
The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020 411

A New Metric for Class Cohesion for Object

Oriented Software

Anjana Gosain1 and Ganga Sharma2

1University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha

University, India
2School of Engineering, G D Goenka University, India

Abstract: Various class cohesion metrics exist in literature both at design level and source code level to assess the quality of

Object Oriented (OO) software. However, the idea of cohesive interactions (or relationships) between instance variables (i.e.,

attributes) and methods of a class for measuring cohesion varies from one metric to another. Some authors have used instance

variable usage by methods of the class to measure class cohesion while some focus on similarity of methods based on sharing

of instance variables. However, researchers believe that such metrics still do not properly capture cohesiveness of classes.

Therefore, measures based on different perspective on the idea of cohesive interactions should be developed. Consequently, in

this paper, we propose a source code level class cohesion metric based on instance variable usage by methods. We first

formalize three types of cohesive interactions and then categorize these cohesive interactions by providing them ranking and

weights in order to compute our proposed measure. To determine the usefulness of the proposed measure, theoretical

validation using a property based axiomatic framework has been done. For empirical validation, we have used Pearson

correlation analysis and logistic regression in an experimental study conducted on 28 Java classes to determine the

relationship between the proposed measure and maintenance-effort of classes. The results indicate that the proposed cohesion

measure is strongly correlated with maintenance-effort and can serve as a good predictor of the same.
Keywords: Class cohesion, metrics, OO software, maintenance-effort, metric validation.

Received June 18, 2017; accepted March 11, 2018

https://doi.org/10.34028/iajit/17/3/15

1. Introduction

Cohesion of a module has been defined in relation to

procedural paradigm as the degree of relatedness of

components of a module [9]. A module in which all its

components contribute to a single logical task is said to

have high cohesion [5].Cohesion plays an important

role while designing of a module as it allows the

measurement of the structural quality of the module [5].

Researchers have shown that it is comparatively easier

to maintain a highly cohesive module [14]. Therefore

one can say that highly cohesive modules are a pre-

requisite of quality software. Since the past few

decades, Object Oriented (OO) paradigm has become

widespread in industry for the development of software.

In OO paradigm, a class is the basic module, which

contains methods (or functions) and instance variables

(or attributes). Accordingly, cohesion of a class

measures the degree of relatedness of these attributes

and methods within a class. Building classes with high

cohesion is an important goal for software developers

as such a class depicts a single logical task and splitting

such class into separate classes becomes difficult [2].

Various class cohesion metrics exist in literature

which can be defined at design level as well as source

code level [5, 26]. Design level cohesion metrics are

based on the design information pertaining to a class

and its method interfaces whereas actual code is used to

compute the class cohesion metrics at source code

level. Researchers have used class cohesion as a

means of measuring quality of OO software [1, 3, 13,

25, 28]. Most of these metrics are based on two kinds

of cohesive interactions for measuring cohesion [5]

viz.

1. Instance variable (or attribute) usage by methods,

i.e., these metrics are computed based on the

number of attributes used/referenced by methods

[5, 22].

2. Similarity of methods based on sharing of instance

variables by methods i.e., these metrics count the

number of method pairs that share instance

variables [2, 8, 10, 15, 16, 18].

However, many researchers believe that metrics based

on the above mentioned cohesive interactions do not

properly reflect cohesion in many situations and

provide only a restricted view of measuring cohesion

[4, 5, 25]. Therefore, cohesion measures with different

perspective on the idea of cohesive interactions must

be developed in order to accurately measure

cohesiveness.

In this paper, we propose a source code level

measure for class cohesion focusing on instance

variable usage by methods and having the following

three types of cohesive interactions (or relationships)

412 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

between instance variable (attribute) and a method:

1. Received i.e., when method receives an instance

variable as a parameter.

2. Manipulated i.e., when an instance variable is used

in some computation inside the method body.

3. Returned i.e., when an attribute is returned as a value

by a method.

These three cohesive relationships can give rise to 23=8

categories of attribute-method usage interaction. We

use these interaction categories to build our new class

cohesion metric, Low-level Attribute-Method usage

Class Cohesion (LAMCC) metric. (To avoid confusion

and as a matter of convenience, the words

metric/measure and attribute/instance variable have

been used interchangeably in this paper provided their

meaning is preserved).

In order to determine the usefulness of a metric,

researchers have stressed that it should be validated

theoretically as well as empirically [19, 20, 27].

Theoretical validation assesses whether a metric

conforms to the necessary properties of the measured

concept i.e., whether it measures what it is supposed to

measure [11]. On the other hand, empirical validation

tests for the statistical relationships between a metric

and measures of external software quality [11].

Consequently, in this paper, LAMCC has been

theoretical analysed and has been found to comply with

the axiomatic properties of cohesion proposed in

Briand et al. [12] framework. For empirical validation,

an experimental study consisting of Pearson Correlation

analysis and logistic regression has been conducted

using 28 sample Java classes to determine the

relationship between LAMCC and maintenance-effort

of classes. Maintaining a software is concerned with

how easily a software can undergo changes in

requirements initiated by the user or that arising from

changes in real world [17]. Software maintenance is

regarded as one of the most costly task in development

process and requires time and effort [17, 20]. We have

used change i.e., “number of lines of code

added/deleted in maintaining a software artefact” as a

measurable aspect of maintenance-effort in our

experiment. The results of our experiment show a

significant negative correlation between LAMCC and

maintenance-effort and also LAMCC can be used as a

good predictor of maintenance of classes.

