
The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019 397

A Dynamic Architecture for Runtime Adaptation of

Service-based Applications

Yousef Rastegari and Fereidoon Shams

Faculty of Computer Science and Engineering, Shahid Beheshti University, Iran

Abstract: Service-Based Applications (SBA) offer flexible functionalities in wide range of environments. Therefore they should

dynamically adapt to different quality concerns such as security, performance, etc. For example, we may add particular

delivery service for the golden customers, or provide secure services for the specific partners, or change service invocation

based on context information. Unlike other adaptation methods which substitute a faulty service or negotiate for service level

objectives, we modify the architecture of SBA, that is, the underlying services structure and the runtime services

implementation. In this regard, we propose a reflective architecture which holds business and adaptation knowledge in the

Meta level and implements service behaviours in the Base level. The knowledge is modelled in the form of Meta states and

Meta transitions. We benefit from Reflective Visitor pattern to materialize an abstract service in different concrete

implementations and manipulate them at runtime. Each service implementation fulfils a specific quality concern, so it is

possible to delegate user requests to appropriate implementation instead of reselecting a new service which is a time

consuming strategy. We used Jmeter load simulator and real-world Quality of Service (QoS) dataset to measure the

architecture efficiency. Also, we characterized our work in comparison with related studies according to the European

Software Services and Systems Network (S-CUBE) adaptation taxonomy.

Keywords: Software engineering, service-based application, software adaptation, reflection, quality of service.

Received October 28, 2015; accepted July 4, 2016

1. Introduction

Service-oriented computing is increasingly adopted as a

paradigm for building loosely coupled, distributed and

adaptive software applications, called Service-Based

Applications (SBA). SBA is composed of software

services (i.e., service structure), and those services may

be owned by the developing organization or third

parties [14]. SBA adaptation is required to overcome

the runtime changes in functionalities and quality

objectives. Therefore, it is desirable to modify services

orchestration and services implementation through

(semi) automatic adaptation mechanisms. The former

refers to a centralized logic that describes the order in

which the various services are called and the way their

parameters are formed and used, while the latter refers

to materializing abstract services in different concrete

forms regarding different quality concerns.

Adaptation mechanisms are the techniques and

facilities provided by the underlying SBA that enable

adaptation strategies like service reconfiguration,

service reselection, or service renegotiation [11]. The

realization of adaptation mechanisms may be done

automatically or may require user involvement, that is,

human-in-the-loop adaptation. The adaptation

mechanisms are classified into Adaptive, Corrective,

Preventive, and Extending according to the European

Software Services and Systems Network (S-CUBE)

adaptation taxonomy. Most of the existing approaches

focus on Adaptive mechanisms [1, 3, 24] which modify

the SBA in response to changes affecting its

environment like contextual changes or the needs of a

particular user. Corrective mechanisms [7, 9, 13, 16,

20, 22, 23, 30] replace a faulty service with a new

version that provides the same functionality and

quality. Preventive mechanisms [18, 19, 25] use

prediction techniques to detect the probable failures or

Service Level Agreement (SLA) violations and also

assess the accuracy of prediction. There are few

approaches targeting Extending mechanisms [4, 21,

26, 27] which aim to extend the SBA by adding new

required functionalities.

In this paper, we propose a dynamic architecture

which supports the development of adaptive service

based applications. We believe that dynamic

architecture is an essential engineering technique in

enabling truly adaptation and evolution of SBA in

both quality and functional aspects. To practically

realize architectural dynamism, we apply known

design patterns to model the constitute services of

SBA and propose key adaptation strategies on how to

enable the architecture to be modified at runtime.

Indeed, we use reflective techniques to separate the

control aspects of SBA (at the Meta level) from its

implementation (at the Base level). When an

adaptation requirement is triggered, the adaptation unit

which is located at the Meta level analyses the

situation and prepares an adaptation plan. Then the

adaptation plan is realized by modifying the meta-

objects and their relevant implementations at the Base

398 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

level. The Meta level makes the SBA self-aware and

builds the implementation of the Base level. Although

our architecture could be classified in the adaptive

adaptation and the extending adaptation, it could be

used as an underlying architecture for the corrective

and preventive mechanisms that are presented in the

related studies (refer to section 5).

Section 2 describes the proposed architecture in

detail. Section 3 describes dynamic delegation strategy

and compares it with common service reselection

strategy. In section 4, we present experimental results.

The architecture characteristics are compared with

related works in section 5. Finally, the paper is

concluded in section 6.

2. Proposed Architecture

In this section, we describe the architecture elements

and the collaboration among them.

2.1. Overview

Here we present an overview of the architecture. To

build an adaptive architecture, we take advantage of

following design patterns:

 The composite pattern [6] is used for modelling

service structure. It lets clients treat individual

objects and compositions of objects uniformly.

Moreover, we use service connectors like pipe and

selector, to create composite services and manipulate

service granularity.

