
990 The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018

Enhancing Anti-phishing by a Robust Multi-Level

Authentication Technique (EARMAT)

Adwan Yasin and Abdelmunem Abuhasan

College of Engineering and Information Technology, Arab American University, Palestine

Abstract: Phishing is a kind of social engineering attack in which experienced persons or entities fool novice users to share

their sensitive information such as usernames, passwords, credit card numbers, etc. through spoofed emails, spams, and

Trojan hosts. The proposed scheme based on designing a secure two factor authentication web application that prevents

phishing attacks instead of relying on the phishing detection methods and user experience. The proposed method guarantees

that authenticating users to services, such as online banking or e-commerce websites, is done in a very secure manner. The

proposed system involves using a mobile phone as a software token that plays the role of a second factor in the user

authentication process, the web application generates a session based onetime password and delivers it securely to the mobile

application after notifying him through Google Cloud Messaging (GCM) service, then the user mobile software will complete

the authentication process – after user confirmation- by encrypting the received onetime password with its own private key and

sends it back to the server in a secure and transparent to the user mechanism. Once the server decrypts the received onetime

password and mutually authenticates the client, it automatically authenticates the user’s web session. We implemented a

prototype system of our authentication protocol that consists of an Android application, a Java-based web server and a GCM

connectivity for both of them. Our evaluation results indicate the viability of the authentication protocol to secure the web

applications authentication against various types of threats.

Keywords: Phishing, two-factor authentication, web security, google cloud messaging, mobile authentication.

Received September 29, 2015; accepted June 1, 2016

1. Introduction

The internet evolution attracted most business

institutions to provide their transactions online through

web-based applications, among them, banks, stocks

and e-commerce websites are widely spread nowadays.

 Various attacks are arising on web-based systems,

exploiting application’s security weaknesses, browsers

vulnerabilities and user’s lack of experience to

compromise the user critical information such as user’s

identity information and credentials. Among those

attacks, Phishing attacks are continuously threatening

users and websites with identity theft that leads to

compromising the user account and being able to

perform transactions on behalf of the user.

Phishing attacks rely on social engineering

techniques and illegal usage of technology to obtain

user’s sensitive information. In a phishing attack, users

of a particular service can be asked to sign-in to a

clone of the original authentication system connected

to a masqueraded domain name, where the attacker can

steal their credentials and authenticate himself to the

legitimate web site on behalf of the user.

The continuous and increasing phishing attacks on

financial, retail and e-commerce websites urges the

importance of developing new defence mechanisms

against them, the number of unique phishing reports

submitted to Anti Phishing Work Group (APWG)

during Q4 of 2014 was 197,252. This was an increase

of 18 percent from the 163,333 received in Q3 of 2014

[2].

Phishing attacks rely upon a mix of technical deceit

and social engineering practices. The Phisher must

persuade the victim to intentionally perform a series of

actions that will provide access to confidential

information. The user is usually fooled by following

fake links sent by phishers through a communication

channels such as email, web pages and instant

messaging services [19]. Usually, the phisher must

impersonate a trusted source (e.g., the helpdesk of their

bank, automated support response from their favourite

online retailer, etc.,) for the victim to believe. Once the

user clicks on the fake link, he will be directed to the

phishing site-which is a fake copy of the original one-

and requested to enter his credentials, which are then

captured by the phisher and used later on behalf of the

user in the original web site.

Phishing attacks are the most critical type of

security attacks of web applications, due to their

continuous adaptation to security defence mechanisms,

the Anti-Phishing work group [2] yearly report about

phishing attacks shows huge number of phishing sites

that are deployed monthly, see Figure 1. This gives a

clear urge about the necessity of developing anti-

phishing schemes that are capable of preventing this

type of attacks.

Fighting phishing attacks has become an urgent and

continuous action by organizations and the web-

security research community, a set of mechanisms and

Enhancing Anti-phishing by a Robust Multi-Level Authentication Technique (EARMAT) 991

policies has been developed to prevent or detect the

phishing attacks, including protecting the user’s

personal computer, increasing user awareness,

phishing sites blacklisting, detection and prevention of

phishing attacks.

The mechanisms of protecting the user’s computer

against malwares and spoofed emails will never give a

full guarantee of solving the problem of phishing

attacks; the best phishing detection algorithms still

have an error rate not less than 7%. [1]

Figure 1. Unique phishing sites detected Oct.-Dec. 2014 [2].

 Phishing attack vectors: For a Phishing attack to be

successful, the phishers usually use a set of attack

methods that either exploit security weaknesses and

vulnerabilities at the user’s computer, the Internet

Service Provider (ISP) network or the website itself.

The most common methods include [19].

 Man-in-the-middle attacks: In this class of attack,

the attackers situate themselves between the

customer and the real web-based application, and

proxies all communications between the user and

the real web site, from this point, the attacker can

observe and record all transactions including the

user’s credentials. For man-in-the-middle attacks to

be successful, the attacker must be able to direct the

customer to their proxy server instead of the real

server. This may be carried out through a number of

methods including Transparent Proxies, Domain

Name System (DNS) Cache Poisoning, URL

Obfuscation and Browser Proxy Configuration.