The organization of the paper is as follows: section 2

provides an overview of several source code level

cohesion measures proposed in literature, section 3

describes the measurement of our proposed cohesion

measure LAMCC. Section 4 provides the theoretical

validation while section 5 gives the details of the

experimental study and discusses the obtained results.

Section 6 gives an overview of threats to validity, while

section 7 gives conclusion and future directions.

2. Literature Review

In the OO paradigm, Chidamber and Kemrer [15, 16]

were the first to propose a class cohesion measure viz.

Lack of Cohesion in Methods (LCOM). They

computed LCOM [15] as the number of pairs of

methods that do not share an attribute. Later, they

modified the definition of LCOM and computed it by

subtracting the number of pairs of methods which

have at least one shared attribute from those pairs of

methods that do not have a single shared attributes

[16]. For cases where the metric value comes out to be

negative, it is reset to zero. Since then, LCOM has got

many variations defined by various researchers. The

definition of LCOM by Li and Henry [28] used graphs

to represent a class. In a graphical representation of

class, a method is represented by a vertex and sharing

of attribute is represented by an edge. Then, the

number of connected components in the graph gives

the LCOM value for the class. Hitz and Montazeri

[23] also used the same graph theoretic approach as

[28] to define LCOM except that an edge now also

represents method invocations. Hendersen-Sellers [22]

compute LCOM by counting the number of instance

variables referenced by a method. The authors

proposed that when a method references more instance

variables, the cohesiveness of the class increases.

These variations of LCOM have been used extensively

in various empirical studies to predict fault-proneness

[1, 13], maintainability [3, 28] etc.

The cohesion measures Tight Class Cohesion

(TCC) and Loose Class Cohesion (LCC) given by

Bieman and Kang [8] are based on the criteria of

common instance variable usage by method pairs. The

authors proposed that two methods are said to be

connected if they directly (or indirectly) use/refer the

same instance variable. A direct usage of an instance

variable A by a method M is characterized by the fact

that A appears in the body of M. Whereas, an indirect

usage of A by M is characterized when A is directly

referenced by a method M’ which is directly or

indirectly called by M. TCC is defined as the

percentage of pairs of methods that have direct

connection while LCC is defined as percentage of

pairs of methods that have direct or indirect

connections. Bonja and Kidanmariam [10] defined

similarity degree between two methods by computing

the ratio of shared attributes to total number of

attributes used by the methods and used it to obtain

their Class Cohesion (CC) measure as the ratio of the

summation of the similarity degrees between all pairs

of methods to the total number of method pairs. The

authors showed that CC captures more cohesiveness

as compared to other cohesion metrics [10]. Fernandez

and Pena [18] defined their measure Sensitive Class

Cohesion Measure (SCOM) using connection intensity

and a weight factor. The connection intensity between

two methods M1 and M2 is computed as the ratio of

A New Metric for Class Cohesion for Object Oriented Software 413

number of common attributes between M1 and M2 to

the maximum number of attributes used by either M1 or

M2. The weight factor for a method pair is computed as

the ratio of number of shared attributes in the method

pair to the total number of attributes in class. Then, the

summation of product of connection intensity and

weight factors over all possible method pairs gives the

value of SCOM. AlDallal and Briand [2] also used

similarity between methods to define the metric Low-

level design Similarity-based Class Cohesion (LSCC).

For this, they used a binary mXn matrix called Method

Attribute Reference matrix (MAR) where m represents

number of methods and n represents number of

attributes. The value in a given cell of MAR is 1 if the

corresponding method references the corresponding

attribute, otherwise it is 0. They proposed that two

methods are similar if the entries in their corresponding

rows in MAR are similar and defined this similarity as

the number of entries that are similar. This similarity is

then averaged for all method pairs in the class to

compute LSCC. They then used LSCC, along with

several other cohesion measures [5, 16, 18, 21, 22, 23,

28] in predicting fault prone classes.

Badri and Badri [5] proposed that even if two

methods of a class do not share any common attribute

still they may be related to each other. Instead of using

similarity based criteria, the authors emphasized the use

of interaction patterns between methods of a class to

measure cohesion. For example, private or protected

methods of a class generally do not refer to any

attribute of the class. If two public methods invoke

(directly or indirectly) such private or protected

methods, they are said to be related. They then

proposed two cohesion measure viz DCD which

computes the percentage of directly connected public

methods pairs and DCI which gives the percentage of

methods pairs which are directly or indirectly related.

They found that DCD and DCI capture more method

pairs and concluded that these metrics are better at

measuring class cohesion than their counterparts like

[8,16].

Aman et al. [4] take into account sizes of cohesive

parts while defining their measure Association Extent

based Class Cohesion (AECC). They propose that the

size of cohesive part gives an indication about the

extent of association between a pair of methods

through attribute-attribute usage or method invocation

in a class. They build an association graph Ga to

compute AECC as the ratio of the number of methods

reachable by a method mi in its association graph Ga to

the total number of methods in the class. They further

performed a correlation analysis of AECC with other

class cohesion metrics and showed that AECC is a

reasonable class cohesion metric.

Table 1 provides an overview of above mentioned

metrics.

Table 1. Brief overview of source code level cohesion metrics.

SNO Cohesion Metric Definition

1. LCOM1 [15] It is a count of method pairs that do not share attributes.

2. LCOM2 [16]

Given that P= method pairs that do not have any shared attributes.

Q=method pairs that have at least one attribute in common.

LCOM2 ={
𝑃 − 𝑄𝑖𝑓𝑃 − 𝑄 ≥ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3. LCOM3 [28]
It is the number of connected components in graphical representation of a class where method is depicted as vertex and sharing

of attribute is depicted as an edge.

