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Abstract: Further growth of computing performance has been started to be limited due to increasing energy consumption of 

cloud data centers. Therefore, it is important to pay attention to the resource management. Dynamic virtual machines 

consolidation is a successful approach to improve the utilization of resources and energy efficiency in cloud environments. 

Consequently, optimizing the online energy-performance trade off directly influences Quality of Service (QoS). In this paper, a 

novel approach known as Percentage of Overload Time Fraction Threshold (POTFT) is proposed that decides to migrate a 

Virtual Machine (VM) if the current Overload Time Fraction (OTF) value of Physical Machine (PM) exceeds the defined 

percentage of maximum allowed OTF value to avoid exceeding the maximum allowed resulting OTF value after a decision of 

VM migration or during VM migration. The proposed POTFT algorithm is also combined with VM quiescing to maximize the 

time until migration, while meeting QoS goal. A number of benchmark PM overload detection algorithms is implemented using 

different parameters to compare with POTFT with and without VM quiescing. We evaluate the algorithms through simulations 

with real world workload traces and results show that the proposed approaches outperform the benchmark PM overload 

detection algorithms. The results also show that proposed approaches lead to better time until migration by keeping average 

resulting OTF values less than allowed values. Moreover, POTFT algorithm with VM quiescing is able to minimize number of 

migrations according to QoS requirements and meet OTF constraint with a few quiescings.  
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1. Introduction 

Cloud environment is an efficient solution for data 

intensive and computing intensive applications [10]. 

Cloud computing provides scalable virtualized 

resources to global users over the internet. The 

designers of cloud computing systems have interested 

on the improvements of computing performance that 

are driven by the demand of consumer, business, and 

scientific applications. However, the power 

consumption of USA data centers has increased by 

62.5% from 2005 to 2013 and expected to increase by 

150% in 2020 [33]. Most of the energy consumption of 

data centers is consumed by the computing resources. 

Accordingly, it is important to pay attention to the 

resource management ensuring that the applications 

efficiently utilize the available computing resources. 

Switching the idle nodes to sleep mode to eliminate the 

idle power consumption can achieve a reduction in 

energy consumption. Dynamic Virtual Machine (VM) 

consolidation can effectively improve the utilization of 

resources and reduces energy consumption in data 

centers. Reallocating VMs from an overloaded 

Physical Machine (PM) maximizes the utilization and 

energy efficiency with providing a high Quality of 

Service (QoS). The goal of consolidation of VMs 

ensuring an efficient utilization can be achieved 

through the use of VMs migration across different 

PMs. 

One efficient way to improve the utilization of 

cloud data center resources is the dynamic 

consolidation of VMs [1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 

14, 15, 18, 20, 23, 30, 31, 34, 35]. The dynamic 

consolidation reallocates VMs periodically using 

migration to reduce the number of active PMs 

required to handle requests. The idle PMs are switched 

to sleep modes with fast transition times to minimize 

the overall energy consumption. If the demand for 

resources increases, PMs are reactivated from the 

sleep mode. The objective of this approach is mainly 

to minimize energy consumption and maximize of 

QoS. 
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It is complex to solve dynamic VM consolidation 

problem analytically as a whole [15, 30]. In general, the 

problem can be decomposed into tasks as following [4]: 

 PM underload detection: It is the phase when a PM 

is considered as being underloaded, so all VMs 

running on an underloaded PM should be migrated 

to other PMs and the underloaded PM should be 

switched to the sleep mode (to reduce the number of 

active PMs). 

 PM overload detection: It is the phase when a PM is 

considered as being overloaded, so some VMs 

running on an overloaded PM should be migrated to 

another active PM (to avoid violation QoS 

requirements). 

 VM selection: It is the phase to select VMs to be 

migrated from the overloaded PM. 

 VM migration: It is the phase to perform VM 

migration with minimal service downtime during the 

migration process. 

 VM placement: It is the phase to place selected VMs 

for migration on another active PM. 

