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1. Introduction 

Naive Bayesian (NB) learning [16] is a simple and yet 

effective algorithm for many application domains. It is 

considered one of the top 10 data mining algorithms 

[22]. It uses Bayes' conditional probability rule for 

classifying instances. To classify an instance, NB 

returns the class that has the maximum probability 

given the instance's attribute values. It uses the training 

data to estimate the values of the probability terms 

used by the Bayes' rule. 

However to make things computationally attractable 

it, naïvely assumes that the attribute values are 

conditionally independent given the class value. 

Despite its impressive classification accuracy in many 

domains, its performance degrades in domains where 

the independence assumption is violated [8]. Its 

performance also degrades if the training set is too 

small to provide accurate estimations of the probability 

terms [7]. 

Recently two effective methods were proposed to 

deal the problem of the lack of training data: 

Discriminatively Weighting Naïve Bayesian (DWNB) 

[9] and Fine-Tuning Naïve Bayesian (FTNB) [5, 6]. 

The DWNB method assigns weights to some instances 

to increase their influence while the FTNB method 

augments the NB algorithm with a second phase to 

reuse the training data to find better estimation for the 

conditional probability terms used by NB. In this work, 

we propose a more effective instance weighting 

algorithms that is also more robust to noise and 

empirically show that combining the instance 

weighting method with FTNB gives better results than 

either of them alone.  

 

In section 2, we review the NB learning algorithm, 

the instance weighting method [9], and the FTNB 

method [5, 6]. Section 3 discusses some drawbacks of 

the instance weighting method, and proposes an 

improved instance-weighting algorithm. Section 4 

presents and analyses the results of the improved 

instance-weighting algorithm. Section 5 discusses the 

results of combining the instance weighting method 

with the FTNB method. Section 6 is the conclusion 

section.  

2. Related Work 

To classify an instance of the form <a1,a2,...,am>, the 

NB algorithm uses Bayes' rule, described in Equation 

(1), to find the class that has the maximum probability 

given the instance's attribute values.  
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Where: 
 C is a vector of all class values. 

 P(c)is the probability of class c. 

 P(a1,a2,...,am |c)is the probability that attributes 1, 

2, …, m will take the values a1,a2,...,am, given that 

the instance is of class c. 

The algorithm makes the naïve assumption that all 

attribute values are conditionally independent given the 

class values; therefore 

 j jm capcaaap )|()|,,,( 21   

Also, since given a certain instance, the denominator 

P(a1,a2,...,am)
 
is the same for all classes, Equation (1) 

can be simplified as  

(1) 
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The training data is usedto estimate the 

probabilityterms P(c)
 

and P(aj|c) using formulas 

Equations (4) and (5), respectively. 
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Where δ(x, y) is a function that returns 1 if its arguments x 
and y are the same and 0, otherwise. 

Clearly the classification accuracy of the algorithm 

depends on how accurately we can estimate the values 

of P(c) and P(aj|c), which could be a challenge if the 

training data is too small.  

Despite the naïve conditional independence 

assumption, the classification accuracy of the Naïve 

Bayesian was shown to be surpassingly good in many 

domains such as text classifications [4, 9, 17, 19]. 

Moreover, in a comparative study that compared the 

robustness to noise of many widely used machine 

learning algorithms, the Naïve Bayesian algorithm was 

found to be the most robust algorithm [18].  

Most work on improving the NB algorithm focuses 

on relaxing the independence assumption [3, 11, 20, 

23]. The NB algorithm can be seen as a special type of 

Bayesian Netwroks (BN) were attributes can be 

conditionally dependent given the class. However, 

learning a BN is an NP-complete problem [3]. Some 

approaches attemptto make the problem more tractable 

by considering only networks of special restricted 

structures [8, 10, 20, 21, 23]. Other approaches ease 

the independence assumption by selecting a subset of 

the features that are more likely to be conditionally 

independent given the class value [11]. Other 

approaches use a subset of instances to build the NB 

classifier. A subset of the training set is more likely to 

meet the independence assumption than the entire 

training set. The subset can be chosen using a decision 

tree [15] or the kNN algorithm [7].  

 Some work, on the other hand, addresses the 

problem of the lack of training data. The proposed 

methods for dealing with this problem include: cloning 

instances to increase the size of training data [13, 14], 

fine tuning NB [5, 6], and instance weighting [9]. The 

cloning approach expands a training set by cloning 

instances. It clones instances based on their 

dissimilarity to the instance that needs to be classified, 

then an NB classifier is built based on the expanded 

data set. This process takes place during classification, 

and thus it increases the classification time [12]. The 

Fine Tuning approach for NB (FTNB) augments the 

NB algorithm with a fine tuning stage that aims at 

finding better estimations for the probability terms [5, 

6]. In [1] the fine tuning method was generalized for 

different types of Bayesian networks. In [9] a different 

method that assigns weights to instances is proposed. 