4. LCOM4 [23] Same as LCOM3, except method invocations are also represented as an edge.

5. LCOM5 [22]

LCOM5= (ml-a)/(ml-l)

Where, m=number of methods

l=number of attributes

a=number of distinct attributes referenced by a method.

6. TCC [8]
Percentage of method pairs that have direct connection. Two methods M and M’ are directly connected if they access a

common attribute A directly, i.e., A appears in their method body.

7. LCC [8]
Percentage of method pairs that have direct or indirect connections. Two methods M and M’ are indirectly connected if they

access an attribute A indirectly.

8. DCD [5]
Number of directly connected method pairs. A direct connection exists between two methods M and M’ if they directly call the

same method M’’.

9 DCI [5]
Number of directly or transitively connected method pairs. A transitive connection exists between Two methods M and M’ if

they directly or transitively call the same method M’’.

10. SCOM [18]

SCOM=
2

𝑚(𝑚−1)
∑ ∑ 𝐶𝑖,𝑗 ∗ 𝛼𝑖,𝑗

𝑚
𝑗=𝑖+1

𝑚−1
𝑖=1

Where m is the number of methods

C is the connection intensity

𝛼 is the weight factor

11. CC [10]

It is based on similarity degree between two methods m and n defined as:

MS(m,n) =
|𝐼𝑉𝑐|

|𝐼𝑉𝑡|

where IVc is the set of shared attributes between m and n while IVt is the set of total number of attributes referenced by m and

n.

The ratio of the summation of similarity degrees of all pairs of methods to the total number of method pairs gives the value of

CC.

12. LSCC [2]

LSCC={

0 if 𝑙 = 0 and 𝑘 > 1,
1 𝑖𝑓(𝑙 > 0 𝑎𝑛𝑑𝑘 = 0)𝑜𝑟𝑘 = 1

∑ 𝑥𝑖(𝑥𝑖−1)𝑙
𝑖=1

𝑘(𝑘−1)

Where k= number of methods

l= number of attributes

13. AECC [4]
AECC={

𝑚𝑎𝑥 [
|𝑅𝑎(𝑚)|

|𝑀|−1
] , |𝑀| > 1

0 , |𝑀| < 1

Where Ra is the graph reachable by method m in its association graph Ga and M is the total number of methods.

414 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

(1)

(2)

3. Cohesion Measurement

Most cohesion metrics developed thus far have focused

either on instance variable (attributes) usage by

methods of the class or similarity of methods based on

sharing of instance variables (attributes). We have also

used the attribute usage by methods of a class as our

basis for defining our new class cohesion metric.

However, the idea of cohesive interactions (or

relationships) is interpreted from a different

perspective. We propose that an instance variable and a

method of a class can have three types of cohesive

interactions (or relationships) viz.

1. Received i.e., when method receives an instance

variable as a parameter.

2. Manipulated i.e., when an instance variable is used

in some computation inside the method body.

3. Returned i.e., when an attribute is returned as a

value by a method.

These three types of cohesive interactions are very

intuitive in nature. A method of a class can be related

to an attribute of the class in the way it accesses it or

manipulates it or returns a value for it. The more an

attribute and method are related by these cohesiveinter

actions, the more will be the cohesion of the class.

These cohesive interactions also emphasize the fact

that when a method is not using an attribute in any of

these ways then that method is doing a task which is

altogether different from the goal of the class.

Therefore such kinds of methods should be avoided

from including inside the class. Consider a class C

having A as the set of attributes and M as the set of

methods. Here, M is taken as the set of normal

methods i.e., those methods which are involved in the

actual functionality of the class. Special methods like

constructors, destructors etc. are excluded as they do

not contribute much towards cohesion measurement

[21]. Then, for an attribute ai∈A and method mj∈M, we

define our three types of cohesive relationships in the

following way:

 Received Rv: (A×M) such that ai Rv mj if ai∈ A is

passed as a parameter to the method mj∈ M.

 Manipulated Mv: (A×M) such that aiMvmj if ai∈ A is

used in some computation in the method mj∈ M. A

computation can be a mathematical computation or

a function call. When a function call is made then

the attributes used in the called method also become

related to the calling method by an Mv cohesive

relation. This way, we have also captured the

transitive nature of Mv relation.

 Returned Rtv: (A×M). such that aiRtvmj if the value

of ai∈ A is returned by the method mj∈ M.

Note that Rv∩Mv∩Rtv≠ϕ.

These three cohesive interactions or relationships

can combine to form 23=8 categories of instance

variable usage by methods as shown in Table 2. We

also propose that these categories can have different

rankings from 1 to 8 (1 being highest and 8 being

lowest) based on the category’s importance towards

measuring cohesion and therefore can be given

weights. These weights of each category can be

assigned based on the opinion of experienced software

professionals [21]. As an example, consider category I

which contains methods that do not receive an instance

variable as parameter, do not manipulate any instance

variable and do not produce any instance variable

value. These types of methods tend to perform a

functionality which is altogether different from the

goal of the class. Such type of methods should not be

included in a class. Hence this category has been given

the lowest rank and lowest weight (refer Table 2). On

the other hand, category VIII has methods which

receive as well as manipulate and return some instance

variables. These types of methods increase the

cohesiveness of the class. Therefore the methods

belonging to this category have been given highest

rank and highest weight. Other categories have been

provided weights in between. In order to maintain a

normalized effect of these weights, for our purpose, the

values have been chosen in the interval [0, 1].

