template 

protection against cross-matching attack. However, the 

employment of password in the FT approach causes 

inconveniences that contradict with the motivations of 

biometric-based security system.  

3. Proposed Scheme 

3.1. Overview 

An overview of our solution is shown in Figure 1. In 

the enrolment stage, k feature vectors Fj (j=1…k) of 

type R
m
 from the Feature Extraction and one random 

vector R of type R
n
 generated by the Random Vector 

Generation serve as training inputs and a shared 

training output respectively for the ANN. After the 

training process is completed, all k feature vectors Fj 

are transferred to the trained ANN to generate the k 

corresponding outputs Oj of type R
n
. In the 

Quantization step, the random vector R is then 

converted into a discrete domain vector Enrolled 

Sample (ES) of type N
n
 with the help from 

quantization vector Q of type N
n
 extracted from the set 

of vectors Oj. Finally, the Sketch Generator takes ES 

and the error tolerance capacity δ (δ ∈ ℕ) to generate a 

distance vector D of type Z
n 

which is considered as 

helper data. In this stage, the vector ES plays as a 

secret key while ANN structure data and the two 

vectors Q and D are helper data stored to recover the 

vector ES in the authentication stage. A hash version 

Hash ES of ES is stored instead of ES. 

In the authentication stage, the trained ANN 

receives a feature vector F’ of type R
m
 from the 

Feature Extractor to generate an output vector O’ of 

type R
n
. The vector O’ is then converted to a vector 

Authentication Sample (AS) of type N
n
 with the 

assistance from vector Q by the Discrete 

Transformation step. The distance vector D is 

retrieved from the stored helper data, combined with 

AS to generate an ES’ vector of type R
n
 by the 

Recover step. Finally, Hash ES will be compared with 

Hash ES to validate whether matching or not. 

 

Figure 1. General processing steps in enrolment and authentication 

stages. 
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3.2. Feature Extraction and Random Vector 

Generation 

The purpose of these two components is to prepare the 

training data for the ANN. Feature Extraction is a 

component extracting the feature vectors in numerical 

format from a certain biometric trait. The output of the 

Feature Extraction component that applies Eigenface 

method [21] on face biometric is k feature vectors Fj 

(j=1…k) of type R
m
 from k images of an enroller. The 

scheme does not aim to the method of how to achieve 

the biometric data. Thereby, the biometric feature 

extraction process is not mentioned here. Our scheme 

could be applied to any kinds of biometric traits and 

any feature extraction algorithms. The only requirement 

is that the extracted feature data is a real number vector. 

The Random Vector Generation prepares a vector 

R=(r1, r2,…, rn) of type [0,1]
n
 which each ri is generated 

randomly and independently. k training samples are 

constructed for ANN training phase. Each training 

sample includes a feature vector as a training input and 

the same vector R as training output. 

3.3. Artificial Neural Network 

The ANN has been widely applied in many biometrics-

based recognition systems such as [1, 2, 18]. The ANN 

is suitable to recognize the enrollers and deals with 

high noise biometric templates since it can approximate 

any functions [17] and is highly tolerant of noisy data 

[8]. The authors in [1] proposed a parallel combination 

of three ANNs: radial basis function, probabilistic and 

general regressive neural networks together with a 

majority voting to identify speakers. The experiment 

achieves 97.5% accuracy. However, this approach faces 

with two issues. Firstly, the three neural networks need 

to be retrained when a new user enrols because set of 

classes have been changed. Secondly, the system is not 

suitable for large group since the identification ability is 

reduced when the number of classes increases if there 

are many enrollers. 

The traditional utilization of ANN applies the 

regression feature which is trained by many input 

classes and corresponding outputs to approximate the 

true function. The trained ANN is then used to classify 

or predict outputs for new input classes. This utilization 

may suffer from either the issue of over-fitting or 

under-fitting. While over-fitting produces excessive 

output errors for new input classes, under-fitting causes 

quite similar outputs from different input classes. 