 URL obfuscation attacks: phishers try to obfuscate

the final destination of the customer’s web request

through bad domain names, friendly login URL’s,

third party shortened URL’s or host name

obfuscation.

 Cross-site scripting attacks: commonly referred to

as Cascading Style Sheet (CSS) or XSS and make

use of custom URL or code injection into a valid

web-based application URL or embedded data field.

In general, these CSS techniques are the result of

poor web-application development processes.

 Domain hijacking: also known as Domain Theft and

is defined as the act of changing the registration of a

domain name without permissions of the original

domain owner. In the context of phishing attacks,

the hijacker can replace the website with an

identical website that records private information

 such as log-in passwords.

 Content spoofing: in this type of attack, the attacker

tries to convince a user that a malicious content

appearing in a website is legitimate, an obvious

example of content spoofing is by including a fake

login frame into a spoofed website that the user

trusts, and fooling the user to enter his credentials in

the fake login frame which is controlled by the

attacker.

 Pre-set session attacks: In this class of attacks, the

phishing message contains a web link to the real

application server, but also contains a predefined

Session ID field. The phisher keeps trying to access

the real website with the predefined session id; once

the fooled user uses the link to access the server, the

phisher will be able to access the server also. This

could happen in website with very poor security

controls.

 Observing customer data: key-loggers and screen-

grabbers can be used to observe confidential

customer data as it is entered into a web-based

application and then transmitted to hackers.

In the literature, we can categorize the proposed

solutions to the phishing attacks into four categories;

ranging from end users training into more complex,

user transparent (technical) solutions.

The end user of an application is the key factor in

preventing phishing attacks; a trained and experienced

user can in most cases decide whether a link sent to

him by email or SMS is a legitimate one or not, using a

set of factors including URL correctness, the message

language and whether the connection is secure or not,

in addition to the contents and structure of the target

website. Unfortunately, this assumption is not

effective, as most users are not aware of the basic

security concepts or features [7, 10], and thus relying

on user’s awareness or experience is not a dependable

option for fighting Phishing attacks; especially for

advanced and well prepared phishing attacks that are

continuously arising.

On the other hand, three types of technical solutions

and proposals are found in the literature of combating

the phishing problem; Secure Socket Layer (SSL)/

Transport Layer Security (TLS) and third-party

certification, anti-phishing tools and extending the

traditional user authentication schemes with a second

factor.

 SSL/TLS and third-party certification: TLS and its

predecessor SSL protocols are implemented to

secure communication between a client and a server

through encrypting the connection data, and

authenticating servers through Certificate

Authorities (CA) based on Public Key Infrastructure

(PKI).

Despite the robustness of the TLS/SSL security

models, they are not considered as an ideal solution for

the phishing attacks, due to that the root causes of

992 The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018

phishing attacks is based on fooling users to enter their

sensitive information on a fake website after drawing

an illusion for the user that he is accessing the original

website; the only visible feature for websites that

implement SSL is the lock icon that appears on the

client browser, what if the phishing site itself is using

SSL too? The same lock icon will appear too, for most

novice users this could be an indication that the

website is original while in fact it is not.

 Anti-phishing tools: which are toolbars or add-

ons/extensions for internet browsers, e.g., Spoof

guard [4] and Microsoft phishing filters. Those

toolbars are used to detect phishing websites based

on a set of factors, including: existence of website

certificates, black listing of phishing sites, artificial

intelligence approaches including fuzzy logic and

Bayesian rules. probability of failure in anti-

phishing tools is not less than 7% [1].

 Extending user authentication with a second factor:

traditional methods for authenticating a user to a

web application rely on one of the three

“somethings” he knows, he has and he is, as

clarified in Table 1. Those one-factor authentication

models represent a one point of failure solutions; as

they could be compromised “easily” by exploiting

key loggers, malwares, eavesdropping, physical

control, brute force, etc.,

Table 1. Authentication methods.

Authentication method Details

Something you know
The traditional authentication method using

ID/Password, PIN, Passphrase…

Something you have
Using One-time passwords, smart cards,

hardware tokens…

Something you are

Prove the users’ identities through the

users' biometric information. Fingerprint or

iris is used instead of the password.
Require the expensive readable device.

Two-factor authentication (known as 2FA) is a

technique patented in 1984 [15], the basic idea of 2FA

is to identify users by means of two different

components; e.g. password and a finger print together,

or some hardware token. The popularity of 2FA rely on

the assumption that an attacker is unlikely to possess

both factors of authentication. Nevertheless, a set of

obstacles arise when analysing current 2FA schemes,

and we summarize them as follows:

1. The cost of the second factor: many 2FA schemes

employ hardware tokens or other costly mechanisms

(such as SMS and phone calls), which adds a cost

for each login attempt for both the website vendor

and/or the user.

2. Physical or logical security of the second factor:

hardware token could be stolen; software

applications could be vulnerable to threats.

3. Availability of the second factor: implementing 2FA

requires the existence of the second factor any time

the user wishes to access his account. This

requirement could make a logistic problem for the

user (especially for hardware tokens); especially if

he is enrolled in more than one website that uses

2FA.