 The reflective visitor pattern [17] is used for

materializing an abstract service in various concrete

forms. The designer can deal with new quality

concerns by simply defining new Visitor subclasses

in the Visitor hierarchy.

 The reflective state pattern [5] is used for

maintaining the states of SBA and providing state-

dependent services to users. It uses delegation

mechanism to pass user requests to meta-objects,

which in turn find and consume state-dependent

services. The Reflective State pattern applies the

Reflection architectural pattern to implement a finite

state machine in the Meta level, by means of meta-

objects that represent state and transitions, and use

the interception and materialization mechanisms for

implementing the control aspects in a transparent

manner.

As shown in Figure 1, the Meta level holds behavioural

and adaptation knowledge in form of meta-objects,

including Service constructive meta-object, State meta-

objects, and Visitor meta-object. The State meta-object

expresses the particular condition of SBA during its

life-time. When a user requests for a specific service,

the State meta-object handles the request as follows.

First, the State meta-object gets requested Service

object from Service constructor meta-object. The

Service constructor meta-object is the entry point to

the whole atomic and composite service model. Then,

the State meta-object passes the abstract service object

to the Visitor meta-object to be materialized in

requested concern. Each concern is implemented by

corresponding Visitor subclass. These concerns are

implemented in reflective visitor pattern. The Visitor

meta-object finds and consumes the requested service.

The service result is passed to the State meta-object to

be presented to the user.

Figure 1. Architecture overview.

The benefits of using reflective techniques include:

 Since the states of SBA are preserved, we can

suspend the failed SBA instances for adaptation

and then resume them to continue their execution.

 We can separately develop the control mechanisms

of SBA (at the Meta level), and reflect the effects of

new/modified rules on the running SBA instances

(at the Base level).

 The Meta level makes the SBA self-aware and

builds the various implementations of the Base

level. Indeed, the reflective techniques support

separation of concerns. The concerns like business

knowledge, adaptation rules, analysing, planning

could be considered at the Meta level and the

concerns like implementation logic and

technologies could be considered at the Base level.

 The adaptation strategies like reconfiguration and

reselection are easily realized by modifying the

Meta states and Meta transitions. For example, by

adding/removing/merging/replacing states,

transitions and their corresponding services.

2.2. Service Structure

Service granularity generally refers to the size of a

service and identifies the optimal scope of business

functionalities [8]. The granularity is changed during

service composition. Service composition is a new

way for interweaving atomic services in order to

exhibit a new functionality or a new service quality

level. We exploited the composition connectors

presented in [15] for composing two or more web

services. A pipe connector composes web services W1,

…, Wn and call methods in that order. The pipe

connector additionally passes the results of calls to

A Dynamic Architecture for Runtime Adaptation of Service-based Applications 399

methods in Wi, to those in Wi+1. A selector connector

that composes web services W1, …, Wn, can select one

web service out of them and call methods in that web

service only. After composing two atomic web services

W1 and W2, we need to devise a method to generate its

interface from the standard Web Services Description

Language (WSDL) interfaces of W1 and W2.

Figure 2. Modelling service structure in composite pattern.

As shown in Figure 2, we used composite design

pattern to model abstract service structure. Both atomic

service and composite Service classes are implementing

the service class. The composite service can contain

two or more atomic or composite services. The

composite class uses the connector class as composition

operator. The connector class contains necessary

composition operators such as pipe, selector, etc.

Suppose that we want to add logistic composite

service which is a sequence execution of pay and

deliver atomic services. First we add logistic class by

extending composite service class. Then we use pipe

connector to generate logistic service interface. Finally,

we add the interface in the logistic class (see Figure 2).

2.3. Service Implementation

We used reflective visitor pattern for implementing

abstract services in different crosscutting concerns. The

crosscutting concerns may refer to SBA quality model

(e.g., secure or high available services), or a set of end-

user preferences (e.g., cost-effective or medium level

services), or technical constraints (e.g., asynchronous

implementation of services).

The reflective visitor pattern structure is shown in

Figure 3. The visitor class declares a visit method to be

responsible for dynamic dispatch among concrete

visitors. The corresponding service can be invoked

automatically at runtime through the visit method

which is defined as the only interface visible to the

outside of the system. Indeed, the client is shielded

from any potential changes of the implementation

details. The concrete Visitor class defines a set of

consume operations; each implements the specific

behaviour for the corresponding service class (which is

defined in the service structure).

With reflective visitor pattern,

1. The adaptation designer can easily add new

crosscutting concerns by simply defining new

concrete Visitor classes (e.g., the ConcreteVisitor1

in Figure 3). On the other hand,

2. The adaptation designer can also easily add new

services by simply defining new Visitor subclasses

(i.e., extended classes) in the Visitor hierarchy (e.g.

the ExtendedConcreteVisitor1 in Figure 3). These

two adaptation strategies extend the SBA in order

to cover both functional and quality concerns at

runtime.