Although the regression feature is used in our scheme, 

there are some key alterations of the proposed ANN 

needed to be addressed: 

 Each ANN is trained for recognizing only one 

enroller and not utilized for prediction purpose. The 

ANN does not care about the true outputs of new 

input classes. The ANN’s main functionality is to 

verify the enroller through mapping her/his input 

feature vectors to a random vector R. After the 

ANN process is the error correction steps to 

provide cryptographic ability and to improve the 

recognition performance with the ERR=2.8%. With 

our approach, when a new person enrols to the 

system, a new ANN is created and trained for only 

that user. All ANNs in the system are independent 

to each other. Accordingly, the retraining processes 

for other ANNs are not needed, and the group of 

enrollers is enlarged easily. 

 Over-fitting is not a drawback of our scheme. When 

the trained ANN tends to be over-fitting, the 

outputs of new input classes will become 

excessively variant with the random vector R.  

 Under-fitting is a critical issue in the worst case 

because the trained ANN is equivalent to a constant 

function that produces the same key for all input 

classes. However, this issue could be easily avoided 

by sufficient training iterations and hidden layer 

with the enough number of nodes. 

The ANN is specific for an individual case study. In 

this paper, the ANN is employed rather than 

researched. Therefore, how to generally train an ANN 

to optimally approximate a function is out of scope of 

this paper. However, in our case study, training 

properties are established as follows. 

 The multilayer feed-forward neural network is 

applied with one hidden layer having the number of 

nodes indicated by (1). The number of input nodes 

and output nodes are respectively the number of 

dimensions of feature vector and vector R. 

 Learning rate=0.1 and Momentum=0.8 to guarantee 

the coverage and to prevent the local minimum 

issues. The Sigmoid function   1
1

xf x
e



 is 

chosen for the activation function. 

.    .    * .  No hiddennodes No input nodes No output nodes  

3.4. Quantization 

While After the ANN training, all k feature vectors Fj 

are presented to the trained ANN to produce k 

corresponding outputs Oj = (Oj1, Oj2, …,Ojn), (j=1..k). 

It is difficult to expect the outputs Oj to exactly equal 

the random vector R. However, these outputs could be 

similar with the vector R at some degree of accuracy. 

The first purpose of Quantization is to generate a 

quantization vector Q =  1 2
,  , , 

n
q q q  which extracts 

the stability degree of the set of vectors Oj by 

Equation (2). 

    |1  0 * 10 * ,  , 1, ,
q q

i ji li
q Maxq O O j l k j l      

An example with k = 2, n = 3, O1 = (0.8365, 0.247892, 

0.64829) and O2 = (0.8364, 0.2478968, 0.6477) then 

the quantization vector Q = (3, 5, 2). 

(1) 

(2) 
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The second purpose is to convert the vector R from 

continuous domain to discrete domain by the Equation 

(3). The Round(x) is a function returning the nearest 

integer of the input x. The output ES = (ES1, ES2, …, 

ESn) is a vector which plays as the enrolled sample and 

the secret key of the system. 

 Round *10 iq

i i
ES r  

3.5. Sketch Generator 

As introduced above, all feature vectors Fj in the 

enrolment stage are mapped to the secret key ES. In the 

authentication stage, a feature vector Fe’ of the enroller 

which may not present in the training dataset is not 

guaranteed to output exactly the ES. Therefore, an error 

correction step needs to be applied to precisely recover 

the enrolled sample ES. Our construction bases on the 

Secure Sketch concept described in Figure 2. Given an 

ES, the Sketch Generator (SG) produces a distance 

vector D and discards ES. In the authentication stage, 

an authentication sample AS which is closed enough to 

ES could drive exactly to ES with the assistance from D 

through the Recover component. The construction and 

terminologies are described as follows. 

 Definition 1. δ-codebook (which is notated as cbδ) is 

a set of codewords spreading along the domain ℕ 

with a given error tolerance capacity δ (δ ∈ ℕ). The 

first codeword is zero, and the distance θ between 

any two consecutive codewords is measured by 

Equation (4). 