4. Usability of the second factor: 2FA schemes implies

that the user needs to perform extra steps to access

their account, such as plugging in hardware token,

installing extra software, entering a second One

Time Password (OTP), using cameras, Etc.

5. Professional phishing threats challenge: despite the

robustness of current 2FA schemes over traditional

one-factor authentication, it is still vulnerable to

organized and intelligent threats that usually

concentrate on attacking 2FA schemes during the

registration Process [8].

In this paper, we review, analyse and evaluate a set of

current 2FA schemes, and then propose a new 2FA

protocol that is usable, zero-cost and secure. The rest

of the paper is organized as follows: in section 2 we

review the related work, in section 3 we draw our

protocol design goals and assumptions, section 4

explains the protocol architecture, implementation and

evaluation.

2. Related Work

James and Philip [14] proposed a Novel Anti Phishing

framework based on Visual Cryptography. The

framework generates an image captcha based on the

user information in the registration phase; the image

captcha is divided into two shares such that one of the

shares is kept with the user and the other share is kept

in the server. Then, the user's share and the original

image captcha is sent to the user for later verification

during login phase.

This proposed mechanism is secure against phishing

attacks if the connection between the client and the

server is encrypted by the SSL protocol. Moreover, a

usability and accessibility problem could arise for the

user as he is required to upload his share of the image

each time he wants to login to the web application; a

logistics problem would arise as the image share

should be available on the computer from which the

login process will take place.

Another authentication scheme proposed by Gal´an

et al. [11], “A Strong Authentication Protocol based on

Portable One-Time Dynamic URLs”, this scheme

relies on generating one-time dynamic and portable

URL for each user once he logs in to the web

application. This URL is generated specifically for the

user in the specified session and then sent to the user

through a predefined communication channel (usually

SMS or email address). After generating the URL, the

server encrypts it using a shared key with the user;

when the user receives the encrypted URL he is

required to decrypt it and then access the web

application through this URL.

Enhancing Anti-phishing by a Robust Multi-Level Authentication Technique (EARMAT) 993

Dodson et al. [9] proposed Snap2Pass, a mobile

based authentication system that aims at replacing the

traditional password-based web authentication;

leveraging either RSA model or symmetric key

encryption. Snap2Pass is based on the challenge-

response authentication model; where the server sends

a challenge (encrypted token) to the user encapsulated

with a Quick Response (QR) code, who in turn needs

to scan, decrypt and send it back to the server for

identity verification. While this scheme successfully

replaces traditional password-based web

authentication, two weakness points could harm both

the usability and security of this scheme, namely the

user’s mobile internet connectivity need and the shared

key distribution mechanism.

The authors in [17] proposed a user authentication

scheme that leverages a user’s Android smartphone

and SMS to resist password stealing and password

reuse attacks, such that the user identity is verified

using the mobile application by sending an encrypted

one-time secret to the server using SMS such that the

server can verify the user’s identity.

The authors in [21] proposed the concept of virtual

password authentication, where a user-specified

function is used to calculate the virtual password with

a trade-off of security for a little more complexity for

the user in computing the specified function. Users are

authenticated using a dynamic password computed

each time using the user’s specified function.

Cronto [5] is a commercial transaction

authentication system to protect online banking

transactions against malware on the user’s browser, on

this scheme, the user needs to confirm his online

transaction using his mobile phone; the website

encapsulates an encrypted text containing the

transaction details and a onetime code and sends it

back in a QR code to the client browser, then the user

needs to scan this code into his mobile and decrypt the

transaction data per-device key it shares with the bank

and display the transaction details in the phone screen,

the user then confirms the transaction by entering the

transaction password in the browser.

Xie et al. [20] proposed CamAuth, a 2FA scheme

that leverages user’s mobile as a second authentication

factor, where user identity is proved using a

combination of Diffie-Hellman keys exchanged

between the client browser (through an extension or

Add-on) and the server, and then verified using the

user’s mobile device via exploiting both the user PC

and mobile cameras to exchange data that is

encapsulated within a QR code. Three usability and

deployability drawbacks could limit the adoption of

such an authentication scheme:

1. Users are required to install a browser plugin to be

used as part of the authentication process; this

requirement will limit the user who wishes to access

his account from public computers.

2. CamAuth assumes that the user PC is equipped with

a camera to be used as a medium to exchange data

with the user’s mobile. This assumption is not true

for a wide range of users whom PCs are not

equipped with cameras, in addition to limiting the

opportunities of users wishing to access their

accounts from public or work computers.

3. The process of authentication and specially reading

QR codes with both the PC’s and mobile’s cameras

could result in usability inefficiencies and

inconvenience for users.

Another category of 2FA schemes rely upon client side

generation of one time passwords to be used as a

second authentication token; a popular 2FA method

that falls in this category is Google Authenticator (GA)

[13]. GA is a mobile software that generates offline

authentication codes that are used as a second

authentication token; such that when the user access

his account, he is requested to enter the generated code

in addition to his credentials. GA generates

authentication codes based on pre-shared secrets that

were fed to the software in the registration process;

they usually include user specific account details, code

generation method (counter based or timestamp based),

OTP characteristics, Etc., those pre-shared secrets and

fed to the GA software through a QR code scanned

with the user mobile camera.