In this paper, we mainly focus on PM overload 

detection problem. PM overload detection directly 

influences QoS, because performance degradation is 

very likely to occur if the resources are completely 

utilized. PM overload detection problem is complex 

because of the need to improve the system response 

time, while handling a set of heterogeneous workloads 

placed on a single PM [4]. When a PM is considered as 

being underloaded, its VMs are consolidated into other 

active PMs and it should be switched to the sleep mode. 

But when a PM is considered as being overloaded, 

VMs require a higher performance and PM in sleep 

mode is reactivated to migrate VMs. 

The rest of the paper is organized as follows. In 

section 2, we discuss the related work. We introduce 

the dynamic consolidation of VMs and propose our PM 

overload detection algorithm and the combination of 

PM overload detection algorithm and VM quiescing in 

section 3. In section 4, we introduce the experimental 

settings of Central Processing Unit (CPU) model. In 

section 5, the experimental evaluations and results are 

discussed. Finally, we conclude the results and discuss 

the future work in section 6. 

2. Related Work 

In the past few years, many approaches to the dynamic 

consolidation of VMs have been proposed VMs [1, 2, 

4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 18, 20, 23, 30, 31, 34, 

35]. Some of VM consolidation algorithms based on 

different heuristics on the legitimate PM were analyzed 

by Kaushar et al. [17]. A comparative study of various 

existing consolidation of VMs algorithms using real 

world workload traces was presented by authors. VM 

consolidation algorithms under QoS expectations were 

evaluated using the CloudSim [5] toolkit showing high 

improvement of cost savings and energy efficiency 

using dynamic workload scenarios. A scheduling 

algorithm to assign VMs to PMs in a data center was 

proposed by Sharifi et al. [26]. The goal was to 

improve energy efficiency by taking into 

consideration the conflicts between the costs of VM 

migration and CPU and disk utilizations. Four models 

were presented to identify the conflicts, namely the 

migration model, the energy model, the application 

model, and the target system model. 

An adaptive threshold-based algorithm was 

proposed by Deng et al. [7]. The overload threshold of 

CPU utilization and the average utilization of active 

PMs were used for PM underload detection algorithm, 

and minimum average utilization difference of the 

data center was used for VM placement algorithm. 

Several dynamic VM consolidation algorithms were 

proposed by Khoshkholghi et al. [19] to improve the 

utilization, energy consumption and Service Level 

Agreement (SLA) violations based on the CPU, 

Random Access Memory (RAM) and bandwidth. 

They used an iterative weighted linear regression 

method for PM overload detection and a vector 

magnitude squared of resources for PM underload 

detection. They also proposed SLA and power-aware 

VM selection algorithm and VM placement algorithm. 

PM overload and underload detection algorithms 

based on dynamic thresholds were proposed by Najari 

et al. [22]. They used simple exponential smoothing 

technique to predict CPU utilization and calculate 

dynamic upper and lower utilization thresholds. A VM 

consolidation algorithm with utilization prediction of 

multiple resource types based on the local history of 

PMs was proposed by Nguyen et al. [24] to improve 

the energy efficiency of cloud data centers. 

Managing resource allocation to improve response 

time using control loops at the server and cluster 

levels were applied by Wang et al. [32]. The server 

migrated a VM if the server’s resource capacity was 

not enough to meet SLAs of application. Kakadia et 

al. [16] proposed a greedy consolidation algorithm 

based on VMs placement algorithm to improve the 

network usage and performance of applications in the 

data centers. The greedy consolidation algorithm 

reduced the number of migrations and speed up the 

placement decisions. Forsman et al. [8] proposed two 

algorithms, which could be used together for live 

migration of multiple VMs. The proposed VM 

migration depended on three factors that were the cost 

of migration, the expected distribution of workload 

and the state of PM after migration. The algorithms 

distributed the workload efficiently in the system. In 

spite of that, the paper did not discuss how to meet 

SLA. A dynamic consolidation of VMs for web 

applications was implemented by Guenter et al. [13]. 