2* 1       

                       cbδ = {  |    mod     0,     } c c c   

 Definition 2. 
U

cb


 is a set of all codewords which 

belong to cbδ and spread through the domain [0, U] 

with U ∈ ℕ. 

     
U

cb


 = {  |       ,    mod     0,     }c c U c c    

 Definition 3. Map(x, δ) is a mapping function, which 

returns the nearest codeword of x in the cbδ. The 

following formula could be inferred. 

Map(x, δ) = 〈c | c - δ ≤ x ≤ c + δ, x ∈ N, δ ∈ N, c ∈ cbδ 〉 

The distance θ guarantees that a value x (x ∈ ℕ) is 

always mapped to a unique codeword in a given cbδ. 

The public information generated from the Sketch 

Generator (SG) is a distance vector D =  1 2
,  , , 

n
d d d  

showed in Equation (5). 

     1,   : , Map ,    
i i i i

i n SG ES d ES ES   

 Lemma 1. The function Map(x, δ) of type [0, U]  
U

cb





 is a surjective function. 

 Proof
1
. The lemma 1 holds if two following 

conditions are satisfied. 

                     
   0,   :  ! Map ,       x U c x   

U
c cb






  (6)

 

c    
U

cb





:    0,      Map ,    x U c x   

First, Equation (6) will be proofed by the contrary 

method with the following assumption. 

1 2 1 2
,     

U
c c cb c c






       1  2

: Map ,     Map ,    x c x c   

  { definition 3 } 

1 2 1 2
,     

U
c c cb c c






     

   1 1 2 2:            c x c c x c     

⇒ { arithmetic } 

1 2 1 2 2 1
,       :            

U
c c cb c c c x c




 


         

⇒ { arithmetic } 

1 2 1 2 2 1
,       :     2  

U
c c cb c c c c







       

⇒ { 
2 1

  2c c    + 1 according to (5) } 

False. 

Second, Equation (7) will be proofed by the contrary 

method with the following assumption: 

 
U

c cb





  :    0,      Map ,   x U c x   

We have: 

 Map  ,   x c   

⇒ { definition 3 } 

 –c x c      

⇒ {    0, x U ; so the range [c – δ, c + δ] must be out 

of [0, U] } 

 –c U    

⇒ { arithmetic } 

c U     

⇒ {  
U

c cb





  } 

False. 

The surjective property of the map function guarantees 

that the 
U

cb





 does not include any redundant and 

deficient codewords when mapping the values of 

domain [0, U]. Consequently, the precise number of 

codewords for the domain [0, U] using the cbδ is

  1
2 1

U 


 


. 

 
Figure 2. The Secure Sketch concept. 

 
1We use a notation exemplified by  

 〈Statement 1〉 
⇔  {Condition} 

〈Statement 2〉 
to denote that Statement 2 is inferred from Statement 1 via the 

Condition 

(3) 

(4) 

(5) 

(6) 

(7) 
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3.6. Sample Recover 

In the authentication stage, a feature vector from 

feature extractor is fetched into the trained ANN to 

generate an output vector O’. With the help of vector Q, 

an authentication sample AS is generated in Discrete 

Transformation step by applying Equation (3) on the 

output vector O’. After that, the Recover step takes AS 

and the distance vector D =  1 2
,  , , 

n
d d d  to yield a 

recovered vector ES’ through Equation (8). 

   1,   :  ' Map ,     i i i ii n ES AS d d  

 Lemma 2. Given an error tolerance capacity δ, the 

Recover step can precisely reproduce the ES if and 

only if for all dimensions, the difference between ASi 

and ESi is less than or equal to δ. 