3.1. Proposed Cohesion Measures

3.1.1. Method Cohesion (MC)

The cohesion of jth method mj is given by

MC(mj)=
|𝑅𝑣𝑗∪𝑅𝑡𝑣𝑗∪𝑀𝑣𝑗|

|𝐴|

The numerator will have the value 1 if a method mj

receives, manipulates as well as returns an instance

variable. In that case cohesion of method mj will be 1.

3.1.2. Class Cohesion (LAMCC)

Now, we define cohesion of a class C as the weighted

average of the cohesion of all of its methods mj∊M.

Hence

LAMCC(C)=
∑ 𝑤𝑗

|𝑀|
𝑗=1 ∗𝑀𝐶(𝑚𝑗)

∑ 𝑤𝑗
|𝑀|
𝑗=1

LAMCC for a class C will be 0 if all the methods of

the class have MC values as 0 and it will be 1 if all the

methods of the class have MC values as 1.

3.2. A Worked Example

Consider an example of a Stack class (Example 1)

[21]. This class has four normal methods M1= push,

M2=pop, M3=is Stack Empty, M4=top of Stack and

two attributes A1=stck[] and A2=tos. Then,

MC(M1)=2/2=1; MC(M2)=2/2=1; MC(M3)=1/2=0.5;

MC(M4)=1/2=0.5; and thus

LAMCC(Stack)=1*0.8+1*0.8+0.5*0.4+0.5*0.4/2.4=2/

2.4=0.833.

The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020 415

Table 2. Cohesive relationship categories.

Category Rv Mv Rtv Interpretation Ranking Weight

I Χ Χ Χ None of the instance variables are received/ manipulated/ returned 8 0

II Χ Χ ✓
None of the instance variables are received/manipulated. However

some are returned.
6 0.4

III Χ ✓ Χ
None of the instance variables are recieved/ returned. However, some

are manipulated.
4 0.8

IV Χ ✓ ✓
None of the instance variables are received. However, some are

manipulated and returned.
2 0.9

V ✓ Χ Χ
None of the instance variables are manipulated/ returned. However,

some are received.
7 0.2

VI ✓ Χ ✓
None of the instance variables are manipulated. However, some are

received/ returned.
5 0.6

VII ✓ ✓ Χ
Some of the instance variables are received /manipulated. However,

none is returned.
3 0.9

VIII ✓ ✓ ✓
Some of the instance variables are received as well as returned and

manipulated.
1 1

 Example 1: Stack Class
class Stack {

int stck[];

int tos;

Stack(int size){

 stck= new int[size];

 tos=-1;}

push (int item){

 if (tos==stck.length-1)

 System.out.println(“Stack is full”);

 else

 stck[++tos]=item;}

pop(){

 if(isStackEmpty){

 System.out.println(“Stack underflow”);

 return 0;}

 else

 return stck[tos--];}

int isStackEmpty(){return tos==-1;}

int topofStack(){return stck[tos-1];}

}

Table 3 represents a comparison of LAMCC with

several variations of LCOM metric for the code

presented in Example 1.

Table 3. LAMCC and LCOM.

LAMCC
LCOM1

[15]

LCOM2

[16]

LCOM3

[28]

LCOM4

[23]

LCOM5

[22]

0.833 0 0 1 1 1

4. Theoretical Validation

We have used one of the most frequently used

theoretical framework given by Briand et al. [12] for

validating our proposed measure LAMCC. The

framework provides axiomatic properties for analysing

different measurement concepts for software artefacts

like size, length, complexity, coupling and cohesion.

Below we give a brief overview of the properties

defined for the concept of cohesion in this framework

and consequently prove that our proposed measure

LAMCC conforms to these properties.

 Property 1: Non-negativity. It states that a cohesion

measure cannot have values less than 0.

 Proof. LAMCC is computed from the modulus of

union of three types of cohesive interactions Rv, Rtv

and Mv, therefore its value cannot be negative.

Hence, this property is satisfied.

 Property 2: Normalization. The value of a cohesion

measure is contained in the interval [0, Max].

 Proof. LAMCC attains minimum value(i.e., 0)

when there are no cohesive relationships and goes

to a maximum value (i.e.,1) when all the cohesive

relationships are present. Hence, this property is

satisfied.

 Property 3: Null Value. It states that if no cohesive

interactions exist, then the cohesion values of a

class is equal to 0.

 Proof. According to the definition of LAMCC, it

achieves value 0 when a class contains only the

methods belonging to category I, i.e., no cohesive

interactions are there. Hence, this property is

satisfied.

 Property 4: Monotonicity. It states that adding a

cohesive relationship to a module cannot decrease

its cohesion.

 Proof. Adding a cohesive relation to our model

implies that either |Rv| or |Mv| or |Rtv| increases by

1. This can have the effect that | Rv∪Mv∪Rtv | may

increase or remain same. But it can never decrease.

Consequently, LAMCC may increase or remain

same. Hence this property is also satisfied.

 Property 5: Cohesive modules. This property states

that if two unrelated modules are merged, then the

cohesion of the merged module does not increase.

In context of OO software, given two unrelated

classes C1 and C2 which do not have common

attributes and methods, the cohesion of a class C

formed by merging C1 and C2 cannot exceed the

maximum cohesion of the individual classes.

 Proof. Suppose that two unrelated classes C1 and

C2 are merged form class C, then the merged class

C contains all the attributes and methods of C1 and

C2. This has the effect that the cohesive relations in

merged class C can remain same or can decrease

but can never increase because a method from one

of the split class will not access an attribute fromthe

other split class. Hence LAMCC(C)<=

416 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

{max(LAMCC(C1),LAMCC(C2))}. Hence this

property is also satisfied.