The weights are greater than one for some instances, 

which increases their influence in estimating the 

probability terms used by NB. 

This work improves the instance weighting method 

[9] to make it more accurate and more robust to noise. 

It also shows that combining the improved instance 

weighting method with the FTNB method gives better 

classification accuracy than using either one of them 

alone.  

In following subsections, we review two effective 

methods for dealing with the problem of the lack of 

data: instance weighting [9] and fine-tuning method [5, 

6]. 

2.1. Discriminatively Weighted Naive Bayes 

(DWNB) 

The DWNB method [9] addresses the problem of the 

lack of data by assigning a weight to each training 

instance that is greater or equal to one. It then uses 

formulas Equations (6) and (7) to estimate the value of 

)(cp and )|( cap j
 instead of formulas Equations (5) 

and (6). 
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Where wi is the weight of the i training instance. Thus, 

an instance with a large weight has more influence on 

the estimation of P(c) and P(aj|c) than an instance with 

a small weight. The weight is computed so that 

difficult instances (i.e., incorrectly classified) are 

assigned greater weights than easy instances. The aim 

is to help the NB algorithm classify these instances 

correctly. The initial weight of an instance, x of class c, 

is set to one. The weight of an instance is then 

iteratively increased by an amount that is inversely 

proportional to the probability of the instance's class 

given the other attribute values. In other words, it is 

inversely proportional to p(c|x), where x is a vector of 

the form<a1,a2,...,am>.Namely, it isincreased 

by(1˗p(c|x)). 

 Since a difficult instance would get a smaller value 

for p(c|x) than an easy instance, this implies that a 

difficult instance would get its weight increased by a 

larger margin than an easy instance. The weighting 

process is repeated T times, where T is a constant, and 

according to [9] setting T to 15 gives the  

Algorithm 1: DWNB ),( TD  
Input: a set of training instances D and the number of 

iterations T  
Output:Discriminatively Weighted Naive Bayes 

(3) 

(4) 

(5) 

(6) 

(7) 
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   Step 1. Initialize the weights of all training instances  

               in D to 1 

Step 2. Train a naïve Bayes using D  

Step 3. Fort=1 to T do 

Step 3.1  For each training instance x of class c 

Use the trained naïve Bayes to estimate p(c|x) 

Weight (x)t = Weight (x)t-1 +(1-p(c|x)) 

    Step 3.2 Train an NB again using D with the  

current weights 

Endfor t 

Step 4 Return the final NB classifier 

Best results. In each iteration, an NB classifier is built 

using the estimated probabilities and is used to 

compute p(c|x) for each instance x of class c. 

Algorithm 1 shows the main steps of DWNB [9]. 

2.2. Fine Tuning the Naïve Bayesian Learning 

Algorithm (FTNB) 

The FTNB algorithm addresses the problem of the lack 

of data in a different way. It augments the NB 

algorithm with a fine-tuning stage that aims at finding 

better estimations for the probability terms used by 

NB. The fine-tuning process exploits the misclassified 

training  

Instances to decrease some probability values and 

increase some others. 

If an instance x of class cactual is misclassified that 

means there is another class, cpredicted, that got a higher 

probability than cactual (the actual class) given sx' other 

attribute values. The FTNB algorithm then modifies 

the values of the probability terms responsible for this 

classification error. Namely, the algorithm increases 

p(ai|cactual) and decreases p(ai|cpredicted) for each attribute 

value𝑎𝑖. This process is gradually performed using the 

Equations (8) and (9): 

( | ) ( | ) ( , )1 1p a c p a c a ct i actual t i actual t i actual    

( | ) ( | ) ( , )1 1p a c p a c a ct i predicted t i predicted t i predicted    

Where t is the cycle number, and δt+1 is the size of the 

update step. 

The size of the update step is proportional to the 

error, which is computed as:  

( ) ( )error p c p cactual predicted   

Where  
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Algorithm 2:   FTNB(Training_instances) 

phase 1 

   Use Training_instances to build a Naïve Bayesian classifier 

phase 2 

let t=0 

while training classification accuracy improves do 

for each training instance, inst, do 

let cactual
 
be the actual class of inst 

           let cpredicted=classify (inst)
 

if cpredicted ≠
 
cactual

 
 

              compute classification error for inst 

for each attribute value,ai , of instdo 

      compute δ t+1(ai, cactual) 

 let Pt+1(ai|cactual)= 

Pt(ai|cactual)+ δ t+1(ai, cactual) 

Compute δ t+1(ai, cpredicted)  

Let Pt+1(ai| cpredicted)= 

Pt(ai| cpredicted)- δ t+1(ai, cpredicted) 

Let Pt+1(ai| cpredicted)= 

Pt(ai| cpredicted)- δ t+1(ai, cpredicted) 

endfor 

endif 

endfor 

let t=t+1 

end while 

Where nc is the number of class values. Equation (11) 

is used to normalize the probabilities and increase their 

values.  