 1,   :  '
i i i i

i n ES ES AS ES        

 Proof: According to Equation (8),  

   1,   :  ' Map ,     i i i ii n ES AS d d  

 { (5)  Map , iES c  } 

   1,   : ' Map ,        i i i ii n ES AS ES c ES c  (*) 

Two following clauses need to be proved: 

1.  1,   :   '      i i i ii n AS ES ES ES  

According to (*) 

   1,   : ' Map ,        i i i ii n ES AS ES c ES c      

  { definition 3   i iAS ES   } 

 1,   :  ' c     i i ii n ES ES c ES  

2.  1,   : '        i i i ii n ES ES AS ES   

This clause is equivalent to the clause 

 1,   :   '      i i i ii n AS ES ES ES  

According to (*), we have 

   1,   : ' Map ,        i i i ii n ES AS ES c ES c    

 { definition 3    i iAS ES   } 

 1,   :  ' c' c( ' )      i i ii n ES ES c ES c  

From the lemma 2, to recover an enrolled sample, 

information need to be utilized is the trained ANN, Q, 

𝛿 and D which are publicly stored as helper data. 

However, our proposed model is designed to eliminate 

the demand for storing the error tolerance δ. The 

purpose is to strengthen the security of the system 

while still guaranteeing the recognition performance. 

The remaining parts of this section will analyze in 

details the two cases of how to recognize a genuine as 

well as the safety of ES against imposters when δ is not 

supplied. Let’s name the above two cases are the 

enroller case and the imposter case. Let δ and δ’ be the 

error tolerance capacity at the enrolment and 

authentication stage respectively. In both cases, the 

only way to recover ES is to scan the value δ’ in 

10max ,  min 1
2


  

    

iq

id . The lower bound max 𝑑𝑖  is 

used because      ,   1, 
i

d i n     , and the upper 

bound 10min 1
2


  

  
  

i
q

 is chosen to guarantee that 

there are at least two codewords in a codebook. 

 The enroller case:  1,   :    i ii n AS ES   

The scheme scans the tried δ’ with the beginning 

value max
i

d . When δ’ equals δ, the ES’ will 

certainly match the ES (follow the lemma 2). The 

number of trying is small because the δ is shared 

among all dimensions. Therefore, the secret key ES 

could be easily recovered without the awareness of δ. 

 The impostor case:  1,   :    i ii n AS ES   

 Lemma 3. Given an ES and δ, the first necessary 

condition for an imposer with a δ’ value could 

recover to ES is δ’ > δ. 

 Proof. 

 1,   :  '   i ii n ES ES  

   { (5) (8)  arithmetic} 

     1,   : Map ,  '  Map ,    i i ii n AS d ES   

⇒ { only one codeword of cbδ‘ in range 

[ ,     ']   i i i iAS d AS d   } 

   1,   :  Map ,     '        i i i i ii n AS d ES AS d     { (5) 

  arithmetic } 

 1,   :     i ii n AS ES   

⇒ { condition of impostor case } 

δ’ > δ 

 Lemma 4. Given an ES and δ, the second necessary 

condition for an imposer with a δ’ value (δ’ ≠ δ) 

could recover the ES is  

              1,  : Map ,   2 ’ 1 0    ii n ES mod  . 

 Proof. 

 1,   :  '   i ii n ES ES  

   { (5) (8)  arithmetic} 

     1,   : Map ,  '  Map ,    i i ii n AS d ES   

  { definition 1   definition 3   Let 𝐼𝑖
𝛿 ′

 be the 

index of the codeword in the cbδ‘ which  i i
AS d  is 

mapped to } 

     1,       : Map , 2 1
 

     i i ii n I ES I
 

   

⇒  { arithmetic } 

     1,  : Map ,   2 ’ 1 0    ii n ES mod   

Because the quantization range of the i
th
 dimension 

is [0, Ui], with Ui = 10 iq
, the set of codewords for i

th
 

dimension based on δ value is i
U

cb





 (according to 

lemma 1). The necessary condition mentioned in 

lemma 4 means that every codeword  Map ,
i

ES   of 

ES must concurrently belong to two corresponding 

codebooks: i
U

cb





 and iU

cb


 

 
. These shared 

codewords are common multiples of  2δ 1  and 

(8) 
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 2 ' 1  . Without loss of generality, the least common 

multiple can be expressed as   δ
2 1    with

δ 1 2
.

l
      , 1l   and γ

l
 are prime numbers 

greater than 2 because  2 1   and  2 ' 1   are odd 

numbers. 