Figure 3. The reflective visitor pattern structure.

We used Shine1 framework to implement these

adaptation strategies.

Suppose that we should perform the pay and deliver

services in secure mode for the golden users, and also

we should provide the services in asynchronous mode

for the specific partners. Therefore, we create secure

and asynchronous concrete visitor classes. Then we

implement pay and deliver services in secure mode

and asynchronous mode. We can extend the visitor

class to add new concrete Visitor classes for further

concerns like cost-effective services (the dashed box

in Figure 4).

In the previous section, the new logistic service was

added to the service structure. Here we extend the

secure concrete visitor class to provide the secure

implementation of the Logistic service. The logistic

service could be implemented in asynchronous mode

and cost-effective mode in a similar way.

Figure 4. Implementing pay, deliver and logistic services in

different crosscutting concerns.

1https://java.net/projects/shine-pattern

400 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

2.4. Modelling SBA Knowledge

The Reflective state pattern implements the control

aspects in the meta level, separating them from the

functional aspects that are implemented by the Context

object and the concrete visitor objects located at the

base level (see Figure 5). As a result, the control

aspects do not complicate the SBA design, and

additionally we can modify the meta-objects at runtime

and reflect the changes on the running SBA instances.

The controller instantiates and initializes the Meta

states and the meta transitions. The controller maintains

and changes the reference to the current Meta state

during transitions. Each Meta state includes the services

that are permitted to be consumed for the users in that

state.

Figure 5. The reflective state pattern is used to handle user requests

and provide state-dependent services.

Figure 6 shows the Meta states of an online

customer. We associated the available services with

each Meta state. For example, the Pay invoice is the

only available service for the customers in the

purchasing Meta state. The Pay service is implemented

in secure, asynchronous and cost-effective modes

according to Figure 4. The corresponding Meta state

selects appropriate implementation based on business

rules (e.g., if the customer is Golden then provide the

Secure services) or context information (e.g., if the

customer is from Iran then provide the cost-effective

services).

Figure 6. The Meta states of an online customer.

2.5. Collaboration

Figure 7 illustrates the collaboration among architecture

classes for intercepting and handling a user request. A

request can represent a service that has a state-specific

implementation and an event that causes a transition to

the next state. The context object gets all service

requests and passes them to the controller to be

intercepted. Then the intercepted messages are

delegated to the current meta state. The current meta

state handles the message by instantiating the suitable

service object and passing the service object to the

visitor object via the visit method. The visitor object

finds and consumes the suitable implementation of the

requested service object and returns the result. Finally

the controller either passes the result to the user, or

induces state transition.

3. Dynamic Delegation versus Service

Reselection

Reselection is an adaptation strategy that substitutes a

faulty service provider with a reliable one. Realizing

reselection strategy is a time consuming process, since

it discovers candidate services to select the best one

and changes the biding from the faulty provider to the

new one. Therefore, instead of reselecting a service it

could be ideal to duplicate the highly viewed or vital

services and spread the load among them to improve

the performance. In our proposed architecture, we can

easily add new implementations for an abstract service

and apply different spreading mechanisms such as

Round Robin (RR), First in First out (FIFO) etc., in

the Visitor meta-object. Also, it is possible for a faulty

service provider to delegate user requests to its

replicas; the delegation would continue until the faulty

provider gets back to the normal state.

Also, the visitor meta-object could be responsible

for context-based requests. It processes the context

information and delegates the request to an

appropriate service implementation. As a result,

instead of reselecting services for different contexts,

we can switch among different implementations. In

addition, we can easily add new implementations for

new contexts by applying the adaptation strategies

mentioned in section 2.3.

4. Experimental Results

In this section we evaluate the performance of the

proposed architecture. Particularly, we aim at

evaluating the overhead and the adaptation efficiency

of the architecture. To measure the overhead, we

compared the average response time of calling

services “through our architecture” with “direct

invocation”. To quantify the adaptation efficiency, we

measured the response time improvement regarding

the dynamic delegation strategy which decreases

service reselection rate. The measurements have been

conducted on an Intel celeron CPU 2.2 GHz PC with 1

gigabytes of memory running Windows 7 and and

Java Development Kit (JDK) 1.7.0-17.

A Dynamic Architecture for Runtime Adaptation of Service-based Applications 401

Figure 7. The collaboration view of intercepting and handling user requests.

4.1. Overhead Evaluation

We developed the proposed architecture using Java

programming language. The collaboration among the

architecture elements was set up according to Figure 7.

To simulate a heavy load and analyse the average

overhead of the architecture, we used Apache Jmeter

and simulated 30 thousand requests by 2 concurrent

users. The pay web service was selected in only secure

mode for this benchmark. The evaluation has been done

in the following cases simultaneously:

1) The pay web service was invoked 15 thousand times

directly.

2) The pay web service was invoked 15 thousand times

through our architecture.