Equations (12) and (13) show how to compute the 

update step for δt+1(ai,cactual) and δt+1(ai, cpredicted), 

respectively. 
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The Equations use a learning rate, 𝜂, that is a value 

between zero and one, to decrease the update step.  

Equation (12), which computes the increment for 
p(ai|cactual) is designed so that the update step (the 

increment) is large for small terms and small for larger 

terms. This is why the update step is proportional to 

 a ∙ p(maxi|cactual)-p(ai|cactual), where is a constant. 

While equation 13, which computes the decrement for 
p(ai|cpredicted), ensures that large probability terms are 

decreased by a large value while small terms are 

decreased by smaller steps. This is why we used 

p(ai|cpredicted)-p(minii|cpredicted) in Equation (13). 

Following [6], we set a to 2 in all experiments 

performed in this work. Algorithm 2 shows the main 

steps of FTNB. 

3. An Improved DWNB (IDWNB) 

Although the DWNB method substantially improves 

the classification accuracy of the NB learning 

algorithm for many applications [9], we believe that 

the method suffers from two main drawbacks, 

discussed in the next subsections. 

3.1. Robustness to Noise 

Since the DWNB method assigns larger weights for 

difficult instances, we believe that it is sensitive to 

noisy instances (outliers). Noisy instances are instances 

with the wrong class values, which makes them hard to 

classify. We believe that the DWNB algorithm would 

assign them large weights and thus increase their 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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adverse effect on the final NB classifier. In other 

words, we believe that the DWNB algorithm makes the 

NB classifier less robust to noise. This sacrifices one of 

the main advantages of the NB learning algorithm, 

namely its robustness to noise [18]. 

To test this hypothesis, we performed several 

empirical experiments using 49 benchmark data sets 

obtained from the UCI ML repository [2] with and 

without inserting artificial noise. We inserted random 

noise in the class attribute of some randomly selected 

training instances. We used 0%, 5%, 10%, 15% and 

20% noise. The noise was inserted in the training data 

only; the test sets were left untouched. We used 10-

fold cross validation in each experiment. We also 

usedpaired t-test with 95% confidence level to test if 

the differences are statistically significant. Table 1 

shows the average classification accuracy of the ten 

folds of the NB learning algorithm and the DWNB 

method for the different noise ratios. The last two rows 

in the table present the number of data sets for which 

each method achieved better accuracy and significantly 

better accuracy. The better results are highlighted in 

bold, and the significantly better results are highlighted 

in bold and underlined. 

It is evident from the table that while the 

performance of DWNB is much better than the 

performance of NB at 0% noise, its performance 

degrades as the noise ratio increases. At 0% noise 

ratio, the DWNB method achieved significantly better 

results for 12 data sets, while the NB algorithm 

achieved significantly better results for only 3 data 

sets. At 20% noise, DWNB achieved significantly 

better results for 11 data sets while NB achieved 

significantly better results for 12 data sets. Also, the 

performance of DWNB degraded much more quickly 

than the performance on NB in terms of the average 

classification accuracy. The average classification 

accuracy of DWNB dropped from 81.49% at 0% noise 

down to 77.18% at 20% noise, a drop of 4.31%. 

However, the average classification accuracy of NB 

dropped at a much slower rate from 80.40% at 0% 

noise to 78.45% at 20% noise, a drop ofonly 1.95%. 

This clearly indicates that the DWN method is less 

robust to noise than NB. This is evident also by 

comparing the number of data sets at which DWNB 

achieves better (not just significantly better results) 

than NB. This figure dropped from 35 data sets at 0% 

noise down to 20 data sets at 20% noise. At the same 

time, the number of data sets for which NB achieved 

better results than DWNB rose from seven data sets at 

0% noise to 21 data sets at 20% noise. All of these 

findings support our claim that the DWNB 

Method for instance weighting is sensitive to noise 

and scarifies one of the main advantages of the NB 

algorithm, namely its robustness to noise [18].  

We believe that noisy instances have this dramatic 

effect on DWNB, because they are more likely to be 

misclassified (i.e., to have a small value for p(c|x)) and, 

therefore, have larger weights and more influence on 

the subsequent classifiers than genuine instances (not 

noisy). 