 Lemma 5. The probability P of the necessary 

condition mentioned in lemma 4 is less than  

 '

1 2 1

min 10  

 
 

 
 

 
i

n

q




 

 

 Proof. Let 𝑃𝑖  be the probability that the second 

necessary condition is satisfied for the i
th
 dimension 

of vector ES. Following the lemma 1, the codebook 

for i
th
 dimension with respect to δ is  

iU
cb





 (Ui = 10 iq ) and contains 

10  1
2 1

iq

i



  


 codewords. The number of 

codewords belonging to both codebooks: iU
cb




  and 

iU
cb


 

 
 for the i

th
 dimension is 

 
  ' '

2 1
1 1

2 1

  
   



i i
i

 




  
. 

The 
i

P  is estimated as follows. 

i

i i i i

1   1
1 1 1 1

10 δ
1

2δ 1

 

 

 
 

      
  




i

i

i
i q

P  

 

 

   

 iq
' ' '

1 1 1 2 1 1 2 1

10 δ 10   min 10  

2δ 1

 
     

  



i i
q q

  

 

   

 

 
i

'i 1

1 2 1

min 10  


 
 

   
 

 


i

n
n

q
P P





 

 

 

 Definition 4: Given an error tolerance δ, an ES when 

mapping to cbδ is called “δ-quality” on the range 

 , lower upper  if the second necessary condition 

mentioned in lemma 4 does not satisfy for every δ’

   , lower upper , δ ≠ δ’. Conversely, it is called “δ-

unquality” on the above range. 

According to lemma 3 and 4, the ES will not be 

recovered in the imposter case when the second 

necessary condition is not satisfied for every 

 10
2’ 1, min 1

qi      , which means that the 

vector ES is “δ-quality” on the range 

 10
21, min 1

qi     . Fortunately, generating a “δ-

quality” ES is simply because the probability for an 

occurrence of “δ-unquality” case, called TP, is 

extremely small. According to the lemma 3 and 5, the 

TP is evaluated as follows. 

 

10
1

2

'1

1 2 1

10  

qi

i

nmin

q
TP

min



 

 
 

 
 



 
  

 
 


 

Let 
 

2 1
10  iq

R
min







 . The series prime numbers 

of distinct    values are sorted in ascending order: 3, 

5, 7, 3*3, 11, 13, 3*5, 17, 19, 3*7, 23 … One of many 

upper bounds could be used to estimate the value of 

TP. 

1 1 1 10 1
      4

3 5 7 2 9

i
n n n nq

TP R R R min R
         
                             

 

An example with  min 3iq  , δ = 10, 40n   then 

TP < 9.25302*10
-19

 + 5.746*10
-27

 + 3.603*10
-32

 + 

3.159*10
-33

 < 9.2531*10
-19

. That concludes the 

probability of a “δ-unquality” case is extremely small, 

when n is large enough. Therefore, it is much more 

effective and easier to design a testing algorithm than 

a generating algorithm for a “δ-quality” vector ES. If a 

vector ES is checked as “δ-unquality”, simply another 

ES  will be generated. The testing algorithm, called 

QUALITY_TEST, is as follows. 

Algorithm 1: QUALITY_TEST 

Input:  

   δ: error tolerance capacity (ETC) 

   [lower_δ, upper_δ]: range of ETC 

   ES = (ES1 ES2 … ESn) 

Output: True or False 

begin 

   ci = Map( iES ,   ) ,  1 i n  

   for δ’ = lower_δ to upper_δ 

      v = 0 

      for i = 1 to n 

         if ci mod (2δ’+1)   0 then v = v+1 endIf 

      endFor 

      if v = 0 then return False endIf 

   endFor 

   return True 

end 

The δ value must be determined before the enrolment 

stage finishes. After the register, the enroller will be at 

a certain degree of performance and security. When 

the δ value rises, the performance will increase while 

the security will decrease and vice versa. The 

proposed scheme can adjust the δ value to satisfy the 

tradeoff between security and performance without 

retraining the ANN. The adjustment of δ is hardly 

unsuccessful due to the extremely small value TP. The 

algorithm δ-ADJUSTMENT for changing the δ value 

is as follows. 