The response time was used to define SLAs. Weighted 

linear regression was applied to get the future 

workload and improve the distribution of workload.  
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Because of constraints on the allowed number of 

migration of VMs in a certain period of time, the prior 

works might not be the only effective methods. We 

propose an approach that uses the combination of PM 

overload detection algorithm and VM quiescing which 

maximizes the time between sequential VM migrations 

(to minimize the number of migration of VMs) under 

the specified QoS constraint.  

3. Dynamic Consolidation of Virtual 

Machines 

In general, current solutions to PM overload detection 

problem are based on heuristic or statistical analysis of 

historical data. These approaches do not clearly specify 

QoS target. We propose the dynamic consolidation of 

VMs under the specified QoS targets based on a 

combination of PM overload detection algorithm and 

VM quiescing which solves optimally the problem of 

short time intervals between sequential VM migrations 

under QoS goal. The average time between sequential 

VM migrations is necessary to be maximized to 

optimize consolidation of VMs [4]. VM consolidation 

is used to reduce the number of active PMs, so a lower 

average number of active PMs represents a better 

consolidation of VMs. 

PM overload detection can initiate a VM migration 

from an overloaded PM. There are two possible cases 

of VM migrations due to the overload:  

1. A new PM must be activated to a VM, which should 

be migrated from an overloaded PM due to not 

enough resources on another active PM.  

2. A VM which should be migrated can be placed on 

another active PM.  

The goal of PM overload detection is to maximize the 

average time between sequential VM migrations (to 

minimize the number of migrations) [4]. Therefore, the 

activity time should be maximized for overloaded PMs, 

while the activity time should be minimized for under 

loaded PMs. 

At every moment of time, each VM on a PM takes a 

fraction of CPU utilization as required by VM’s 

workload. PM’s workload is constituted by CPU 

utilization created by a set of VMs that is currently 

allocated to a PM. CPU utilization of PM is monitored 

by a controller. A PM overload detection algorithm 

decides when a VM migration needs to be done to meet 

QoS goals, while maximizing the average time until 

migration.  

3.1. A Workload QoS Metric 

We use a workload QoS metric used in [4] to impose 

QoS requirements on the system. PM can be in one of 

the states according to its CPU utilization: 

1. Serving the normal load.  

2. Being highly loaded.  

It is assumed that VMs allocated to the overloaded PM 

might not provide the required performance level. 

Therefore, this leads to performance degradation. We 

use Overload Time Fraction (OTF) metric which 

allows measuring the performance degradation over 

the interval of time in regard to the definition of the 

overload state [4]. OTF metric is defined as:  

 (100%)
OTF 100%  ( ) o

a

t

t
  

Where to is the total time during which PM is in the 

overload state, when its CPU utilization is 100%, and 

ta is the total time of PM being in the active state. OTF 

is monitored continuously, and is recalculated every 

time PM overload detection is invoked. 

3.2. Proposed PM Overload Detection 

Algorithm 

We propose PM overload detection algorithm based 

on OTF Threshold (OTFT) algorithm [4]. OTFT 

algorithm decides to migrate a VM if the current OTF 

value of PM exceeds the defined Maximum Allowed 

OTF (MAOTF) value. However, OTFT algorithm 

fails to meet SLA requirements because OTF 

threshold equals to MAOTF and the average resulting 

OTF value exceeds the maximum allowed resulting 

OTF value [4]. 

Our proposed overload detection algorithm decides 

to migrate a VM if the current OTF value of PM 

(pm.OTF) exceeds the defined percentage (p) of 

MAOTF value to avoid exceeding the maximum 

allowed resulting OTF value after a decision of VM 

migration or during VM migration. We refer to this 

algorithm as Percentage of Overload Time Fraction 

Threshold (POTFT) algorithm. POTFT algorithm is 

presented in Algorithm 1. 