Dmitrienko et al. [8] performed a security analysis

that concluded that such schemes are vulnerable to

attacks especially in the registration phase; a PC

standing malware can intercept the QR code that

encapsulates the pre-shared secrets, then the attacker

can initialize his own version of GA and thus being

able to generate valid authentication codes for the

compromised account.

Czeskis et al. [6] proposed PhoneAuth, a 2FA

scheme in which the user mobile is considered a

second authentication factor in addition to the user

credentials; the user is authenticated after signing the

login ticket (generated by the server) with the client

private key that resides in the user’ mobile. The login

ticket is communicated back and forth between the

client browser and the mobile application through

Bluetooth.

PhoneAuth is built upon the origin-bound

certificate, which modifies TLS to realize strong client

authentication. The deployment of PhoneAuth requires

modification to current TLS, web browser, and

smartphone firmware, which is not practical for

average users. Second, PhoneAuth relies on Bluetooth

for communications between the smartphone and PC.

However, Bluetooth can be subjected to a variety of

attacks. The Bluetooth module of smartphone has to

stay active all the time, which is certainly not power

efficient for mobile devices.

Muppavarapu et al. [16] proposed an anti-phishing

techniques to identify phishing websites using a

994 The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018

combined approach by constructing Resource

Description Framework (RDF) models and using

ensemble learning algorithms for the classification of

websites with a true positive rate of 98.8%, which is

definitely appreciable. As they have used random

forest classifier that can handle missing values in

dataset, they were able to reduce the false positive rate

of the system to an extent of 1.5%.

3. Design Goals and Assumptions

Based on the security, deployability and usability

analysis that we performed on current authentication

methods, we have drawn a set of goals that our

authentication scheme needs to achieve, including:

1. Apply the principle of mutual authentication of both

the user and the server to eliminate replay attacks,

Man in the middle attacks and phishing attacks.

2. Involve minimal possible user intervention in the

second authentication factor.

3. No changes are needed on the user’s PC or mobile

phone for the authentication protocol to work.

4. No operation costs are added on the web application

vendor or the user, as the communication between

the web application and the user’s mobile is

initiated through the free Google Cloud Messaging

service (or any other free cloud messaging service,

e.g. Pushy).

5. The protocol should implement a fall-back

mechanism to enable the user to access his account

(with less privileges) in case of being not able to use

his mobile phone, or in case the GCM notification

service fails.

4. Protocol Architecture

Our mobile based authentication protocol meets its

design goals by mutually authenticating the web

application to the client and the client to the web

application using Public Key Infrastructure PKI,

session-based OPT and mobile Identity which is used

to uniquely identify a mobile device International

Mobile Equipment Identity (IMEI). Figure 2 shows the

general steps involved in the authentication process.

Figure 2. User authentication sequence diagram.

Based on the notations in Table 2, the authentication

protocol steps are depicted in Figure 2, and explained

as the following:

 Step 1: the user enters his credentials (U and PWD)

via the login form, and then submits them to the

server for verification.

 Step 2: the server verifies the received user’s

credentials. Upon negative verification, the login

attempt fails and the user is notified through his

browser. Upon success, the authentication protocol

proceeds to step 3.

 Step 3: The server responds with a wait response for

the client browser, informing him that he needs to

complete the authentication process from his mobile

device. The server looks up the registration token

(RegToken) associated with the user (explained

later) from local database, and sends a login

notification to the user’s mobile application via

GCM; GCM will deliver the notification message

(includes LID) to the user’s mobile application

directly.

 Step 4: once the login notification message is

received by the user’s mobile application, the

application will show a confirmation dialog so that

the user decides whether to allow and complete the

authentication process or not. If the user rejects the

login attempt, an encrypted (with MPR) negative

response message (NLR) is sent back to the server

over a secure connection SSL channel indicating the

failure of the authentication, then the server verifies

the response and responds to the user browser with a

failure of authentication message. If the user accepts

the login attempt, the protocol proceeds to step 5.

 Step 5: the mobile application generates a random

code (MOTP), encrypt it with its private key (MPR)

and sends a request to the server containing the

encrypted MOTP, IMEI and LID to get the

authentication token.

 Step 6: the server decrypts and encodes the received

token, generates a OTP associated with the current

login session Server One-Time Password (SOTP),

specify its validity period, combine them as an

authentication token, stores it locally, encrypts it

using the server’s private key (SPR) and sends back

the encrypted authentication token to the client

mobile application over a secure channel.

 Step 7: the mobile application receives the

encrypted authentication token, decrypts it using the

server’s public key (SPU), decode the result and

compare it with previously sent MOTP Then checks

its validity and encrypt it using its own private key

and sends it back to the server over a secure

channel.

 Step 8: the server decrypts the received

authentication token using the client’s public key,

verifies it and compares it with the previously stored

OTP (SOTP) for the current session id. If the two

Enhancing Anti-phishing by a Robust Multi-Level Authentication Technique (EARMAT) 995

OPTs match, the server authenticates the current

user session and notifies the user’s browser to be

redirected to the website main page.