Algorithm 2: δ-ADJUSTMENT 

1. Firstly, authenticate the enroller successfully. As a 

result, the ES and δ values are recovered.  

2. Increase or decrease the δ value. 

3. If (QUALITY_TEST=False), this new δ value is omitted. 

Turn back to step 2 to try another δ. 

4. Else, recalculate the new vector D. The new δ value is 

successfully updated. 
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4. Security Analysis 

As mentioned in Figure 1, the helper data comprise the 

trained ANN, a quantization vector Q and a distance 

vector D. However, the δ value is not stored due to 

previous analysis. This section assesses the security of 

our proposed model based on examining the two 

aspects of exhausting and neighbourhood search space.  

Firstly, the exhausting search space of the secret key 

ES is examined. It is clear that if an attacker discovers 

the codeword vector that the secret key ES is mapped 

to, ES will be exactly obtained with the assistance from 

the vector D. Therefore, the search space of ES is 

degraded to the search space of codeword vectors that 

ES is mapped to. Based on the vector Q, the domain for 

i
th
 dimension of key ES is the range [0, 10 iq ]. 

Following the lemma 1, the codebook for the ESi is 
iU

cb





 (Ui =10 iq ) which contains  10 1
2 1

iq 


 


 

codewords. Because each ESi could be mapped to an 

arbitrary codeword in iU
cb





, the search space of ES is 

measured by Equation (9). With the example 

mentioned in sec. 3.6 when qi = 3 for all 40 dimensions 

and δ = 10, the search space is 224 bits. In the case of 

the scanning value δ’ is different from the δ (δ’ ≠ δ), 

even a brute-force attack still cannot reveal the secret 

ES because the attacker is exhausting on a different 

search space which is constructed from a cbδ‘. As a 

result, the search space for the secret key ES is 

practically larger than the measurement in Equation (9) 

as our schema is designed to conceal the δ value. 

1

10
1

2 1

i
n q

i

SeachSpace
 





 



 
 
 

  

Based on the above exhausting search space, the brute 

force method is obviously not an effective attack. 

Another kind of striking, called neighbourhood attack 

may also occur. The neighbourhood attack bases on the 

intruder’s authentication sample AS which is generated 

by the feature vector, the trained ANN and the vector Q 

to recover the secret key. The intruder will first explore 

on a neighbourhood space of the codeword vector of 

the AS. If the codeword vector of the ES does not exist 

in this neighbourhood space, the space needs to be 

expanded to obtain the ES. 

With a given secret key ES and an authentication 

sample AS from an intruder, the Equation (10), which is 

measured by the number of codewords, indicates the 

distance between the intruder key and the secret key for 

each dimension i. In order to discover the secret key, 

the intruder must execute at least 
1
( 1)

n

i
DIS   trials; 

and the maximum is   1
n

n

i i
Max DIS   to guarantee that 

the ES will be discovered in AS’s neighbourhood search 

space. As a consequence, the search space, which is 

measured in bits, is evaluated through a lower bound 

(11) and an upper bound (12). This is called remaining 

entropy of the ES with respect to the AS. 

   , ,

2 1

 




i i i
i

Map ES Map AS d
DIS

 


 

 ( | ) log 1 
n

lower i

i

E ES AS DIS  

 ( | ) * log 1   
n

upper i iE ES AS n Max DIS  

The Equations (11) and (12) just indicate the 

remaining entropy of an ES with respect to an AS of an 

intruder. With a given secret key ES and a set of N 

authentication samples AS from a population, the 

Equations (13) and (14) respectively represent the 

lower bound and the upper bound of the average 

remaining entropy of the ES. The Equation (15) is the 

average remaining entropy of the i
th 

dimension. 
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Let MDIS be the maximum distance for all DISi 

(i=1..n). The intruder does not know how the MDIS is. 