Algorithm 1: POTFT PM Overload Detection Algorithm 

Input: pm.OTF, MAOTF, p 

Output: PM’s status 

1: PM’s status = normal loaded 

2: if pm.OTF > (MAOTF × p) then 

3:  PM’s status = overloaded 

4: end if 

5: return PM’s status 

3.3. Proposed PM Overload Detection 

Algorithm with VM Quiescing 

Current researches may not be able to limit the 

number of VM migrations to be less than maximum 

allowed number of VM migrations and at the same 

time do not allow PM to exceed maximum allowed 

OTF. Therefore, this paper focuses on PM overload 

detection algorithms and proposes the combination of 

proposed PM overload detection algorithms with VM 

quiescing (temporary turning off VM) [3], which is 

able to minimize number of VM migrations and meet 

OTF constraint. VM quiescing should be applied with 

(1) 
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VM Quiescing 

VM Unquiescing 

efficient PM overload detection algorithm to minimize 

number of VM quiescings required. Therefore, we 

propose to combine VM quiescing with POTFT 

algorithm to minimize the number of VM migrations to 

be less than maximum allowed number of VM 

migrations and limit OTF to be less than MAOTF 

according to QoS constraints. 

PM overload detection algorithm is invoked 

periodically to decide if a PM is overloaded or not. The 

proposed algorithm turns off one of VMs randomly 

from the set of generated VM by Algorithm 3 if PM is 

highly loaded according to POTFT algorithm that its 

OTF value exceeds specified percentage of MAOTF, 

and current simulation time does not exceed minimum 

allowed time until migration. Turned off VMs are 

restarted when PM no longer suffers from overload. 

PM is no longer considered suffering from overload 

when OTF value of PM is less than 10% subtracted 

from specified percentage of MAOTF value. If PM still 

suffers from overload and current simulation time 

exceeds minimum allowed time until migration, a VM 

should be migrated from PM. The maximum allowed 

number of VM migrations initiated over n time steps 

(n/T) is considered as QoS requirement, where T is the 

minimum allowed time until migration and is set 

according to the maximum allowed number of VM 

migration in time. Combination of POTFT and VM 

quiescing algorithm is presented in Algorithm 2. 

Algorithm 2: Combination of POTFT and VM Quiescing 

Algorithm 

Input: A set of generated VMs, a set of turned off VMs, pm.OTF, 

T, current simulation time, MAOTF, p 

Output: A set of turned off VMs and a decision on whether to 

migrate a VM 

1: a decision on whether to migrate a VM = false 

2: if pm.OTF > (MAOTF × p) then 

3:     if current simulation time > T then 

4:          a decision on whether to migrate a VM = true 

5:     else 

6:          select VM randomly from a set of generated VMs 

7:          remove CPU utilization trace of a selected VM 

8:          add a VM to the set of turned off VMs  

9:      end if  

10: else  

11:    if the set of turned off VMs ≠ null and pm.OTF < (MAOTF 

× (p - 0.1)) 

12:          select a VM randomly from turned off VMs 

13:          assign CPU utilization trace for the selected VM 

14:          remove a VM from the set of turned off VMs 

15:    end if 

16: end if 

17: return (a set of turned off VMs, a decision on whether to 

migrate a VM) 

3.4. Benchmark PM Overload Detection 

Algorithms 

We evaluate the proposed algorithms using a number of 

benchmark PM overload detection algorithms with 

different parameters. The first benchmark algorithm is a 

simple heuristic algorithm based on specifying fixed 

CPU utilization Threshold (THR), which is applied in 

a number of related works [11, 12, 31, 35]. PM’s CPU 

utilization is monitored and if the specified upper 

threshold is exceeded, a VM is migrated. The next two 

algorithms are based on the statistical analysis to 

adjust CPU utilization threshold dynamically: based 

on Median Absolute Deviation (MAD) and 

Interquartile Range (IQR) [5]. MAD adjusts upper and 

lower PM’s utilization thresholds and keeps the total 

utilization of VMs between these thresholds. IQR 

adjusts an upper PM’s utilization threshold based on a 

measure of statistical dispersion, being equal to the 

first quartile subtracted from the third quartile. The 

next two algorithms estimate the future CPU 

utilization using regression-based approach and a 

modification of the robust regression method, which is 

robust to outliers [5]. These algorithms are denoted as 

Local Regression (LR) and Local Regression Robust 

(LRR) respectively. The main idea of LR, which is 

proposed by Guenter et al. [13], is to fit simple models 

to localized subsets of data to build up a curve that 

approximates the original data. LR algorithm is in line 

with robust regression method. Two other algorithms 

discussed in section 3.2. are OTFT and our proposed 

POTFT algorithms. In this paper, the benchmark PM 

overload detection algorithms are compared to 

proposed POTFT algorithm and POTFT with VM 

quiescing as presented in section 5.2. 