Table 2. Table of notations.

Notation Description

U User name

PWD User password

LID Login Attempt ID

MOTP Mobile One-Time Password

SOTP Server One-Time Password

RegToken Mobile App. Registration Token in GCM

GCM Google Cloud Messaging Service

PID Project ID that identifies the web application in GCM

SPU Server Public Key

SPR Server Private Key

MPU Mobile Public Key

MPR Mobile Private Key

NLR Negative Login Result

IMEI

User mobile phone International Mobile Equipment

Identity which is used to uniquely identify a mobile

device.

NMSG Notification Message

 Assumptions and notes: The following assumptions

are made to supplement the general architecture of

our authentication protocol: The protocol relies on

GCM for notifying the user’s mobile application of

the current login session so that the user completes

the authentication steps. User’s sensitive data are

never communicated through GCM. We use GCM

as a notification service to enhance the user

convenience and improve usability features in the

authentication protocol. GCM is not considered a

proprietary third party for two reasons: other free

notification services could be used as well (e.g.,

Pushy [18]) and an alternative option is to adopt the

design of enabling the user himself to initiate the

process of completing the authentication using the

mobile application. The authentication protocol

implements a fall-back mechanism to enable the

user to bypass it in case his mobile is not accessible

at the time of login. The generated authentication

token is session-specific; i.e., it is valid for the

current user login session only, in case an attacker

compromises it, it will be no longer valid for any

other session initiated by the attacker.

 Registration Phase: In order for the authentication

protocol to be activated, a set of initialization and

registration steps are needed from both the client

and the server, summarized as follows:

1. The web application needs to be associated with a

project id in the GCM server.

2. The client’s mobile application should be installed

on the user’s mobile.

3. The user needs to associate his mobile device with

his web account using the mobile IMEI number, so

that any login attempt from a mobile application

will be verified using the user credentials and the

mobile IMEI number.

4. The user needs to login on the mobile application

using his username/ password pair.

5. In the first login to the mobile application, the

application will register itself on GCM under the

project id that was associated with the web

application on point 1 above. Upon registering,

GCM will generate a registration token associated

with the mobile application who in turn will send it

to the web application to be stored and paired with

the user name to be used later for sending

notifications from the web application to the user’s

mobile application.

6. The web application needs to generate an RSA key

pair (private and public keys); the private key is

stored securely in the server’s key store; the public

key is distributed to the clients in a secure key

distribution mechanism.

7. The mobile application needs to generate an RSA

key pair (private and public keys), store the private

key in a securely in the mobiles key store.

8. The mobile application sends its public key,

registration token and the mobile IMEI to the server

to be associated and verified with the user’s

account.

9. We assume that no attacks happen during the

registration phase for both the client and the server.

Figure 3 depicts the general steps involved in

registering and sending notifications using GCM

service.

Figure 3. GCM collaboration framework [12].

 Protocol implementation: We have implemented a

prototype system for our authentication protocol,

including a web application and mobile application

configured to use GCM. We built a java-based web

server that handles a set of server side services for

the authentication protocol, including: server

registration with GCM, OTPs generator, registration

and handling communication with the client mobile.

The client’s mobile application is developed on

android 5.1, and it compatible with android 2.2 and

upward platforms as no special APIs are used except

for support to GCM [12]. The mobile application is

responsible for device registration, confirming and

completing the authentication process, the application

uses the necessary APIs for RSA key generation,

996 The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018

storage, encryption, decryption and communications

with the server over SSL.

Figures 4, 5, and 6 show screenshots of the

authentication process, Figure 4 shows the website

login page where the user enters his credentials, figure

5 depicts the waiting message displayed on the user’s

browser until he completes the authentication from his

mobile, Figure 6-a shows the login notification that

appears on the user’s mobile application upon the

arrival of the notification message, in this notification

the user decides whether to authenticate the session or

reject it.

Figure 4. website login page.

Figure 5. User authentication waiting message.

 a) Auto. login notification. b) Manual login completion if GCM

 notification fails.

Figure 6. Login Notification.

 Protocol fall-back mechanism: Our authentication

protocol can fall back to user’s credentials only

scheme in case the user’s mobile is not compatible

or inaccessible at the time of authentication. To

strengthen the traditional password based

authentication, the fall-back mechanism is

supplemented by an SMS-based or email-based

OTP that is delivered to the user to enter it in

addition to his username/password credentials. The

web application needs to treat login sessions in the

fall-back mechanism in a less privileges mode; for

example, the user will have limited authorizations

on critical services such as resetting user password,

financial transactions, etc.,

If GCM notification service fails, no notification

message is received on the user mobile application to

guide him through the authentication process. In this

case, the user can initiate a request from his mobile

application to query the available login attempts that

are pending to be authenticated, and then continue the

authentication process as usual, as depicted in Figure 6

(b).

 Protocol management: After putting the

authentication protocol in production, a set of

mechanisms and policies need to be defined to

manage user’s registration to and revocation of the

authentication protocol features.