In order to search the secret key, he supposes an upper 

bound neighbourhood search space delegated by a 

corresponding MDIS’. Sequentially, this space is 

explored. If the correct codeword vector is not found, 

the upper bound neighbourhood space must be 

expanded to MDIS’’ which is larger than MDIS’ and 

an exploration is performed on this new space (notice 

that the neighbourhood space with MDIS’ is not a 

subspace of neighbourhood space with MDIS’’). 

The Equations from (9) to (15) are evaluated when the 

δ value is published. However, the δ value is not 

known by our proposed scheme. The 

QUALITY_TEST assures at least one element in the 

codeword vector of ES when mapping to cbδ does not 

belong to the scanning cbδ‘. Therefore, the codeword 

vector of ES does not belong to any neighbourhood 

space of the AS’s codeword vector. This means the 

intruder cannot discover the secret key ES when δ’ ≠ 

δ. Because the intruder is vague about the δ value, he 

must exhaustingly search on a neighbourhood space 

with a large enough MDIS to able to believe that the 

current δ’ is incorrect. Therefore, the actual security 

level of the scheme is significantly higher than the 

measurements in Equations (11), (12), (13) and (14). 

5. Experiments 

In our experiments, the database [19] with 152 

different people is used. Each person is represented by 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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20 facial pictures, each of which is extracted to a 51-

dimension feature vector. Fifty two people are 

randomly chosen as enrollers, and the remaining 100 

individuals play as the intruders. For a single test, a 40-

dimension random vector R is generated and three 

images of an enroller are chosen for the 

training/enrolling phase. The enroller’s 17 remaining 

images and intruders’ 2000 images are used for the 

authentication. For each of 52 enrollers, we performed 

three single tests and the metrics are measured in 

average. 

 

Figure 3. EER on original data according to similarity threshold. 

 
 

Figure 4. EER on the generated keys according to δ value. 

To measure the performance, the Equal Error Rate 

metric (EER) which is the crossing point between the 

False Accept Rate (FAR) and the False Reject Rate 

(FRR) is regularly utilized. The Figure 3 shows the 

average EER on the original feature vectors through 

cosine similarity while the Figure 4 presents the same 

metric on the generated keys according to δ value. The 

EER achieves about 0.83% at similarity threshold 0.8 

for original feature vector and 2.8% at δ=10 for 

generated keys. A slight reduction on EER occurs after 

the scheme is applied to compensate for the template 

protection, revocability and cryptographic ability, 

which is completely reasonable and acceptable. 

The EER reflects a situation when a scheme tolerates 

with both FRR and FAR concurrently. When a more 

secure degree is demanded, the point with FAR=0% 

and the maximum value True Accept Rate (TAR) could 

gain becomes significant. The value of TAR at this 

point, called border, actually determines the 

performance of a scheme. With original feature vector, 

the average TAR is about 94% at the border (with 

cosine similarity 0.92) while the average TAR achieves 

80% at the border (with δ=3) for generated keys. The 

reason for the reduction in TAR is that the δborder in 

each single test is different even the same enroller. 

Therefore, the δborder in the average case is the smallest 

δborder from all single tests (the δborder is the value δ at 

the border). The reason for different δborder values is 

that the trained ANN in each single test stays at a 

different degree of over-fitting. In general, the more 

over-fitting the trained ANN gains, the larger the 

δborder value is. In each single test, the TAR is much 

higher at the border. 

 

Figure 5. Performance in single test of our method according δ 

value. 

 

Figure 6. Performance Security trade-off according to δ value. 

The Figure 5 shows the typical performance of 

three single tests from three enrollers. Each single test 

is depicted by a pair of TARi and FARi lines. All the 

TARi values in the three single tests achieve 100% at 

corresponding borders, but the δborder values are 5, 7 

and 3 respectively for single tests from 1 to 3. These 

experiments indicate that this scheme should begin 

with a small δ for secure reason, and the δ value is 

then adjusted gradually for better TAR metric. 

The Figure 6 shows the trade-off between the 

performance and the security of our proposed method. 