4. CPU Modelling 

We use CPU model as presented in [4]. The model is 

appropriate for single core and multi-core CPU 

architectures. The single core CPU capacity is 

modelled according to its clock frequency (F). A CPU 

utilization of VMs (ui) is a fraction of CPU utilization 

of PM (U) and is relative to CPU frequency of VMs 

(fi). CPU utilization of PM equals the summation of 

fractions of L VMs running on PM as: 

1

1 L

i ii
U f u

F 
   

We model a multi-core CPU for the investigation of 

PM overload detection problem. A clock frequency 

(Fc) of a multi-core CPU with k cores is modelled as 

kFc frequency of a single core CPU, which means F in 

(2) is replaced by kFc. Using a time-shared scheduling 

algorithm, each VM is randomly assigned to one of 

CPU’s cores. The only restriction is that VM’s CPU 

capacity cannot exceed the single core capacity. If this 

restriction is removed, a VM would be required to be 

executed on multi-core in parallel. 

5. Performance Evaluation of PM Overload 

Detection Algorithms using CPU Model 

We use simulations to evaluate the proposed POTFT 

algorithm and POTFT with VM quiescing. We use the 

source code of benchmark PM overload detection 

(2) 
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algorithms which is written in Clojure [4] and add the 

code of proposed POTFT algorithm and VM quiescing 

algorithm. 

5.1. Evaluation of PM Overload Detection 

Algorithms using Planet-Lab Workload 

Traces 

In multiple PMs environment, PM overload detection 

algorithm works independently in a decentralized way 

on every PM. So, a variety of heterogeneous VMs is 

served using a single PM with a quad-core CPU to 

evaluate PM overload detection algorithm under a real 

world workload. The clock frequency of each core of 

PM is set to 3 GHz, which transforms into 12 GHz 

according to CPU model in Section 4. The above CPU 

characteristics correspond to a medium range type in 

the cloud physical Amazon EC2 servers [21]. The 

memory size of PM is assumed to be enough for VMs. 

CPU frequency of each created VM is randomly set to: 

1.7 GHz, 2 GHz, 2.4 GHz, or 3 GHz, which 

corresponds to the types of Amazon EC2 instance [27]. 

CPU utilization used in the simulations is based on 

workload traces from the CoMon project, a monitoring 

tool for Planet-Lab [25]. The provided workload traces 

were collected every 5 minutes from more than a 

thousand VMs located at more than 500 places around 

the world. This trace was taken from March to April in 

2011.  

To run a simulation, a set of VMs is generated 

randomly with the assigned CPU utilization traces 

allocated on PM. PM overload detection technique at 

each time step decides if a VM migration should be 

done or not. The simulation ends when a VM is decided 

to be migrated, or when all workload traces are 

assigned. When a simulation ends, the average OTF is 

calculated according to (1). A set of VMs is assigned 

with the workload traces by the workload trace 

assignment algorithm which is presented in Algorithm 

3 [4]. The original workload traces is filtered to assign 

more dynamic workloads to PM overload detection 

algorithms. MAOTF after the first 30 time steps is 

constrained to 10% and the minimum overall OTF to 

20%. The workload trace assignment algorithm 

regenerates 100 different sets of VMs that meet the 

specified OTF constraints and every PM overload 

detection algorithm is run for each set of VMs [4]. 