 Trusting more than one device per user: our

authentication scheme supports trusting more than

one mobile device for the user account, the user

needs a full privileged active session to register a

new device and associate it with his account, the

user adds the IMEI of the device and associate it

with his account, install the mobile application on

the new device, register the mobile application with

GCM service and sends the registration token,

device IMEI, device public key to the server for

verification and acceptance. In the multi device

mode, when an authentication attempt is initiated

from browser, all the trusted and linked mobile

applications on all trusted devices are notified of the

login attempt through GCM group messaging

service. (no overhead is introduced on the server).

Then the user can confirm and complete the

authentication process from any device.

 Revocation or unregistering a device: users may

want to revoke a device and disassociate it from

their account (in case it is stolen, changed …). The

revocation process could be done either from a fully

authorized web session or by requesting that from

the website vendor.

 Protocol Evaluation: We evaluated our

authentication protocol using the web authentication

assessment framework proposed by Bonneau et al.

[3], we present an analysis of the 25 metrics of the

usability, deployability and security of an ideal

authentication scheme. In addition to analysing our

protocol, we compare it to another four popular

authentication schemes; passwords, google 2 step-

verification [13], PhoneAuth [6] and CamAuth [20],

the comparison results are shown in Table 3.

Enhancing Anti-phishing by a Robust Multi-Level Authentication Technique (EARMAT) 997

Table 3. Comparison of EARMAT protocol, passwords, GOOGLE 2-STEP VERIFICATION (2SV), PHONEAUTH (IN STRICT MODE)

and CAMAUTH. Y=offers the benefit, S=somewhat offers the benefit.

z

Usability Features Deployability Features Security Features

M
em

o
ry

w
is

e-
E

ff
o

rt
le

ss

S
ca

la
b
le

-f
o

r-
U

se
rs

N
o

th
in

g
-t

o
-C

ar
ry

Q
u

as
i-

N
o

th
in

g
-t

o
-C

ar
ry

E
as

y
-t

o
-L

ea
rn

E
ff

ic
ie

n
t-

to
-U

se

In
fr

eq
u

en
t-

E
rr

o
rs

E
as

y
-R

ec
o
v

er
y

-f
ro

m
-L

o
ss

A
cc

es
si

b
le

N
eg

li
g

ib
le

-C
o

st
-P

er
-U

se
r

S
er

v
er

-C
o

m
p

at
ib

le

B
ro

w
se

r-
C

o
m

p
at

ib
le

M
at

u
re

N
o

n
-P

ro
p

ri
et

ar
y

R
es

il
ie

n
t-

to
-P

h
y

si
ca

l-

O
b

se
rv

at
io

n

R
es

il
ie

n
t-

to
-T

ar
g

et
ed

-

Im
p

er
so

n
at

io
n

R
es

il
ie

n
t-

to
-T

h
ro

tt
le

d
-G

u
es

si
n

g

R
es

il
ie

n
t-

to
-U

n
th

ro
tt

le
d

-

G
u

es
si

n
g

R
es

il
ie

n
t-

to
-I

n
te

rn
al

-O
b

se
rv

at
io

n

R
es

il
ie

n
t-

to
-L

ea
k
s-

fr
o

m
-O

th
er

-

V
er

if
ie

rs

R
es

il
ie

n
t-

to
-P

h
is

h
in

g

R
es

il
ie

n
t-

to
-T

h
ef

t

N
o

-T
ru

st
ed

-T
h
ir

d
-P

ar
ty

R
eq

u
ir

in
g

-E
x
p

li
ci

t-
C

o
n

se
n

t

U
n

li
n
k

ab
le

Passwords

Google 2-step Verification

PhoneAuth – strict

CamAuth

Our Protocol

 Y Y Y Y S Y Y

 Y Y S S S S

 S Y Y S S S

 S Y S S S S

 S S Y Y Y Y S

Y Y Y Y Y Y

S Y Y

Y S S S Y

S S S S Y

Y Y Y Y Y

 S Y Y Y Y

 S Y Y Y Y Y Y Y

Y Y Y Y S Y Y Y Y Y S

Y Y Y Y S Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y

The evaluation of our authentication protocol

assesses its usability, deployability and security

features. In terms of Usability, our authentication

protocol, like others, assumes that the user memorizes

his password, so it is not Memorywise-Effortless. In

regards to Scalable-for-Users property, the current

implementation of the protocol assumes that each web

Application needs its own mobile application to be

installed on the client mobile to complete the

authentication process; we rate the protocol as

Somewhat scalable for users based on that it is easy to

manage more than one application in the user’s mobile,

taking into account that the user’s intervention in the

authentication process is limited to responding to the

authentication confirmation request only. It is

theoretically and practically feasible to alter our model

such that only one mobile application is used to manage

the user’s authentications on more than one web

application. And this will be our future work.

The protocol achieves somewhat Nothing-to-Carry

property, and fully achieves the Quasi-nothing-to-carry

usability feature, as mobile phones are ubiquitous these

days.

The properties of Easy-to-Learn, Efficient-to-Use

and Infrequent-Errors are also achieved as mobile

applications in general are very common nowadays.