5. Empirical Validation

In this section, we assess the empirical validity of the

proposed measure LAMCC in predicting maintenance-

effort of classes. Maintenance is the process that

involves changing a software due to fault(corrective),

need for improvement(perfective), or adapting to

hardware/software environment change (adaptive) [6,

24]. Using software metrics for predicting class

maintenance has been an active area of research in

software engineering community [3, 6, 20]. For our

purpose, we have operationalized maintenance as “the

effort expended in incorporating a new/changed

requirement”. We call it as maintenance-effort (maint-

effort) and have measured it in terms of change, i.e.,

number of lines of code added/deleted while

incorporating the new/changed requirement”. Change

has been used as an indicator of maintenance-effort in

various empirical studies [3, 28]. These studies have

indicated that classes with more changes require more

maintenance-effort than those with fewer changes.

Therefore, we have also conducted our experimental

study consistent with this approach.

5.1. Experimental Set-up

We selected 28 sample Java classes from various

sources like [29, 30] and web (with slight coding

modifications) for the experiment. Table 4 presents

these classes with their corresponding LAMCC values.

Table 4. Sample java classes.

SNO Class LAMCC

C1 Loan 0.345

C2 BMICalculator 0.62

C3 Point 0.33

C4 Employee 0.725

C5 SwapCircle 0.28

C6 EmpBusinessLogic 0.95

C7 Calendar 0.50

C8 MessageUtil 0.392

C9 Course 0.452

C10 Graph 0.19

C11 Measures 0.22

C12 Box 0.356

C13 Stack 0.833

C14 Complex 0.93

C15 ShoppingCart 0.226

C16 Account 0.77

C17 Lottery 0.26

C18 Account 0.73

C19 Circle 0.486

C20 Manager 0.666

C21 Triangle 0.382

C22 StackOfIntegers 0.775

C23 Car 0.18

C24 Rectangle 0.52

C25 BangBean 0.266

C26 Queue 0.82

C27 Tax 0.73

C28 Hex2Dec 0.41

5.1.1. Experimental Goal

This experimental study is conducted with the goal of

finding whether the proposed measure LAMCC is

statistically related with maintenance-effort of classes.

Accordingly, as suggested in [32], we use Goal

Question Metric (GQM) [7] template for this purpose

(Table 5).

Table 5. GQM [7] Template for experimental goal.

Analyze Proposed cohesion measure

For the purpose of evaluating

With respect to
The relationship with maintenance-

effort of OO classes

From the point of view of Researchers

In the context of
Postgraduate computer science

students

5.1.2. Planning

 Selection of context: In our experimental study, we

try to establish the fact that the proposed cohesion

measure can be used as indicator of maintenance-

effort of OO classes.

 Selection of subjects: We conducted the

experimental study with 28 subjects who were in

the final year of post-graduation in computer

science at USICT, GGSIPU, New Delhi.1 Various

experimental studies in the field of software metric

validation have used students as subjects [6] as

researchers have always encouraged such pilot

studies in academic environment [7]. The

participation of the subjects was voluntary.

Although the subjects were chosen for convenience

(as we could not find software professionals), these

subjects had requisite grasp of the concepts of OO,

Software Engineering and Java and some of them

also had industrial experience.

 Selection of variables: For our purpose, the

independent variable is the OO class cohesion and

the dependent variable is maintenance-effort.

 Instrumentation: We have used our proposed

measure LAMCC to measure the independent

variable (class cohesion). The dependent variable

(maintenance-effort) was operationalized as “the

number of lines of code added/deleted while

incorporating a new/changed requirement”. Many

researchers have used this approach in the field of

maintainability prediction [3, 28].

 Experimental Design. Each subject was given one

sample Java class randomly. This randomization in

an experimental design is said to curb any kind of

bias [32].

 Empirical Hypotheses. In our case, we define two

empirical hypotheses as follows:

H10:(Null hypothesis)-No statistically significant

relationship exists between the proposed cohesion

measure LAMCC and maintenance-effort of classes.

H20:(Null Hypothesis)-Classes with low LAMCC are

not costly to maintain.

1University School of Information, Communication and

Technology, Guru Gobind Singh Indraprastha University,

New Delhi

A New Metric for Class Cohesion for Object Oriented Software 417

H11:(Alternate hypothesis)-A statistically significant

relationship exists between the proposed cohesion

measure LAMCC and maintenance-effort of classes.

H21:(Alternate Hypothesis): Classes with low LAMCC

are costly to maintain.

5.1.3. Operation

 Preparation. To prepare the subjects for the

experiment, they were asked to attend to a training

session in which they were made aware regarding

some do’s and dont’s of the experiment. For e.g.,

they were given clear instructions on what type of

conduct and behaviour they should pursue during the

task, how maintenance-effort values would be

recorded by them etc. Nonetheless, the instructions

were carefully disseminated so that the subjects did

not get any idea about the empirical hypotheses

under study.

After the training session, the experimental task were

given as a handout document consisting of:

a) Source code of the sample Java class source code.

b) A short summary about the functioning of the class.

c) One new/changed requirement that had to be

integrated into the class functionality.

Table 6. Maintenance-effort values.