The evaluation was done under normal operating

conditions (i.e., one invocation at a time).

Figure 8. Response time graph.

The most time consuming element in our

architecture is the method find method. As shown in the

timeline of the visitor object in Figure 7, the find

method takes a service object as argument. It queries

visitor hierarchy to find the corresponding consume

method based on the service object. There is a nested

loop statement in the find method that traces up over

the visitor hierarchy (inner loop) for the “Service

object and all its ancestors” (outer loop) until the

corresponding consume method is found. The length

of visitor hierarchy and the length of service hierarchy

refer to the number of ancestors in the relevant path.

Since the length parameter affects the overall

overhead, we have changed it after each 5 thousand

requests as follows: 2, 5, and 10 ancestors (see Figure

8). We considered 10 as the maximum number of

ancestors, because it is unlikely to develop an

application with more than this length. We also

considered that the consume method is found at the

last round of search. Overhead evaluation results are

depicted in Table 1. The average response time

overhead is negligible (i.e., 1 millisecond).

Table 1. Performance (response time) measurement results.

 #Samples Average
90%

line

99%

line
Throughput

Through proposed

architecture
15000 2 4 6 115.4

Direct invocation 15000 1 2 4 115.4

4.2. Adaptation Efficiency

Here we demonstrate that automatically delegating the

request to a different service implementation has a

better performance than reselecting a new service. To

compare the average reselection rate and the response

time of our architecture with current approaches, we

used real-world Quality of Service (QoS) evaluation

Length of hierarchy: 2 Length of hierarchy: 5 Length of hierarchy: 10

402 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

results from 339 users (from 31 countries) on 5,825

Web services [28, 29]. We considered the location of

user request as context information (i.e., the country of

user) to select the closest service provider and improve

the response time. The evaluation results are shown in

Figure 9.

a) Average percentage of service discovery and service selection.

b) Average response time (seconds).

Figure 9. Dynamic delegation (in our architecture) decreases the

number of reselection and improves the response time.

Figure 9-a shows the average percentage of service

discovery and selection. When the location of a user

request differs from the previous one usually a

reselection occurs. However, in our architecture when

the location changes, a new implementation of the

requested service are added once, and then the

delegation mechanism is used for the upcoming

requests from that location. As mentioned in section 3,

the delegation mechanism decreases the number of

service discovery and selection, and consequently

improves the response time (see Figure 9-b)).

In the above experiment, we assumed that there is

already an alternative implementation for the situation

at hand. So, the architecture is able to select a suitable

service implementation because it already exists in the

SBA. As mentioned in section 3, in the service

reselection strategy, service discovery consumes time,

obviously because the service has still to be discovered.

Even when the set of services is known (if services are

proactively discovered), service negotiation and service

selection protocol could introduce an overhead, and

hence the proposed architecture would still be better.

5. State of the Art

To develop the related work, we have followed the

principles and guidelines of Systematic Literature

Reviews (SLR) that is proposed by Kitchenham [12].

SLR is a method for combining the best quality

scientific studies on a specific topic or research

question. Nevertheless, the goal in this paper is not to

develop an exhaustive SLR with all the work available

in the literature, but to report in a systematic manner

the list of relevant contributions similar to our work

focusing on the quality of service adaptation

mechanisms in service-based applications. We have

performed a manual search with the term “adaptation”

and “service based application” and “quality of

service” on top ranked journals and conferences from

2010 to 2015. The terms have been applied to title,

abstract and keywords. By applying this search

protocol, we found 145 papers covering the search

criteria. 80 papers were discarded by title, 38 by

abstract, and 8 papers were discarded after a fast

reading, leading to a total of 19 papers that present

different approaches. We classified them in four

following classes based on the usage of the adaptation

process: Adaptive, Corrective, Preventive and

Extending.

5.1. Adaptive Adaptation

MOdel-based SElf-adaptation of SOA systems

(MOSES) [3] is a QoS-based adaptation framework

based on Monitor-Analyze-Plan-Execute (MAPE)

components. It is classified as an adaptive adaptation

method. MOSES uses abstract composition to create

new processes and also service selection to

dynamically bind the processes to different concrete

web services. MOSES is applicable where a service-

oriented system is architected as a composite service.

Rule-based framework for managing Context-Aware

Services (RuCAS) [24] is a rule-based service

platform, which helps clients to manage their own

context-aware web services via Web-API or GUI-

based interface. RuCAS together with an autonomic

manager could shape a self-managing ecosystem.

Beggas et al. [2] proposed a middleware that

calculates ideal QoS model using a fuzzy control

system to fit context information and user preferences.

Then, the middleware selects the best service among

all variants having the nearest QoS value to the ideal.

These types of approaches are classified as context-

aware or perfective adaptation in which the quality

characteristics of SBA are optimized, or the

application is customized or personalized according to

the needs and requirements of particular users.