To reduce this influence, we propose reducing the 

weight update that takes place in late iterations. This 

is performed using Equation (14). 

))|(1(
1

)()(
21 xcp

t
xweightxweight tt  

 

Where t is the iteration number. Formula Equation (14) 

is designed to reduce the effect of noisy instances in 

later iterations. None noisy instances are likely to get 

correctly classified in a few number of iterations (i.e. 

large value for p(c|x)) and thus get smaller weight 

update anyway. However, noisy instances are likely to 

continue to be misclassified by the subsequent 

classifiers. In fact, as the subsequent classifiers become 

more accurate, p(c|x) will get smaller for noisy 

instances and thus noisy instances will have even 

greater weight and thus more influence. By multiplying 

by
2

1

t
formula Equation (14) ensures that the weight of 

noisy instances will onlybe slightly increased in later 

iterations and thus will not continue to have an 

increasing adverse effect on the classifiers built in late 

iterations. This should help avoid overfitting the 

training data. 

3.2. Making the Method More Discriminative 

We believe that p(c|x) is too small to discriminate 

between difficult and easy instances in the training data 

in a sufficient way, which may assign similar weights 

to the different instances. To address this issue and to 

make p(c|x) sufficiently large, we normalize p(c|x) 

using Equation (11) (repeated below as Equation (15) 

for the reader's convenience). The equation divides 

p(c|x) by the total probability of all classes given x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Combining Instance Weighting and Fine Tuning for Training Naïve Bayesian ...                                                                   1103 

(15) 

Table 1. The effect of noise on DWNB. 