Easy-Recovery-from-Loss is Somewhat offered by

the protocol, like other authentication schemes, our

protocol will work with SMS-based or email-based

OTP in case of failure to use the second authentication

factor.

In terms of Deployability features, our authentication

protocol is superior to Google 2SV, PhoneAuth and

CamAuth schemes in achieving the Accessible,

Negligible-Cost-for-Users, Server-Compatible, and

Browser-Compatible features. Our protocol introduces

zero configurations or changes to the user’s browser,

web server O.S. or mobile O.S. In addition to adding

zero cost for either the website vendor or the user. For

the Mature property, we think our protocol is able to

be a mature authentication scheme, but as this

requirement is measured after putting the protocol in

production environment; we cannot in this phase

empirically verify the mature property. The Non-

Proprietary feature of our authentication protocol is

achieved, no proprietary software, hardware or service

is necessary for the protocol to work successfully; for

GCM, we use it as a communication medium only,

and it is implemented as one of existing set of free

alternatives including Pushy service [18].

In terms of Security features, our authentication

protocol is resilient to physical Observation, Targeted

Impersonation, Throttled and Unthrottled Guessing,

because the attacker will not be able to access the

user’s account even if he possesses his password until

he gains access to his mobile device. Also, attacking

the generated authentication token (including the

OTP) will not enable the attacker to gain access to the

user’s account because the OTP is session-specific and

not valid for any other web session. The protocol is

also resilient to Internal Observation and to leaks from

other verifiers, this resilience is achieved due to the

session-specific OTP, data communication is carried

over secure channels and Private keys are stored in

protected areas in the mobile phone (either hardware

protected areas (if supported by the mobile) or system

key store). Our protocol is certainly resilient to

phishing attacks and Theft due to two factor

authentication.

Our protocol achieves the No-Trusted-Third-Party

feature, as its dependence on GCM is for convenience

purposes; i.e., showing up a notification to the user

that an authentication process on his account is being

done; while this feature is very important for online

notification of possible authentication attacks; it is

possible to deactivate this feature and rely on the user

himself to start the mobile authentication steps. In

addition, as mentioned earlier, GCM could be replaced

by another services that offer the notification service.

998 The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018

Our protocol clearly achieves the Requiring-

Explicit-Consent and Unlinkable feature, as the

authentication is completed after user confirmation; i.e.

no authentication process can be completed on the

user’s account without his explicit acceptance.

5. Performance Evaluation

To assess the performance of EARMAT, we conducted

a performance test using an emulator in android studio

with the following specifications: Device: Nexus 5,

CPU: x86, RAM: 1.5 GB, Platform Version: Android

5.1 (lollipop). In this evaluation we measured response

time and memory usage of the EARMAT mobile app;

the results of the performance test showed that

EARMAT -in average- spent 4.3 Milliseconds to

complete the decryption and encryption processes,

while consuming 0.06 MB of memory. The whole

memory reserved by the application was 2.38 MB.

Table 4 depicts the test results of six runs of the

algorithm of decrypting and encrypting process using

the emulator.

The complete authentication process will include

also the time spent in communications between the web

server and GCM server which in turn notifies the user’s

mobile application in an automated process that is

expected to add a very little time fraction (in

milliseconds).

Table 4. Performance test of EARMAT in the emulator.

Run # Execution Time (ms) CPU Usage Memory Usage (MB)

1 5 11% 0.08

2 3 12% 0.06

3 3 12.5% 0.07

4 6 9.5% 0.06

5 6 14% 0.05

6 3 20% 0.05

These performance test results indicate that

EARMAT implementation in most modern mobile

devices will be feasible and the response time will be

accepted by users, making it possible to adopt such an

authentication scheme at a compromise of a couple of

seconds latency.

6. Conclusions

In this paper, we analysed the web security threats

regarding phishing and stealing users’ private data, and

reviewed and discussed the most recent 2FAschemes

that are proposed to secure the authentication process

and prevent compromising users’ accounts. We also

introduced a new user transparent 2FA scheme that

augments the security of web authentication leveraging

the ubiquitous mobile phones; our 2FA protocol

realizes 2FA by achieving mutual authentication of

both the web site client and the server by implementing

RSA cryptography on the communicated authentication

messages. Our protocol defeats Man in the Middle

attacks in addition to phishing attacks. We implemented

a system prototype of the authentication protocol to

ensure its feasibility.

In addition, we evaluated the protocol against the

25 features of the assessment framework regarding

Usability, Deployability and Security of 2FA schemes.

In future, we plan to extend our protocol to support

single mobile application to manage a set of user

account to further improve the protocol scalability of

users’ property.

References

[1] Abu-Nimeh S., Nappa D., Wang X., and Nair S.,

“A Comparison of Machine Learning

Techniques for Phishing Detection,” in

Proceedings of the Anti-phishing Working

Groups 2nd Annual eCrime Researchers Summit,

Pittsburgh, pp. 60-69, 2007.

[2] Anti-Phishing Working Group.

http://www.antiphishing.org/, Last Visited, 2015.