SNO LAMCC Maint-effort

C1 0.345 22

C2 0.62 18

C3 0.33 20

C4 0.725 13

C5 0.28 19

C6 0.95 11

C7 0.5 20

C8 0.392 25

C9 0.452 19

C10 0.19 25

C11 0.22 18

C12 0.356 16

C13 0.833 12

C14 0.93 15

C15 0.226 22

C16 0.77 16

C17 0.26 15

C18 0.73 18

C19 0.486 20

C20 0.666 16

C21 0.382 16

C22 0.775 18

C23 0.18 22

C24 0.52 18

C25 0.266 24

C26 0.82 15

C27 0.73 12

C28 0.41 20

For e.g., in the Emp Business Logic class (C6), the

experimental task consisted of adding a new

functionality - calculating the house tax from salary of

an employee. Accordingly, the subjects reported the

number of lines of code added/deleted while including

this new functionality.

Execution: The experimental tasks were given as

assignments to the subjects. The subjects performed the

tasks at home (without any supervision) and submitted

the same to us after completion within two days.

Table 6 provides the LAMCC and the collected

maintenance-effort values.

5.2. Data Analysis Methodology and Results

Discussion

5.2.1. Correlation Analysis

The Pearson correlation analysis was conducted to test

the hypothesis H10 and H11 (refer section V). The

value of the correlation coefficient r signifies the

strength of relationship while the sign represents the

direction of relationship between two variables. The

coefficient values lie in the interval [-1, 1] where r=1

represents perfect positive correlation, r=-1 represents

perfect negative correlation; and r=0 indicates absence

of relationship. We have used the adjective ratings as

used in [21] for interpreting other values of r (with

p=0.01).

Table 7 shows the values of Pearson correlation

coefficient between LAMCC and maintenance-effort.

As can be inferred from the table, LAMCC has a

significant negative correlation with maintenance-

effort. This means higher LAMCC values indicate that

a class will require less maintenance-effort to make

changes to its functionality while classes with lower

LAMCC values will be more prone to changes and

hence will require more maintenance-effort.

Therefore, we reject the null hypothesis H10 and

accept the alternate hypothesis H11.

Table 7. Pearson correlation coefficient.

 Maint-effort P

LAMCC -0.716 <.001

5.2.2. Logistic Regression

We used univariate logistic regression analysis to test

the hypothesis H20 and H21. It is a statistical technique

based on maximum likelihood estimation [13]. The

dependent variable in a logistic regression based

prediction model is dichotomous i.e., has two values

only. Therefore we used a binary variable Costly

Maintained Class (CMC) to indicate class

maintenance-effort for our experiment (as suggested

in [3]). A class is said to be costly to maintain if its

maintenance-effort (i.e., number of lines of code

added/deleted) is greater than the mean value of

maintenance-effort of all classes under study. The

CMC of such a class has been set to ‘‘1’’; otherwise,

the CMC value has been set to ‘‘0’’ (Table 8). Classes

with relatively high number of lines of code

added/deleted value are costly as these classes

supposedly require more maintenance [3].

418 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

(3)

Table 8. Logistic regression table.

SNO LAMCC CMC

C1 0.345 1

C2 0.62 1

C3 0.33 1

C4 0.725 0

C5 0.28 1

C6 0.95 0

C7 0.5 1

C8 0.392 1

C9 0.452 1

C10 0.19 1

C11 0.22 1

C12 0.356 0

C13 0.833 0

C14 0.93 0

C15 0.226 1

C16 0.77 0

C17 0.26 0

C18 0.73 1

C19 0.486 1

C20 0.666 0

C21 0.382 0

C22 0.775 1

C23 0.18 1

C24 0.52 1

C25 0.266 1

C26 0.82 0

C27 0.73 0

C28 0.41 1

The classification model built in univariate logistic

regression uses the following equation

π(X)=
1

1+𝑒−(𝐶0+𝐶1𝑋)

Where π is the probability that a class is costly to

maintain and X is the independent variable LAMCC.

The following statistics are reported in order to

evaluate the performance of the model:

1. B: it is the logistic regression coefficient for the

independent variable in the equation. It tells the

impact of the independent variable LAMCC on

dependent variable CMC. The sign of the coefficient

tells the direction of the impact.

2. Precision: It gives the ratio of the number of classes

which are correctly classified as costly to maintain to

the total number of classes which are classified

costly.

3. Recall: It gives the ratio of the number of classes

which are correctly classified as costly to the total

number of actual classes that are costly.

4. Area Under Curve (AUC): It is the area under the

curve in a plot called Receiver Operator

Characteristic (ROC). In our case, ROC graph is a

depiction of the proportion of classes which are

correctly classified as costly to the classes which are

incorrectly classified as costly (at different threshold

levels) (Figure 1). Consequently, AUC indicates the

effectiveness of the model to correctly classify the

classes as costly. Therefore, higher values of AUC

indicate a better model. We have used the criteria

used in [3] to assess the classification performance of

our model such that the values vary from AUC<=0.5

(not good) to 0.9<AUC<1.0 (outstanding)

5. R2: We also report Nagelkerke R2 to provide the

goodness-of-fit. It denotes the proportion of the

variance in the dependent variable that is explained

by the variance in the independent variable.

Table 9 provides the contingency matrix of actual and

predicted CMC variable, Table 10 gives the univariate

logistic regression results.

Table 9. Contingency matrix.

Actual

Predicted

Not Costly Costly

Not Costly 9 3

Costly 2 14

Table 10. Univariate logistic regression results.

 B R2 p-value Precison Recall AUC

LAMCC -6.156 .414 .007 .823 .875 81%

Figure 1. ROC curve.

The following points can be inferred from Table 9:

1. The regression coefficient (B) comes out to be

negative, indicating an inverse relationship between

LAMCC and maintenance effort. This is expected

as classes with low cohesion values would require

more effort to maintain [3].