Data Set 

0% Noise 5% Noise 10% Noise 15% Noise 20% Noise 

NB 
DWN

B 
NB 

DWN

B 
NB 

DWN

B 
NB 

DWN

B 
NB 

DWN

B 

anneal 96.99 97.77 97.10 94.54 97.10 93.10 95.88 90.20 96.88 90.20 

AnnealORI

G 
79.06 89.42 85.30 79.62 88.31 62.36 87.97 42.54 87.42 45.32 

arrhythmia 54.20 74.56 54.20 75.22 54.20 74.78 54.20 74.56 54.20 74.34 

autos 60.00 62.44 60.00 60.49 60.98 60.49 59.51 53.17 57.56 50.73 

breast-

cancer 
73.08 72.38 70.98 70.28 72.38 72.38 70.63 69.93 68.88 69.23 

breast-w 97.28 97.42 97.57 97.28 97.42 97.42 97.00 97.14 97.42 97.28 

bridges_ver

1 
59.81 60.75 59.81 59.81 65.42 57.94 58.88 56.07 59.81 47.66 

bridges_ver

2 
57.94 56.07 54.21 56.07 52.34 52.34 47.66 43.93 52.34 50.47 

car 73.15 73.38 73.38 73.32 71.93 71.88 72.74 72.74 72.28 72.16 

colic 72.01 72.01 70.92 71.47 69.57 69.84 69.02 69.02 67.66 67.93 

colic.orig 70.65 68.48 71.74 64.67 69.57 67.39 69.02 60.05 62.50 54.89 

credit-a 84.06 84.35 84.49 84.35 84.06 83.91 83.91 83.62 84.20 83.77 

credit-g 75.50 75.70 74.70 74.80 76.20 76.60 75.00 75.00 71.30 71.20 

Cylinder 

bands 
69.44 69.63 71.48 69.63 68.15 66.67 67.96 65.93 68.70 67.96 

dermatlogy 97.27 99.18 98.09 98.91 98.36 98.36 96.72 96.45 97.27 97.27 

diabetes 77.34 77.34 77.21 77.47 76.69 76.82 76.04 76.04 76.69 76.82 

ecoli 74.40 78.87 73.21 79.46 71.13 77.38 74.40 80.95 76.19 80.36 

flags 60.31 56.19 59.28 52.58 58.76 48.45 56.70 53.61 60.31 52.06 

glass 70.09 74.30 71.03 72.43 70.56 72.43 71.96 72.90 68.22 72.43 

haberman 74.18 74.18 73.86 74.18 74.18 73.20 72.88 72.22 74.51 73.86 

heart-c 85.15 84.82 83.17 83.17 84.16 83.17 84.49 83.17 85.15 83.50 

heart-h 83.33 76.87 83.67 77.21 83.67 69.73 82.99 76.87 84.69 72.45 

heart-statlog 83.70 84.07 83.70 83.70 83.33 83.70 84.44 84.44 83.70 83.70 

hepatitis 83.23 84.52 83.87 81.29 81.29 80.65 80.00 79.35 80.00 80.00 

hypothyroid 92.95 93.35 90.99 91.07 90.22 89.87 88.65 87.96 87.91 87.59 

ionosphere 90.88 91.45 90.31 91.17 89.74 90.03 90.60 90.88 91.17 90.88 

iris 95.33 96.67 94.67 94.67 96.00 95.33 95.33 95.33 94.67 94.67 

letter 74.11 74.86 73.48 74.00 72.85 73.29 72.61 72.95 72.00 72.30 

liverDisorde

r 
54.78 54.78 53.04 53.04 58.84 59.71 53.33 52.46 54.78 53.91 

lung-cancer 81.25 84.38 78.13 81.25 75.00 75.00 81.25 84.38 65.63 75.00 

lymph 83.78 84.46 83.11 81.08 85.14 82.43 82.43 81.08 82.43 79.05 

mushroom 94.33 97.03 92.07 92.29 91.65 91.85 91.04 91.22 90.85 90.90 

nursery 81.37 81.41 81.41 81.42 81.19 81.18 81.40 81.40 82.03 82.04 

optdigits 92.12 92.08 91.60 91.69 91.28 91.39 91.30 91.33 90.84 90.93 

pendigits 87.92 88.37 87.21 87.34 86.64 86.77 86.22 86.34 85.53 85.72 

segment 91.77 93.25 90.69 91.17 89.57 90.56 89.09 89.91 87.92 88.61 

sick 96.85 96.85 93.74 93.66 91.76 91.89 88.12 88.57 85.15 85.95 

solar-

flare_1 
91.64 94.43 92.57 94.74 93.50 95.67 93.19 94.12 91.64 94.12 

solar-

flare_2 
97.00 97.09 96.34 97.65 96.53 98.03 96.90 98.12 97.28 98.22 

sonar 82.21 83.17 83.65 84.13 85.58 85.58 86.06 87.50 83.17 83.65 

spambase 89.35 89.37 89.22 89.31 89.18 89.26 89.50 89.50 89.18 89.20 

splice 94.92 95.24 93.54 93.70 92.35 92.51 91.47 91.54 90.50 90.75 

trains 70.00 70.00 70.00 70.00 70.00 70.00 70.00 60.00 60.00 60.00 

vehicle 63.36 63.48 62.17 62.17 62.29 62.65 63.95 63.83 62.17 62.17 

vote 89.43 89.66 89.43 89.43 90.34 90.34 89.66 89.66 89.43 89.43 

vowel 61.31 62.22 59.09 59.29 58.48 59.49 58.28 58.08 57.98 58.69 

Waveform-

5000 
80.64 80.76 80.16 80.18 79.88 79.92 79.56 79.56 78.90 78.90 

wine 98.88 98.88 98.31 99.44 98.88 99.44 97.75 97.75 97.75 97.19 

zoo 91.09 95.05 90.10 94.06 91.09 94.06 87.13 92.08 87.13 86.14 

average 80.40 81.49 79.96 80.20 79.95 79.33 79.28 78.07 78.45 77.18 

#better 7 35 13 28 17 24 21 18 21 20 

#Sig Better 3 12 8 15 9 14 7 7 12 11 
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Where nc is the number of class values. In all 

experiments reported in the following sections, we use 

(1-P(c|x)) instead of (1-p(c|x)) to better discriminate 

between instances. 

4. The Empirical Results of IDWNB 

In this section, we discuss the results of the Improved 

IDWN, which incorporates the two modifications 

proposed in the last section.  

Table 2 presents the results we obtained using 

IDWN compared to the results of NB. The results 

show that even at noise free data sets (i.e., at 0% 

artificial noise) the Improved DWNB (IDWNB) 

outperforms NB and DWNB. IDWNB outperforms NB 

for 35 data sets 23 of which are significantly better 

results, while NB outperformed IDWNB for 8 data sets 

only 2 of them are significantly better results. Recall 

that DWNB outperformed NB for 35 data sets only 12 

of them are 

Statistically significant improvements (see Table 1). 

While NB outperformed DWNB for 7 data sets, 3 of 

them are statistically significant results. Moreover, 

IDWNB outperforms DWNB and NB regarding the 

average classification at 0% noise. The average 

classification accuracy of IDWNB, DWNB and NB at 

0% noise are 81.80%, 81.49% and 80.40%, 

respectively. 