Chameleon [1] is an adaptation framework which

personalize/customize the application according to the

A Dynamic Architecture for Runtime Adaptation of Service-based Applications 403

device and network contexts in B3G mobile networks.

They enriched the standard Java syntax to specify

adaptable classes, adaptable methods and adaptation

alternatives that specify how one or more adaptable

methods can actually be adapted.

5.2. Corrective Adaptation

VieCure [23] is a corrective adaptation method which

extracts monitored misbehaviours to diagnoses them

with self-healing algorithms and then repairs them in

non-intrusive manner. Since VieCure [23] uses

recovery mechanisms to avoid degraded or stalled

systems, it is also a preventive approach. Psaier et al.

[22] proposed a corrective adaptation architecture

which reconfigures local interactions among service

oriented collaborators or substitute collaborators to

maintain system functionalities.

The adaptation mechanisms operate based on

similarity and socially inspired trust mirroring and trust

teleportation. The authors integrate VieCure [23] with

Genesis2 [10] (i.e., an SOA-based testbed generator

framework) to realize control-feedback loop and

simulate adaptation scenarios in collaborative service-

oriented network. Ismail et al. [9] proposed SLA

violation handling architecture which performs

incremental impact analysis for incrementing an impact

region with additional information. To determine the

impact region candidates, they defined Time

inconsistency (direct dependency between services) and

Time unsatisfactory (dependency between a service and

the entire process) relationships. Then the recovery

instance obtains the relevant information to identify the

appropriate recovery plan. The proposed strategy would

reduce the amount of change. Zisman et al. [30]

proposed a reactive and proactive dynamic service

discovery framework.

In pull (reactive) mode, it executes queries when a

need for finding a replacement service arises. In push

(proactive) mode, queries are subscribed to the

framework to be executed proactively. They compute

the distances between query and service specifications.

They used complex queries expressed in an extensible

mark-up language (XML)-based query language

SerDiQueL. In another work by Mahbub and

Spanoudakis [16], ROactive Service DIscovery and

Negotiation (PROSDIN) framework is proposed which

proactively performs SLA negotiation with candidate

services. The goal is to reduce the lengthy negotiation

process during service discovery and substitution.

Drf4soa [20] is built on Service Component

Architecture (SCA) to model program independent

from technologies and encapsulate each MAPE phase

in SCA Composites which allows exposing their

business as a service. Mezghani and Ben Halima [20]

implements substitution and load balancing strategies to

tackle non-functional requirements. SEco [13] is a

dynamic architecture for service-based mobile

applications. It consist SEco agent and SEco manager.

SEco agents gather and send quality data of running

applications to SEco manager. SEco manager decides

on quality improvement and sends adaptation actions

to SEco agent. To support architectural dynamisms,

SEco agent implements dynamic offloading or

dynamic service deployment strategies.

Self-Adaptation For DIstributed Services (SAFDIS)

[7] is a framework based on Open Service Gateway

initiative (OSGi), which uses short-term and long-term

reasoners to maintain the SBA quality above a

minimum level. SAFDIS considers only the migration

of services by registering and unregistering bundle of

services.

5.3. Preventive Adaptation

Some works try to prevent service based applications

from future faults or SLA violations. Wang and Pazat

[25] make adaptation decisions through two-phase

evaluations. In estimation phase, they estimate the

QoS attribute (e.g., execution time) in the future and

compare the estimated value with the target value

defined in the SLA. If a violation is tent to happen, a

suspicion of SLA violation is reported to decision

phase. In decision phase, they use static and adaptive

decision strategies to evaluate the trustworthy level of

the suspicion in order to decide whether to accept or to

neglect the suspicion.

Unnecessary adaptations can be costly and also

faulty even in the proactive case. Metzger et al. [19]

propose a preventive approach for augmenting service

monitoring with online testing to produce failure

predictions with confidence. In a similar work [18],

Metzger selected prediction techniques and defined

metrics to assess the accuracy of predictions.

5.4. Extending Adaptation

Auxo [26] is an extending adaptation approach which

realizes adaptation concerns through modifying the

Runtime Software Architecture (RSA) model. Auxo

proposes an architecture style (interfaces, connectors

and components) and runtime infrastructure which

maintains an explicit and modifiable RSA model. To

fulfil the modification requests, they modify the RSA

model, evaluate the architecture constraints, and enact

changes to the real system. SLA Monitoring

(SALMon) [21] is a monitoring framework that

supports different adaptation strategies in the SBA

lifecycle by providing the knowledge base (accurate

and complete QoS) to the following expert systems:

1. WeSSQoS (for service selection based on user

requirements).

2. Federated Cloud Management (FCM) for service

deployment.

404 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

3. SLA monitoring and Agreement Document Analysis

(SALMonADA) for identifying and reporting SLA

violations.

4. Monitoring and Adaptation Environment for

Service-oriented Systems (MAESoS).

5. Proactive adaptation of Service-based Applications

(PROSA).