[3] Bonneau J., Herley C., Oorschot V., and Stajano

F., “The Quest to Replace Passwords: A

Framework for Comparative Evaluation of Web

Authentication Schemes,” in Proceedings of the

IEEE Symposium on Security and Privacy, San

Francisco, pp. 553-567, 2012.

[4] Cao Y., Han W., and Le Y., “Anti-phishing

based on Automated Individual White-list,” in

Proceedings of the 4th ACM Workshop on

Digital Identity Management, Alexandria, pp.

51-60, 2008.

[5] Cronto, www.cronto.com/, Last Visited, 2016.

[6] Czeskis A., Dietz M., Kohno T., Wallach D., and

Balfanz D., “Strengthening user Authentication

Through Opportunistic Cryptographic Identity

Assertions,” in Proceedings of the ACM

Conference on Computer and Communications

Security, Raleigh, pp. 404-414, 2012.

[7] Dhamija R., Tygar J., and Hearst M., “Why

Phishing Works,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing

Systems, Montréal, pp. 581-590, 2006.

[8] Dmitrienko A., Liebchen C., Rossow C., and

Sadeghi A., “Security Analysis of Mobile Two-

Factor Authentication Schemes,” Intel

Technology Journal, vol. 18, no. 4, pp. 138-161,

2014.

[9] Dodson B., Sengupta D., Boneh D., and Lam M.,

“Secure, Consumer-friendly Web Authentication

and Payments With a Phone,” in Proceedings of

International Conference on Mobile Computing,

Applications, and Services, Santa Clara, pp. 17-

38, 2010.

[10] Downs S., Holbrook M., and Cranor L.,

“Decision Strategies and Susceptibility to

Phishing,” in Proceedings of the 2nd Symposium

on Usable Privacy and Security, Pittsburgh,

2006.

http://www.antiphishing.org/
www.cronto.com/

Enhancing Anti-phishing by a Robust Multi-Level Authentication Technique (EARMAT) 999

[11] Gal´an E., Castro J., and Alcaide A., and

Ribagorda A., “A Strong Authentication Protocol

based on Portable One-Time Dynamic URLs,” in

Proceedings of International Conference on Web

Intelligence and Intelligent Agent Technology,

Toronto, 2010.

[12] Google Cloud Messaging,

https://developers.google.com/cloud-

messaging/gcm, Last Visited, 2015.

[13] Google, “Google 2-step Verification,”

http://www.google.com/landing/2step/, Last

Visited, 2015.

[14] James D. and Philip M., “A Novel Anti Phishing

framework based on Visual Cryptography,” in

Proceedings of International Conference on

Power, Signals, Controls and Computation,

Thrissur, pp. 1-5, 2012.

[15] Method and apparatus for positively identifying

an individual,

http://www.google.com/patents/US4720860, Last

Visited, 2015.

[16] Muppavarapu V., Rajendran A., and Vasudevan

S., “Phishing Detection using RDF and Random

Forest,” The International Arab Journal of

Information Technology, vol. 15, no. 5, pp. 817-

824, 2018.

[17] Prajitha M., Rekha P., Amrutha A., “A Secured

Authentication Protocol Which Resist Password

Reuse Attack,” in Proceedings of International

Conference on Innovations in Information

Embedded and Communication Systems,

Coimbatore, pp. 1-5, 2015.

[18] Pushy, https://pushy.me/, Last Visited, 2015.

[19] The Phishing Guide Understanding & Preventing

Phishing Attacks, http://www-

935.ibm.com/services/us/iss/pdf/phishing-guide-

wp.pdf, Last Visited, 2015.

[20] Xie M., Li Y., Yoshigoe K., Seker R., and Bian J.,

“CamAuth: Securing Web Authentication with

Camera,” in Proceedings of IEEE 16th

International Symposium on High Assurance

Systems Engineering, Daytona Beach Shores, pp.

232-239, 2015.

[21] Umadevi P. and Saranya V., “Stronger

Authentication for Password using Virtual

Password and Secret Little Functions,” in

Proceedings of International Conference on

Information Communication and Embedded

Systems, Chennai, pp. 1-6, 2014.

Adwan Yasin is a full professor,

Former dean of Faculty of

Engineering and Information

Technology of the Arab American

University of Jenin, Palestine.

Previously he worked at

Philadelphia and Zarka Private

University, Jordan. He received his PhD degree from

the National Technical University of Ukraine in 1996.

His research interests include Computer Networks,

Computer Architecture, Cryptography and Networks

Security.

Abdelmunem Abuhasan is a

Master student at the Arab

American University with particular

interests in computer security, web

security and software engineering.

He is working since ten years as the

manager of software development

department at the Arab American University. He holds

a B.A. in Computer Science from the Arab American

University.

https://developers.google.com/cloud-messaging/gcm
https://developers.google.com/cloud-messaging/gcm
http://www.google.com/landing/2step/
http://www.google.com/patents/US4720860
https://pushy.me/
http://www-935.ibm.com/services/us/iss/pdf/phishing-guide-wp.pdf
http://www-935.ibm.com/services/us/iss/pdf/phishing-guide-wp.pdf
http://www-935.ibm.com/services/us/iss/pdf/phishing-guide-wp.pdf