It is also evident from Table 2 that IDWNB is more 

robust to noise than DWNB. Its performance remained 

better than NB even at 20% noise, outperforming NB 

for 26 data sets, 18 of them are significantly better 

results. The average classification accuracy of IDWNB 

also declined more slowly than the average 

classification accuracy of DWNB. It declined from 

81.80% at 0% noise to 79.20% at 20% noise, a drop of 

2.6%. While the average classification accuracy of 

DWNB declined from 81.49% at 0% noise down 

to77.18% at 20% noise, adrop of 4.31% (see Table 1). 

The average classification accuracy of NB declined 

from 80.4% at0% noise down to 78.45% at 20% noise 

ratio, a drop of 1.95%. Moreover, the average 

classification accuracy of IDWNB remained the best 

average at all noise ratios. 
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Table 2. The results of IDWNB compared to NB. 

Data Set 

0% Noise 5% Noise 10% Noise 15% Noise 20% Noise 

NB 
IDWN

B 
NB 

IDWN

B 
NB 

IDWN

B 
NB 

IDWN

B 
NB 

IDWN

B 

anneal 96.99 98.00 97.10 97.55 96.77 97.10 96.21 96.44 96.66 96.88 

AnnealORIG 79.06 82.63 86.30 90.31 86.86 87.19 85.86 85.41 88.42 83.85 

arrhythmia 54.20 61.95 54.20 62.39 54.20 62.83 54.20 62.83 54.20 61.50 

autos 60.00 60.98 61.46 59.02 60.98 59.02 56.59 54.63 55.12 50.24 

breast-cancer 73.08 70.63 72.73 69.58 69.93 65.38 70.63 67.83 67.48 66.08 

breast-w 97.28 97.14 97.57 97.42 97.57 97.28 97.14 96.85 97.14 96.57 

bridges_ver1 59.81 61.68 60.75 57.01 61.68 58.88 59.81 55.14 56.07 56.07 

bridges_ver2 57.94 59.81 51.40 56.07 52.34 55.14 56.07 49.53 56.07 49.53 

car 73.15 78.82 72.45 75.69 73.15 76.10 72.74 74.25 74.65 76.16 

colic 72.01 75.54 70.38 74.46 69.57 75.00 68.48 77.45 67.66 75.54 

Colic-orig 70.65 70.38 71.74 71.20 67.66 66.03 64.95 61.41 67.39 61.96 

credit-a 84.06 83.62 84.06 82.90 84.20 83.77 83.04 82.61 84.06 82.32 

credit-g 75.50 76.60 76.10 75.40 74.30 75.30 73.80 73.50 74.00 74.30 

Cylinder 

bands 
69.44 72.22 69.63 74.44 68.33 73.33 70.93 73.15 69.63 67.41 

dermatology 97.27 97.54 98.09 98.36 96.72 95.08 96.99 96.72 96.45 94.81 

diabetes 77.34 78.65 77.34 78.78 76.69 77.99 75.39 78.78 76.69 78.78 

ecoli 74.40 79.17 75.30 81.25 73.81 80.95 73.21 79.17 72.92 74.40 

flags 60.31 57.73 58.76 58.76 58.76 56.70 59.28 57.22 59.28 55.15 

glass 70.09 74.30 69.16 72.90 69.16 73.83 67.29 71.96 69.63 70.56 

haberman 74.18 74.18 72.88 72.88 72.55 72.88 74.84 73.53 72.55 73.20 

heart-c 85.15 84.16 84.82 85.15 84.82 83.83 85.48 85.48 84.82 83.17 

heart-h 83.33 82.99 82.65 83.33 83.67 83.33 82.65 80.95 82.65 77.55 

heart-statlog 83.70 82.96 82.96 82.96 82.96 83.70 82.59 83.70 81.48 81.11 

hepatitis 83.23 85.16 83.23 82.58 80.65 81.94 78.71 76.77 81.94 83.23 

hypothyroid 92.95 98.12 90.99 92.02 89.50 92.23 89.18 92.84 87.06 92.10 

ionosphere 90.88 91.45 91.45 92.59 90.60 92.02 90.60 92.59 89.46 91.17 

iris 95.33 96.00 96.00 97.33 95.33 94.67 96.00 96.00 96.00 95.33 

letter 74.11 76.73 73.42 76.05 73.05 75.60 72.34 75.21 72.12 74.69 

liver-

disorders 
54.78 54.78 54.78 54.78 51.88 51.88 52.75 52.75 56.23 56.23 

lung-cancer 81.25 81.25 81.25 81.25 78.13 75.00 75.00 71.88 78.13 78.13 

lymph 83.78 84.46 85.81 84.46 83.78 83.11 80.41 81.76 82.43 81.08 

mushroom 94.33 97.33 92.06 96.52 91.52 97.56 91.41 98.24 91.05 98.60 

nursery 81.37 82.65 81.35 82.72 81.71 82.57 80.81 81.82 81.91 82.82 

optdigits 92.12 92.97 91.83 92.54 91.51 92.31 91.17 91.57 90.77 90.91 

pendigits 87.92 90.72 87.23 89.66 86.70 89.04 86.23 88.70 85.70 88.28 

segment 91.77 93.64 90.56 91.69 89.48 91.08 89.18 90.74 88.31 89.57 