At the border with δborder = 3, the TAR is 80%; and the 

corresponding Average Remaining Entropy (ARE) 

[LARE, UARE] is about [68, 155] bits. The system 

achieves higher performance and lower average 

remaining entropy when error tolerance capacity δ 

increases, and vice versa. The experiment shows that 

at the border, high performance and high security 

could be concurrently achieved. 

Finally, the Figure 7 visualizes the diversity of 

generated keys of a single test through the well-known 

Parallel Coordinates method. Each coordinate presents 

a dimension of 40-dimension keys. These keys include 

the secret key (red bold line) of the corresponding 

enroller and 2000 other keys (blue line) of intruders. 

Since different δ values generate different secret keys, 

performance and security, the error tolerance capacity 

δ is set at the δborder value. It could be perceptive from 
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the Figure 7 that the intruders’ keys are significantly 

variant with the enroller’s secret key. These generated 

keys’ space is estimated about 104.5 bits. While ARE 

reflects the density of generated keys, the keys’ space 

demonstrates how diverse the generated keys are. 

6. Discussion 

In this section, the template protection, diversity and 

revocability properties stated in [15] are discussed. 

Let’s examine the ability an original feature F is 

revealed when the secret key ES has been 

compromised. The inversive process from ES to F is 

obviously based on the public trained ANN with m 

input nodes, n output nodes and k hidden nodes. The 

trained ANN is generally considered as a linear 

equations system with m variables and n equations. 

Systems with fewer equations than unknown variables 

are considered as undetermined linear equation systems 

which are consistent with infinitely many solutions. 

Finding the target solution in the solution space is NP-

hard [3, 7, 12] that is suitable for the purpose of data 

security [12]. In summary, our scheme guarantees the 

template protection property because of the following 

reasons. 

 Our proposed ANN is applied with m > n and k = 

*   m n (following (1)) which leads to m > k > n. 

Therefore, the trained ANN is a combination of the 

two sequential undetermined linear systems whose 

output is the true output vector O. 

 There are no any evidences to discover the vector O 

of the trained ANN from the compromised ES which 

is just a rounding version of O. 

 With the type of the transform function P is

   , 0,1    , a small variance on value x may 

cause a large difference on P
-1

(x). Therefore, the 

accumulated fault through the two systems is 

considerable. 

Whenever a secret key ES is compromised, a new key 

is easily generated by applying the scheme with a new 

random vector R. Since the key ES is generated easily, 

randomly and independently with the biometric 

features, the scheme achieves the diversity and 

revocability properties. 

 

Figure 7. The diversity of generated keys of a single test. 

7. Conclusions 

In this paper, our main contributions are twofold. 

First, we propose a hybrid scheme which fuses two 

main approaches: non-invertible transformation and 

key generation. The scheme is a flexible combination 

of ANN for mapping feature vectors to a random 

vector and a construction of the Secure Sketch concept 

to generate strong key. Second, we analyze the 

security based on two aspects of the average 

remaining entropy and the diversity of generated keys. 

The scheme assures the properties of revocability, 

diversity and template protection. By flexibly adapting 

the ANN for the purpose of non-invertible 

transformation, the intruder is incapable to retrieve the 

original feature information in case the biometric key 

is cracked. Based on the number of nodes of the ANN, 

the inversion transform is an undetermined linear 

system and finding a target solution is NP-hard. 

Therefore, the template protection property is fully 

assured. The proposed non-invertible transformation is 

superior to traditional Feature Transform categories 

when our scheme eliminates a key/password 

requirement as a mandatory argument for 

transformation function. 

In addition, the generated secret key is random and 

renewable. The constructed key space is high diversity 

with average remaining entropy bounded in [68, 155]. 

Concurrently, a good recognition performance is 

maintained with TAR=80% and the corresponding 

FAR=0%, and EER=2.8% which is approximate to the 

performance in the case of original feature vectors. 

The intruder with a wrong δ is incapable to recover the 

secret key even with the exhausting attack on the 

neighbourhood search spaces. Therefore, the security 

of the proposed scheme is significantly enhanced. 
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