6. Continuous Adaptive Requirements Engineering

(CARE), for adaptation purposes whenever

malfunctions in the system occur.

 Daubert et al. [4] proposed Kevoree, a reflective

framework which provides models@runtime approach

to design adaptable SBA. Models@runtime considers

the reflection layer as a real model that can be

uncoupled from the running architecture for reasoning,

validation and simulations purposes and later

automatically resynchronized with its running instance.

Cross-Layer Adaptation Manager (CLAM) [27] is a

cross-layer adaptation manager for SBA. CLAM

provides application, service and infrastructure models.

Each model element is associated with analysers,

solvers and enactors. A cross-layer rule engine governs

the coordination of analysers, solvers and enactors.

For each adaptation need, CLAM produces a tree of

the possible alternative adaptations, identifies the most

convenient one, and applies it.

To classify our work, we defined its characteristics

using S-CUBE adaptation taxonomy [11]. The

adaptation taxonomy distinguishes approaches by

three following questions:

1. Why is adaptation needed (adaptation usage)?.

2. What are the adaptation subject and aspect?.

3. How does adaptation strategy take place?.

 As shown in Table 2, our proposed architecture is an

adaptive and extending adaptation method. It covers

both functional and quality aspects. The adaptation

subject is SBA instance with a permanent scope. The

adaptation facilities are completely separated and

independent from the subject of adaptation in a

reflective manner.

Table 2. Classification table.

 Usage Subject Aspect Strategy

MOSES [3] Adaptive
Constitute services; Composition

instance

New/modified non-

functional requirements
Service selection; Coordination pattern selection

RuCAS [24] Adaptive Web context-aware services Contextual changes Dynamic binding

Beggas et al. [2] Adaptive Constitute services
QoS, User contextual

changes

Calculating ideal QoS values and selecting a service variant having the nearest QoS

values to the ideal

CHAMELEON [1] Adaptive Adaptable service class
QoS; User needs;

Contextual changes
Switching among adaptation alternatives considered at deployment time

VieCure [23]
Corrective and

Preventive
Constitute services QoS; Misbehaviors Recovery technique

Psaier et al. [22] Corrective Local interactions
Unexpected low

performance

Regulation by link modification or substitution of actors based on similarity and

trust metrics

Ismail et al. [9] Corrective Process instance; Services SLA violations Reduce the amount of service that need to be recovered (or changed)

Zisman et al. [30] Corrective Constitute services QoS Service discovery in pull (reactive) mode and push (proactive) mode

PROSDIN [16] Corrective Constitute services QoS SLA negotiation; Dynamic discovery and binding

DRF4SOA [20] Corrective Components; Services
Non-functional

requirements changes
Substitution; Load balancing

SEco [13] Corrective Constitute portable services QoS; Manageability Dynamic deployment; Dynamic offloading

SAFDIS [7] Corrective Constitute services QoS Registering and unregistering services (bundle of services)

Wang [25] Preventive
SBA instance; Constitute

services

QoS; Prevent

unnecessary adaptation

Making adaptation decisions through two-phase evaluations (estimation and

decision)

Metzger [19] Preventive Constitute services
QoS, Prevent

unnecessary adaptation
Augmenting service monitoring with online testing

Metzger [18] Preventive
Constitute services; Third-party

services
QoS, Failure prediction Applying prediction techniques

Auxo [26] Extending Component; Connector; Interface
Unexpected

environments
Modifying runtime software architecture models

SALMon [21] Extending Constitute services QoS
Model-based and Invocation-based configuration of SALMon; Reselection;

Redeployment

Kevoree [4] Extending
Business process; Composition

and coordination; Infrastructure

QoS-based cross-layer

adaptation
Using reflection and models@runtime techniques

CLAM [27] Extending Whole SBA model cross-layer adaptation
Different strategies like: add/remove service, mismatch solving, parallelize process

activities, etc.

Our proposed

architecture

Adaptive and

Extending
SBA instance

QoS changes; Functional

changes

Add atomic service; Compose existing services to publish a new service;

Implement a service in different qualities; Delegate service requests to different

implementations dynamically

6. Conclusions

In this paper, we presented a dynamic architecture for

runtime adaptation of service-based applications. We

proposed adaptation strategies that modify and extend

the architecture of SBA to cope with adaptation

requirements that may come from different contexts.

Adaptation requirements represent the necessity to

change the SBA in order to remove the difference

between the actual (or predicted) situation and the

A Dynamic Architecture for Runtime Adaptation of Service-based Applications 405

expected one. The requirements may include new

required functionalities or quality concerns like

availability, security, optimality, etc,

To design the dynamic architecture, we employed

Reflective state and reflective visitor patterns which

provide mechanisms for changing structure and

behaviour of applications dynamically. Since the

reflective patterns split an application into Meta level

and Base level, it is possible to separate the control

aspects of the application from its implementation.