sick 96.85 97.00 93.48 96.61 90.27 96.58 89.32 96.74 86.90 96.13 

solar-flare_1 91.64 93.81 91.95 95.36 91.64 96.59 94.43 96.59 90.71 95.05 

solar-flare_2 97.00 97.37 96.53 98.59 96.25 99.25 97.37 99.34 96.06 98.50 

sonar 82.21 82.21 83.65 83.65 82.69 82.21 81.73 78.37 83.65 80.77 

spambase 89.35 90.46 89.07 90.65 89.39 91.13 89.55 91.91 89.42 91.02 

splice 94.92 94.98 93.73 92.70 92.51 91.10 91.38 90.00 90.03 87.96 

trains 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 60.00 60.00 

vehicle 63.36 65.60 62.41 65.25 62.53 64.54 61.82 65.48 62.77 65.84 

vote 89.43 90.34 89.89 90.80 89.89 90.80 90.34 91.26 89.43 93.56 

vowel 61.31 63.94 60.20 62.42 60.20 63.33 59.19 59.39 57.78 59.39 

Waveform-

5000 
80.64 81.74 80.12 81.54 79.60 81.52 79.22 81.84 79.00 82.38 

wine 98.88 98.88 98.88 98.31 99.44 98.88 98.31 94.94 96.07 94.94 

zoo 91.09 95.05 90.10 94.06 89.11 91.09 90.10 91.09 86.14 86.14 

Average 80.40 81.80 80.16 81.47 79.47 80.75 78.08 79.93 78.65 79.20 

#better 8 35 11 31 16 31 18 27 18 26 

#sig better 2 23 2 26 5 19 6 20 8 18 

5. Combining IDWNB and FTNB 

Since both methods, FTNB and IDWNB, deal with the 

problem of the lack of training data, in this section, we 

compare between the two methods to find out which 

one is more effective in improving the classification 

accuracy. We also address the issue of whether or not 

combining both of them would give better results than 

using either one of them alone. Combining both 

methods is straightforward; we first use IDWNB 

tobuild a classifier then we use FTNB to fine-tune this 

classifier. Table 3 shows the result of comparing both 

methods and the result of the combined method 

compared with each one of them alone. 

The Table also shows that combining IDWNB and 

FTNB produced better results than using either one of 

them alone. The combined method outperformed 

IDWNB for 29 data sets, 18 of which are significantly 

better results. However, IDWNB outperformed the 

combined method for 12 data sets only 4 of them are 

statistically better results. Compared with the FTNB 

method, the combined method produced better results 

for 28 data sets, 13 of which are significantly better 

results. FTNB, on the other hand, outperformed the 

combined method for 12 datasets, only 5 of which are 

significantly better results. Also the average 

classification accuracy of the combined method of 

82.93% is higher than the average accuracies of 

IDWNB and FTNB, which are 81.80% and 82.47%, 

respectively. This shows that the improvement in 

classification accuracy achieved by the two methods 

adds up when they are combined. It is worth sayingthat 

we set the learning rate, , to 0.01 when we trained 

FTNB alone, and we had to set it to a much smaller 

value of 0.005 when we combined it with IDWNB (i.e. 

when we fine tuned the classifier that we obtained 

from IDWNB). Having to use a smaller learning rate to 

fine tune IDWNB, may indicate that the classifier 

produced by IDWNB is much closer to the optimal 

estimation than classifier generated by NB.  

The experiments reported in Table 3 were 

performed at 0% noise ratio (i.e., no artificial noise 

were added). Like DWNB, FTNB is also sensitive to 

noise [5]. In [5], some methods were proposed to make 

the FTNB algorithm more robust to noise. It would be 

interesting to combine these fine-tuning methods with 

IDWNB and evaluate the performance of the combined 

method at different noise ratios. This may be an 

interesting issue for future work. 
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Table 3. Combining FTNB and IDWNB. 