Algorithm 3: Workload Trace Assignment Algorithm  

Input: A set of CPU utilization traces 

Output: A set of generated VMs 

1: select PM’s minimum CPU utilization randomly from 

(80%, 85%, 90%, 95%, and 100%) at the time 0  

2: while PM’s CPU utilization < PM’s minimum CPU 

utilization at the time 0  

3:  randomly select CPU frequency of new VM 

4:  randomly assign a CPU utilization trace 

5:  add new VM to the set of created VMs 

6: end while 

7: return a set of generated VMs 

The output of Algorithm 3 is used as one of the inputs 

to Algorithm 2. 

5.2. Simulation Results 

In this section, we compare THR, MAD, IQR, LR, 

LRR, OTFT, POTFT, and POTFT with VM quiescing 

algorithms with the experimental environment settings 

presented in section 5.1. For each overload detection 

technique, the parameters are used as presented in 

Table 1 [4]. 
 

Table 1. Parameters used in PM overload detection algorithms. 
 

Algorithm Parameter 
Value 

1 

Value 

2 

Value 

3 

THR 
CPU utilization threshold 

[4, 5, 9, 11] 
80% 90% 100% 

MAD 
The median of the 

absolute deviations [12] 
2 3 - 

IQR 
The median of the 

absolute deviations [11] 
1 2 - 

LR 
Estimated trend line [12] 1.2 1.1 1.0 

LRR 

OTFT 
OTF threshold (MAOTF) 

[4] 
10% 20% 30% 

POTFT 
OTF threshold (MAOTF 

× p) 

(10%×80%) 8% 
(20%×80
%) 16% 

(30%×80

%) 

24% 

(10%×85%) 

8.5% 

(20%×85

%) 17% 

(30%×85
%) 

25.5% 

(10%×90%) 9% 
(20%×90

%) 18% 

(30%×90
%) 

27% 

 

MAOTF value of OTFT and POTFT is set to 10%, 

20% and 30%. OTF threshold for OTFT is set as equal 

to MAOTF (10%, 20% and 30%) as presented in [4]. 

And OTF threshold for POTFT is set to 8%, 8.5%, 

9%, 16%, 17%, 18%, 24%, 25.5%, and 27% with 

varied p (80%, 85% and 90%) multiplied by MAOTF 

(10%, 20% and 30%). Average value of resulted OTF 

was not exceeding 10%, 20% and 30% respectively, 

by tuning parameters of PM overload detection 

algorithm to be increased from first to third parameter 

as shown in Table 1. Minimum allowed time until 

migration (T) is set to 40,000 seconds and 80,000 

seconds for all algorithms. OTF parameter values that 

are monitored continuously and recalculated every 

time PM overload detection is invoked as stated in 

section 3.1 and the minimum allowed time until 

migration are varied according to various supposed 

QoS constraints. 43 various combinations of the 

algorithms and parameters result by these variations. 

VM quiescing may occur many times before 

migration. The better algorithm is the one that 

maximizes the time until migration and does not let 

resulting OTF value to exceed maximum allowed 

value, which satisfies QoS constraint. 

Figure 1 presents the average OTF values with 95% 

confidence interval for benchmark PM overload 

detection algorithms, proposed POTFT without 
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quiescing, and proposed POTFT with VM quiescing 

(POTFT_Q). It can be seen from the results in Figure 1 

that POTFT and POTFT_Q with all parameters are the 

only competitive algorithms. They maximize resulting 

OTF value without allowing it to exceed maximum 

allowed value (10%, 20%, and 30%) and maximize the 

time until migration, while POTFT_Q is able to 

maximize time until migration to be more than 

minimum allowed time until migration as shown in 

Figure 2.  