2. One can infer the high values of precision (82.3%),

recall (87.5%) and AUC (81%) from Table IX. This

reinforces the fact that cohesiveness of a class can

reasonably be used to predict the effort needed to

maintain it.

3. Based on the above two observations, we reject the

null hypothesis H20 and accept the alternate

hypothesis H21.

6. Threats to Validity

Researchers have suggested that an experimental

study may be subjected to certain threats to the

validity related to the reported results [31, 32],

limiting the generalization and interpretation of the

reported results. We have therefore listed down these

threats as follows:

6.1. Construct Validity

It deals with measurement of variables under study. If

the measurement instrument/s accurately measure the

variables (dependent as well as independent), we say

that the variables are constructively valid. For our

case, the theoretical validation (refer section 4)

ensures the construct validity of the independent

A New Metric for Class Cohesion for Object Oriented Software 419

variable LAMCC as a cohesion measure. The

dependent variable is reported consistent with the

approach used in other studies like [3, 28], so we

consider the dependent variable (maint-effort) to be

constructively valid also.

6.2. Internal Validity

It deals with the cause-effect relationship between the

independent and the dependent variable. If a study is

able to effectively establish this cause-effect

relationship, we say that it is internally valid. In order

to achieve this, one should try to control the effect of

extraneous factors. Several of these factors which we

dealt with are:

1. Motivation of subjects. All the subjects who were

involved in this experiment participated voluntarily

with great enthusiasm. Also, we motivated them from

time to time that their effort will help them in

growing as good software professionals. So, we

believe that the subjects were reasonably motivated.

2. Bias. We tried to curb bias when experimental tasks

were assigned to the subjects by using randomization

which is an effective way of minimizing bias [31,

32].

3. Persistent Effect. The subjects were participating in

an experimental study for the first time, therefore we

reasonably believe the absence of persistent effect.

4. Precision. The students were responsible for

recording the values for maintenance-effort.

Although this approach has been reported in several

studies [6], however, we are aware that this might

have introduced imprecision.

5. Plagiarism and influence among subjects. This was

not an issue as each subject received a different

experimental task.

6.3. External Validity

It deals with whether the results of an experimental

study can be generalized to other research settings. For

our data set, all considered classes are implemented in

Java. One should also consider the applicability of the

proposed measure for other OO languages like C++ for

generalization. The sample classes were chosen

randomly yet keeping in mind that they represented

different domains. Still, we are aware that the dataset

might have influenced our conclusions. Therefore, a

replicated study with different datasets should be

performed. Lastly, the experiment used students as

subjects. However, we feel that using students for the

experimental study should not be an issue as

researchers like [31] favour the use of students by

arguing that “students are next generation of software

professionals and therefore are close to the population

of interest”. Nonetheless, a study with professionals

should be conducted.

7. Conclusions and Future Direction

We have proposed a new source code level class

cohesion metric LAMMC based on instance variable

usage by methods. Three types of cohesive

relationships are defined i.e., received, manipulated

and returned, which give rise to eight different

categories of cohesive interactions. The proposed

measure LAMCC is then computed by giving these

cohesive interactions categories and weights

depending upon the importance of the corresponding

category in measuring class cohesion. The proposed

measure is theoretically validated as well as has been

empirically shown to be related with maintenance-

effort of classes.

In future, we plan to perform a comparative analysis

of the proposed measure LAMCC with other existing

source code level cohesion measures for OO software.

We also plan to conduct experiments to correlate the

proposed cohesion measure with other external quality

factors like reusability, fault-proneness etc.

References

[1] Aggarwal K., Singh Y., Kaur A., and Malhotra

R., “Investigating Effect of Design Metrics on

Fault Proneness in Object-Oriented Systems,”

Journal of Object Technology, vol. 6, no. 10,

pp.127-141, 2007.

[2] Al-Dallal J. and Briand L., “A Precise Method-

Method Interactionbased Cohesion Metric for

Object-Oriented Classes,” ACM Transactions on

Software Engineering and Methodology, vol. 21,

no. 2, pp. 1-34, 2011.

[3] Al-Dallal J., “Object-Oriented Class

Maintainability Prediction Using Internal

Quality Attributes,” Information and Software

Technology, vol. 55, no. 11, pp. 2028-2048,

2013.

[4] Aman H., Yamasaki K., Yamada H., and Noda

M., “A Proposal of Class Cohesion Metrics

Using Sizes of Cohesive Parts,” in Proceedings

of 5th Joint Conference On Knowledge-Based

Software Engineering, Rozman, pp. 102-107,

2002.

[5] Badri L. and Badri M., “A Proposal of A New

Class Cohesion Criterion: An Empirical Study,”

Journal of Object Technology, vol. 3, no. 4, pp.

145-159, 2004.

[6] Bandi R., Vaishnavi V., and Turk E., “Predicting

Maintenance Performance Using Object-

Oriented Design Complexity Metrics,” IEEE

Transactions on Software Engineering, vol. 29,

no. 1, pp. 77-87, 2003.

[7] Basili V. and Weiss D., “A Methodology for

Collecting Valid Software Engineering Data,”

IEEE Transactions on Software Engineering,

vol. 10, no. 6, pp. 728-738, 1984.

420 The International Arab Journal of Information Technology, Vol. 17, No. 3, May 2020

[8] Bieman J. and Kang B., “Cohesion and Reuse in

an Object-Oriented System,” in Proceedings of

the Symposium on Software Reusability, Seattle,

pp. 259-262, 1995.

[9] Bieman J. and Ott L., “Measuring Functional

Cohesion,” IEEE Transactions on Software

Engineering, vol. 20, no. 8, pp. 644-657, 1994.