Data Set 
IDWNB vs FTNB IDWNB vs Combined FTNB vs Combined 

IDWNB FTNB IDWNB Combined FTNB Combined 

anneal 98.00 98.22 98.00 98.11 98.22 98.11 

anneal.ORIG 82.63 97.66 82.63 97.66 97.66 97.66 

arrhythmia 61.95 72.57 61.95 74.56 72.57 74.56 

autos 60.98 64.88 60.98 62.93 64.88 62.93 

breast-cancer 70.63 67.83 70.63 66.43 67.83 66.43 

breast-w 97.14 95.99 97.14 96.28 95.99 96.28 

bridges_ver1 61.68 61.68 61.68 63.55 61.68 63.55 

bridges_ver2 59.81 60.75 59.81 61.68 60.75 61.68 

car 78.82 84.72 78.82 82.23 84.72 82.23 

colic 75.54 80.16 75.54 80.16 80.16 80.16 

colic.orig 70.38 75.54 70.38 72.55 75.54 72.55 

credit-a 83.62 82.17 83.62 82.46 82.17 82.46 

credit-g 76.60 72.80 76.60 73.60 72.80 73.60 

cylinder-bands 72.22 71.85 72.22 73.70 71.85 73.70 

dermatology 97.54 97.54 97.54 97.81 97.54 97.81 

diabetes 78.65 77.47 78.65 78.13 77.47 78.13 

ecoli 79.17 77.98 79.17 79.76 77.98 79.76 

flags 57.73 57.73 57.73 57.73 57.73 57.73 

glass 74.30 72.43 74.30 74.30 72.43 74.30 

haberman 74.18 70.26 74.18 70.92 70.26 70.92 

heart-c 84.16 84.16 84.16 83.83 84.16 83.83 

heart-h 82.99 80.27 82.99 80.61 80.27 80.61 

heart-statlog 82.96 82.59 82.96 82.96 82.59 82.96 

hepatitis 85.16 87.10 85.16 89.03 87.10 89.03 

hypothyroid 98.12 99.26 98.12 99.20 99.26 99.20 

ionosphere 91.45 92.31 91.45 92.02 92.31 92.02 

iris 96.00 96.00 96.00 96.00 96.00 96.00 

letter 76.73 77.05 76.73 77.89 77.05 77.89 

liver-disorders 54.78 63.19 54.78 63.19 63.19 63.19 

lung-cancer 81.25 81.25 81.25 81.25 81.25 81.25 

lymph 84.46 85.81 84.46 87.16 85.81 87.16 

mushroom 97.33 99.68 97.33 99.64 99.68 99.64 

nursery 82.65 84.32 82.65 84.27 84.32 84.27 

optdigits 92.97 94.04 92.97 94.06 94.04 94.06 

pendigits 90.72 94.71 90.72 94.83 94.71 94.83 

segment 93.64 93.90 93.64 93.98 93.90 93.98 

sick 97.00 96.98 97.00 97.03 96.98 97.03 

solar-flare_1 93.81 95.98 93.81 95.98 95.98 95.98 

solar-flare_2 97.37 98.87 97.37 98.59 98.87 98.59 

sonar 82.21 78.37 82.21 80.29 78.37 80.29 

spambase 90.46 77.57 90.46 81.26 77.57 81.26 

splice 94.98 91.63 94.98 93.70 91.63 93.70 

trains 70.00 70.00 70.00 70.00 70.00 70.00 

vehicle 65.60 68.91 65.60 67.38 68.91 67.38 

vote 90.34 93.33 90.34 94.48 93.33 94.48 

vowel 63.94 60.61 63.94 62.63 60.61 62.63 

waveform-5000 81.74 83.14 81.74 83.68 83.14 83.68 

wine 98.88 98.88 98.88 98.88 98.88 98.88 

zoo 95.05 91.09 95.05 95.05 91.09 95.05 

Average 81.80 82.47 81.80 82.93 82.47 82.93 

#better 17 24 12 29 12 28 

#sig better 6 18 4 18 5 13 

6. Conclusions 

This work addresses the problem of training an NB 

classifier using limited training data. It presents an 

improved instance-weighting algorithm that is more 

accurate than the original one [9] and more robust to 

noise. The algorithm assigns weights to instances that 

are greater than or equal to one. This magnifies the 

effect of some training instances especially if the 

training data is limited. Then we presented a 

straightforward method for combining this instance 

weighting method with another method for dealing 

with the problem of the lack of data, namely, the fine 

tuning method [5, 6]. Our empirical results using 49 

data sets show that the improved instance-weighting 

algorithm is more accurate and more robust to noise 

than the original one. Moreover, combining the 

instance weighting methods with the fine-tuning 

method give better classification accuracy than using 

either one of them alone. 

As a future work, it would be interesting to evaluate 

the combined method under different noise ratios and 

perhaps combine the IDWNB with the more robust 

fine-tuning methods proposed in [5]. 
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