Therefore we can prepare the adaptation plans in the

Meta level, and realize them in the base level.

Reflective State pattern holds adaptation and

business knowledge in the meta level. The knowledge

is modelled in the form of meta states and meta

transitions. Each meta state holds state-dependent

services and provides them in different concrete forms

like secure services, cost-effective services,

asynchronous services, etc., meta states modify service

structure and service implementation by interacting

with Service meta-object and visitor meta-object

respectively. Since meta states preserve the states of

SBA, we can suspend the failed instances for

adaptation, and then resume them to continue their

execution.

With reflective visitor pattern, the adaptation

designer can easily add new crosscutting concerns by

simply defining new concrete visitor classes. On the

other hand, the adaptation designer can also easily add

new services by simply defining new Visitor subclasses

(i.e., extended classes) in the visitor hierarchy. These

two adaptation strategies extend the SBA in order to

cover both functional and quality concerns at runtime.

In future, we will develop a software framework

based on our proposed architecture. The framework is a

partially complete SBA that is intended to be

instantiated. It defines the architecture for the family of

service based applications and provides the basic

building blocks to create them. The framework also

defines APIs for performing the adaptation strategies.

References

[1] Autili M., Cortellessa V., and Benedetto P.,

Inverardi P., “On the Adaptation of Context-

Aware Services,” in Proceedings of the

International Workshop on Service Oriented

Computing, Vienna, pp. 25-30, 2007.

[2] Beggas M., Médini L., Laforest F., and Laskrid

M., “Towards an Ideal Service Qos in Fuzzy

Logic-Based Adaptation Planning Middleware,”

Journal of Systems and Software, vol. 92, pp. 71-

81, 2014.

[3] Cardellini V., Casalicchio E., Grassi V., Iannucci

S., and Presti F., “MOSES: A Framework for Qos

Driven Runtime Adaptation of Service-Oriented

Systems,” IEEE Transactions on Software

Engineering, vol. 38, no. 5, pp. 1138-1159, 2012.

[4] Daubert E., Barais O., Nain G., Sunye G.,
Jézéquel J., Pazat., and Morin B., “A Models@

Runtime Framework for Designing and

Managing Service-Based Applications,” in

Proceedings of the 1st International Workshop

on European Software Services and Systems

Research: Results and Challenges, Zurich, pp.

10-11, 2012.

[5] Ferreira L. and Rubira C.., “The Reflective State

Pattern,” in Proceedings of the 5th Pattern

Languages of Programs Conference, Monticello,

1998.

[6] Gamma E., Helm R., Johnson R., John V., and

Booch G., Design Patterns: Elements of

Reusable Object-Oriented Software, Pearson

Education, 1995.

[7] Gauvrit G., Daubert E., and Andre F., “Safdis: A

Framework to Bring Self-Adaptability to

Service-Based Distributed Applications,” in

Proceedings of 36th EUROMICRO Conference

on Software Engineering and Advanced

Applications, Lille, pp. 21-218, 2010.

[8] Haesen R., Snoeck M., Lemahieu W., and

Poelmans S., “On the Definition of Service

Granularity and Its Architectural Impact,” in
Proceedings of International Conference on

Advanced Information Systems Engineering,

Montpellier, pp. 375-389, 2008.

[9] Ismail A., Yan J., and Shen J., “Incremental

Service Level Agreements Violation Handling

with Time Impact Analysis,” Journal of Systems

and Software, vol. 86, no. 6, pp. 1530-1544,

2013.

[10] Juszczyk L., Truong H., and Dustdar S.,

“Genesis-a Framework for Automatic

Generation and Steering of Testbeds of

Complexweb Services,” in Proceedings of 13th

IEEE International Conference on Engineering

of Complex Computer Systems, Belfast, pp. 131-

140, 2008.

[11] Kazhamiakin R., Benbernou S., Baresi L.,

Plebani P., Uhlig M., and Barais O., Service

Research Challenges and Solutions for the

Future Internet, Springer, 2010.

[12] Kitchenham B., “Guidelines for Performing

Systematic Literature Reviews in Software

Engineering,” EBSE Technical Report ver. 2.3,
Keele University, 2007.

[13] La H. and Kim S., “Dynamic Architecture for

Autonomously Managing Service-Based

Applications,” in Proceedings of the IEEE 9th

International Conference on Services

Computing, Honolulu, pp. 515-522, 2012.

[14] Lane S., Gu Q., Lago P., and Richardson I.,

“Towards A Framework for The Development of

Adaptable Service-Based Applications,” Service

Oriented Computing and Applications, vol. 8,

406 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

no. 3, pp. 239-257, 2014.

[15] Lau K. and Tran C., Emerging Web Services

Technology, Birkhäuser Basel, 2008.

[16] Mahbub K. and Spanoudakis G., “Proactive Sla

Negotiation for Service Based Systems: Initial

Implementation and Evaluation Experience,” in
Proceedings of IEEE International Conference on

Services Computing, Washington, pp. 16-23,

2011.