[10] Bonja C. and Kidanmariam E., “Metrics for Class

Cohesion and Similarity between Methods,” in

Proceedings of the 44th Annual ACM Southeast

Regional Conference, Melbourne, pp. 91-95,

2006.

[11] Briand L., El Emam K., and Morasca S.,

“Theoretical and Empirical Validation of

Software Product Measures,” Technical Report

ISERN-95-03, 1995.

[12] Briand L., Morasca S., and Basili V., “Property-

Based Software Engineering Measurement,”

IEEE Transactions on Software Engineering, vol.

22, no. 1, pp. 68-86, 1996.

[13] Briand L., Wüst J., Ikonomovski S., and Lounis

H., “A Comprehensive Investigation of Quality

Factors in Object-Oriented Designs: An Industrial

Case Study,” Technical Report, ISERN, 98-29,

1998.

[14] Briand L., Bunse C., and Daly J., “A Controlled

Experiment for Evaluating Quality Guidelines on

The Maintainability of Object-Oriented Designs,”

IEEE Transactions on Software Engineering, vol.

27, no.6, pp. 513-530, 2001.

[15] Chidamber S. and Kemerer C., “Towards a

Metrics Suite for Object-Oriented Design,” in

Proceedings of Object-Oriented Programming

Systems, Languages and Applications, Phoenix

Arizona, pp. 197-211, 1991.

[16] Chidamber S. and Kemerer C., “A Metrics Suite

for Object Oriented Design,” IEEE Transactions

on Software Engineering, vol. 20, no. 6, pp. 476-

493, 1994.

[17] Deligiannis I., Shepperd M., Roumeliotis M., and

Stamelos I., “An Empirical Investigation of An

Object-Oriented Design Heuristic for

Maintainability,” Journal of Systems and

Software, vol. 65, no. 2, pp.127-139, 2003.

[18] Fernandez L. and Pena R., “A Sensitive Metric of

Class Cohesion,” International Journal of

Information Theory and Applications, vol. 13,

no.1, pp. 82-91, 2006.

[19] Gosain A. and Sharma G., “Object Oriented

Dynamic Complexity Measures for Software

Understandability,” Innovations in Systems and

Software Engineering, vol. 13, no. 2-3, pp. 177-

190, 2017.

[20] Gosain A. and Sharma G., “Predicting Software

Maintainability Using Object Oriented Dynamic

Complexity Measures,” in Proceedings of

International Conference on Smart Trends for

Information Technology and Computer

Communications, Jaipur, pp. 218-230, 2016.

[21] Gupta V. and Chhabra J., “Dynamic Cohesion

Measures for Object-Oriented Software,”

Journal of Systems Architecture, vol. 57, no. 4,

pp. 452-462, 2011.

[22] Henderson-Sellers B., Object Oriented Metrics:

Measures of Complexity, Prentice Hall Inc.,

1996.

[23] Hitz M. and Montazeri B., “Measuring Coupling

and Cohesion in Object Oriented Systems,” in

Proceedings of International Symposium on

Applied Corporate Computing, Monterrey, pp.

25-27, 1995.

[24] IEEE Std. 610.12-1990. Standard Glossary of

Software Engineering Terminology, IEEE

Computer Society Press, Los Alamitos, CA,

1993.

[25] Kabaili H., Keller R., and Lustman F.,

“Cohesion as Changeability Indicator In Object-

Oriented Systems,” in Proceedings of 5th

European Conference on Software Maintenance

and Reengineering, Lisbon, pp. 39-46 2001.

[26] Kaur K. and Singh H., “An Investigation of

Design Level Class Cohesion Metrics,” The

International Arab Journal of Information

Technology, vol. 9, no. 1, pp. 66-73, 2012.

[27] Kitchenham B., Pfleeger S., and Fenton N.,

“Towards A Framework for Software

Measurement Validation,” IEEE Transaction on

Software Engineering, vol. 21, no. 12, pp. 929-

944, 1995.

[28] Li W., and Henry S., “Object-Oriented Metrics

that Predict Maintainability,” Journal of Systems

and Software, vol. 23, no. 2, pp. 111-122, 1993.

[29] Liang, Y., Introduction to Java Programming,

Prentice Hall Inc, 2014.

[30] Naughton P., and Schildt H., Java 2: The

Complete Reference, McGraw-Hill, 1999.

[31] Kitchenhem B., Pfleeger S., Pickard L., Jones P.,

Hoaglin D., El Emmam K., and Rosenberg J.,

“Preliminary Guidelines for Empirical Research

in Software Engineering,” IEEE Transactions on

Software Engineering, vol. 28, no. 8, pp. 721-

734, 2002.

[32] Wohlin C., Runeson P., Höst M., Ohlsson M.,

Regnell B., and Wesslen A., Experimentation in

Software Engineering, Kluwer Academic

Publishers, 2000.

A New Metric for Class Cohesion for Object Oriented Software 421

Anjana Gosain is currently working

as Professor at University School of

Information, Communication &

Technology, Guru Gobind Singh

Indraprastha University, Dwarka,

New Delhi, India. She has worked in

the areas of data warehousing, data

mining, requirements engineering, conceptual

modelling, software engineering and machine learning

and has authored/co-authored over 90 research

publications in peer-reviewed reputed international

journals, book chapter sand conferenceproceedings.

Ganga Sharma is currently working

as Assistant Professor at School of

Engineering, G D Goenka

University, Sohna, Gurgaon-122103,

Haryana, India. Her research

interests include software

engineering, object oriented analysis

and design, software metrics and aspect orientation.