Figure 2 presents the average time until a migration 

with 95% confidence interval for PM overload 

detection algorithms. The results in Figure 3 show that 

OTFT and proposed POTFT without quiescing have 

longer time until migration compared to other overload 

detection algorithms, and POTFT_Q is able to 

maximize time until migration to be more than 

minimum allowed time until migration (40,000 seconds 

and 80,000 seconds). The results in Figure 3 show that 

there is a statistically significant difference in the 

average time until a migration produced by LR_1, 

LRR_1, OTFT_30, POTFT_24, POTFT_25.5, and 

POTFT_27 algorithms compared to other algorithms 

except POTFT_Q. OTFT and POTFT algorithms have 

better average time until a migration compared to LR, 

and LRR. Moreover, the resulting OTF of POTFT and 

POTFT_Q and the time until migration of POTFT are 

increased when p parameter is increased from 80% to 

90%. 

Figure 3 presents the average number of VM 

quiescings with 95% confidence interval for POTFT_Q 

to maximize the time until migration to 40,000 seconds 

and 80,000 seconds. A large number of quiescings may 

highly affect QoS. However, Figure 3 shows that 

POTFT_Q with varied parameters has a small number 

of quiescings. Therefore, POTFT_Q is able to 

maximize time until migration according to QoS 

requirements with a few quiescings.  
 

Table 2. SLA violations by OTFT and POTFT. 
 

OTF 

Parameter 
OTFT POTFT_80% POTFT_85% POTFT_90% 

10% 100/100 0/300 0/300 3/300 

20% 100/100 0/300 0/300 0/300 

30% 44/100 0/300 0/300 0/300 

Overall 81.33% 0% 0% 0.33% 

 

Table 2 presents the levels of SLA violations 

caused by OTFT and POTFT algorithms. The results 

show that POTFT significantly outperforms OTFT 

algorithm according to SLA violation levels. POTFT 

with 80% and 85% of MAOTF leads to 0% SLA 

violations, POTFT with 90% of MAOTF causes only 

0.33% SLA violations, whereas OTFT causes 81.33% 

SLA violations. 

The results in Figure 2 show that the average time 

until a migration of POTFT is slightly lower than 

OTFT algorithm, however POTFT is able to avoid 

SLA violations as shown in Table 2. The experimental 

results show that the proposed POTFT leads to higher 

average time until a migration compared to benchmark 

algorithms while meeting the specified OTF goal. 

Moreover, POTFT_Q is able to minimize number of 

migrations according to QoS requirements and meet 

OTF constraint with a few quiescings.

 

Figure 1. Average OTF values with 95% confidence interval of PM overload detection algorithms. 

 

Figure 2. Average time until a VM migration with 95% confidence interval of PM overload detection algorithms. 
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Figure 3. Average number of quiescings with 95% confidence interval of combination of POTFT and VM quiescing. 

6. Conclusions 

Current works may not be able to limit the number of 

VM migrations to be less than maximum allowed 

number of VM migrations and at the same time do not 

allow PM to exceed MAOTF according to QoS 

constraints. Therefore, we propose dynamic VM 

consolidation based on a PM overload detection 

algorithm and a combination of PM overload detection 

algorithm and VM quiescing to minimize number of 

VM migrations according to QoS requirements and 

meet OTF constraint. The goal of the model is to 

improve the utilization of resources and energy 

efficiency in cloud data centers. We implement a 

number of PM overload detection algorithms using 

various parameters to compare with the proposed 

POTFT with and without VM quiescing. The 

algorithms are evaluated through simulations using real 

world workload traces. Our results of experiments show 

that PM overload detection algorithm outperforms the 

benchmark PM overload detection algorithms and leads 

to higher performance of benchmark PM overload 

detection algorithms, while meeting QoS target. The 

results show that proposed PM overload detection 

algorithm leads to better time until migration keeping 

average resulting OTF values less than allowed values. 

Moreover, proposed POTFT with VM quiescing is able 

to minimize number of VM migrations according to 

QoS requirements and meet OTF constraint with a few 

quiescings. 

As a future work, we plan to implement the 

proposed combination of VM quiescing and benchmark 

PM overload detection algorithms on a software 

framework for dynamic and energy efficient 

consolidation of VMs called OpenStack Neat [28]. The 

framework can be applied in existing OpenStack 

Clouds [29] deployments and in research on dynamic 

consolidation of VMs to optimize the resource 

utilization and energy efficiency. 
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