[17] Mai Y. and De Champlain M., “Reflective Visitor

Pattern,” in Proceedings of the 6th European

Conference on Pattern Languages of Programms,

Irsee, pp. 299-316, 2001.

[18] Metzger A., “Towards Accurate Failure

Prediction for The Proactive Adaptation of

Service-Oriented Systems,” in Proceedings of the

8th Workshop on Assurances for Self-Adaptive

Systems, Szeged, pp. 18-23, 2011.

[19] Metzger A., Sammodi O., Pohl K., and Rzepka

M., “Towards Pro-Active Adaptation with

Confidence: Augmenting Service Monitoring

with Online Testing,” in Proceedings of ICSE

Workshop on Software Engineering for Adaptive

and Self-Managing Systems, Cape Town, pp. 20-

28, 2010.

[20] Mezghani E. and Ben Halima R., “DRF4SOA: A

Dynamic Reconfigurable Framework for

Designing Autonomic Application Based on

SOA,” in Proceedings of IEEE 21st International

Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises,

Hammamet, pp. 95-97, 2012.

[21] Oriol M., Franch X., and Marco J., “Monitoring

the Service-Based System Lifecycle with

SALMon,” Expert Systems with Applications, vol.

42, no. 19, pp. 6507-6521, 2015.

[22] Psaier H., Juszczyk L., Skopik F., Schall D., and

Dustdar S., “Runtime Behavior Monitoring and

Self-Adaptation in Service-Oriented Systems,” in

Proceedings of 4th IEEE International Conference

on Self-Adaptive and Self-Organizing Systems,

Budapest, pp. 164-173, 2010.

[23] Psaier H., Skopik F., Schall D., and Dustdar S.,

“Behavior Monitoring in Self-Healing Service-

Oriented Systems,” in Proceedings of the 34th

Annual IEEE Computer Software and

Applications Conference, Seoul, pp. 357-366,

2010.

[24] Takatsuka H., Saiki S., Matsumoto S., and

Nakamura M., “Developing Service Platform for

Web Context-Aware Services Towards Self-

Managing Ecosystem,” in Proceedings of Service-

Oriented Computing ICSOC Workshops, Paris,
pp. 270-280, 2014.

[25] Wang C. and Pazat J., “A Two-Phase Online

Prediction Approach for Accurate and Timely

Adaptation Decision,” in Proceedings of IEEE 9th

International Conference on Services Computing,

Honolulu, pp. 218-225, 2012.

[26] Wang H., Ding B., Shi D., Cao J., and Chan A.,

“Auxo: An Architecture-Centric Framework

Supporting The Online Tuning of Software

Adaptivity,” Science China Information

Sciences, vol. 58, no. 9, pp. 1-15, 2015.

[27] Zengin A., Marconi A., and Pistore M., “CLAM:

Cross-Layer Adaptation Manager for Service-

Based Applications,” in Proceedings of the

International Workshop on Quality Assurance

for Service-Based Applications, Lugano, pp. 21-

27, 2011.

[28] Zhang Y., Zheng Z., and Lyu M., “Exploring

Latent Features for Memory-Based Qos

Prediction In Cloud Computing,” in Proceedings

of the 30th IEEE Symposium on Reliable

Distributed Systems, Madrid, pp. 1-10, 2011.

[29] Zheng Z., Zhang Y., and Lyu M., “Distributed

Qos Evaluation for Real-World Web Services,”

in Proceedings of the IEEE International

Conference on Web Services, Miami, pp. 83-90,

2010.

[30] Zisman A., Spanoudakis G., Dooley J., and

Siveroni I., “Proactive and Reactive Runtime

Service Discovery: A Framework and Its

Evaluation,” IEEE Transactions on Software

Engineering, vol. 39, no. 7, pp. 954-974, 2013.

Yousef Rastegari is PhD

candidate at Department of

Computer Engineering and

Science, ShahidBeheshti

University. He is member of two

research groups namely ASER

(Automated Software Engineering

Research) (aser.sbu.ac.ir) and ISA (Information

Systems Architecture) (isa.sbu.ac.ir).

Fereidoon Shams has received his

PhD in Software Engineering from

the Department of Computer

Science, Manchester University,

UK, in 1996 and his M.S. from

Sharif University of Technology,

Tehran, Iran, in 1990. His major

interests are Software Architecture, Enterprise

Architecture, Service Oriented Architecture, Agile

Methodologies, Ultra-Large-Scale (ULS) Systems and

Ontological Engineering. He is currently an Associate

Professor of Software Engineering Department,

ShahidBeheshti University of Iran. Also, he is heading

two research groups namely ASER (Automated

Software Engineering Research) (aser.sbu.ac.ir) and

ISA (Information Systems Architecture) (isa.sbu.ac.ir)

at ShahidBeheshti University.

