
1098 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

PatHT: An Efficient Method of Classification over

Evolving Data Streams

Meng Han, Jian Ding, and Juan Li
 School of Computer Science and Engineering, North Minzu University, China

Abstract: Some existing classifications need frequent update to adapt to the change of concept in data streams. To solve this

problem, an adaptive method Pattern-based Hoeffding Tree (PatHT) is proposed to process evolving data streams. A key

technology of a training classification decision tree is to improve the efficiency of choosing an optimal splitting attribute.

Therefore, frequent patterns are used. Algorithm PatHT discovers constraint-based closed frequent patterns incremental

updated. It builds an adaptive and incremental updated tree based on the frequent pattern set. It uses sliding window to avoid

concept drift in mining patterns and uses concept drift detector to deal with concept change problem in procedure of training

examples. We tested the performance of PatHT against some known algorithms using real data streams and synthetic data

streams with different widths of concept change. Our approach outperforms traditional classification models and it is proved

by the experimental results.

Key words: Data mining; decision tree; data stream classification; closed pattern mining; concept drift.

Received November 13, 2015; accepted April 12, 2018

1. Introduction

The explosion in the variety, volume and velocity of

data is generated by the increasing availability of

phones, internet, and sensors. This data is often

referred as data streams [1]. Data stream classification

is the way that knowledge and information from

continuous data is extracted [12]. In classification,

evolving data streams classification is one of the most

complex problems [17]. The first problem is concept

drifts. The distribution of the data streams is not stable,

and it varies over time. Other problems include large

number of examples and limited time or memory

requirements [16, 24].

Among classifier technique, decision tree is a very

prevalent because its advantages are easy to interpret

and visualize the tree models [4]. Hoeffding bound is a

common used estimating split criterion. Such as

algorithms Very Fast Decision Tree (VFDT) [10],

Concept adapting Very Fast Decision Tree (CVFDT)

[20], VFDTc [14], VFT [21] are based on Hoeffding

bound. Algorithm VFDT is the earlier classification

methods to process data streams. The shortage of

VFDT is that it can’t deal with concept drift problem.

Algorithm CVFDT has two main differences from

VFDT. One is to handle concept drift problem, the

other is to handle examples in a sliding window model

[4]. Two algorithms VFDTc and UFFT are based on

Hoeffding Tree which are used to deal with concept

drift problem and numeric attributes over data streams

[4]. Algorithms HAT [21], HOT [2], AdoHOT [27] and

ASHT [3] are also Hoeffding trees. These algorithms

use ADaptive WINdowing (ADWIN) [3] to deal with

concept drift. Algorithm streamDM [6] is an ensemble

method that uses adaptive decision trees efficiently and

easily. It also uses Hoeffding bound.

Recent years, researchers propose a variety of

methods for discovering frequent patterns over data

streams. Algorithms FIS_EDS [11], SysTree [7] and

CanTree-GTree [22] are used to discover frequent

patterns which meet error bound and minimum

support. These methods don’t distinguish recent and

historical examples. Time Decay Model (TDM) is used

in algorithms Sliding Window Pattern tree (SWP-Tree)

[8] and TwMinSwap [23] to set different weights of

recent and historical examples. They emphasize the

importance of new example and can get more

reasonable pattern sets. However, complete pattern sets

are mined out and a large number of useless patterns

are contained. In order to reduce a quantity of patterns,

compressed patterns should be discovered. Closed

patterns are lossless compared with other compressed

patterns. Algorithms Moment [9], TDMCS*[18],

FLMCFI [26], CloStream [29] and CloStream*[30] use

sliding window to discover closed patterns on data

streams.

Although many classification methods have been

proposed, studies find that frequent patterns can be

used to build high quality classification models. The

advantages of pattern-based classification methods lie

in:

1. Un-frequent itemsets may be caused by random

noises which are harmful to classification methods.

But frequent patterns always carry reliable

information gains to construct methods.

2. Generally, patterns have more information gains

than a single attribute.

3. The discovered patterns are always simple and easy

to explain. Therefore, interesting, frequent and

PatHT: An Efficient Method of Classification over Evolving Data Streams 1099

distinguished pattern can be used for effective

classification and may lead to high accuracy.

In this paper, we focus on mining closed frequent

patterns on data streams, and study classification

decision trees based on these patterns. Our

contributions can be summarized as follows:

1. Existed data stream classification cycle includes

three steps: input-learning-model [27]. In order to

improve the efficiency of training model and

improve classification accuracy, we propose the four

steps of classification cycle IPLmodel: Input-

Pattern-Learning- model.

2. Propose an algorithm to discover closed frequent

patterns incremental updated based on IPLmodel.

All patterns must contain attribute and class label.

3. The sliding window model is used to discover

frequent patterns on recent examples. We use top-k

frequent patterns to build decision trees in order to

improve the efficiency of choosing optimal splitting

attributes. We use ADWIN [3] to detect concept

change in evolving data streams.

2. Frequent Patterns

A data stream DS = {Ex1, Ex2, …, Exm , …, Exnew } is

an orderly, continuous, unrestricted flow of examples

instances, or transactions. An example Exm (m=1, 2, …)

generated at a time step m, is a set of <Xm, Cm > pairs.

In which Xm is an n-dimensional feature vector that

consists of n attribute values and Cm is a class label.

In some time-sensitive data streams applications,

users have most interest in recent examples. Common

methods for such cases are used Sliding Window

Model (SWM). The latest W examples in a data stream

DS are contained in a sliding window of size W.

Function freq(Q) means the frequency of pattern Q,

which is the number of examples including itemsets Q.

Function support(Q) means the support of Q in a

window, which is defined as freq(Q)/W. In this paper,

we discover closed frequent patterns(CFPs) over data

stream on the basis of the SWM. The discovered CFPs

meet class-constraints. The definitions of frequent

patterns (FPs) and CFPs are shown in Definitions 1

and 2, the class-constraints is shown as follow.

 Definition 1 (FPs) Variable θ (θ[0, 1]) is a

minimum support threshold. Itemset Q is a frequent

pattern in SW if support(Q) ≥ θ.

 Definition 2 (CFPs) Itemset Q is a closed frequent

pattern in SW, if Q is a frequent itemset in SW and

there is not its parent itemset Z in SW such that

support(Z) = support(Q).

 Class-constraints: A pattern Q must satisfy two

constraints. (1) The form is like <X, C>, which must

contain at least one attribute value and one class

value. (2) It is closed.

 Example 1. There are 8 examples in Table 1. Length

of each example is 5, including 4 attributes and 1

class. The distinguishable values of attributes

{A1，A2，A3，A4} are {3, 3, 2, 2} separately. There

are 2 distinguishable values {yes, no} of class.

Variable Ai is the ith attribute. Variable Aij is the jth

value of Ai. Variable Ck is the kth value of class

label. Variable Vijk denote the number of Aij under

the condition of Ck.

Table 1. Data stream.

Example A1 A2 A3 A4 Class

Ex1 a+ b+ c+ d+ yes

Ex2 a+ b+ c+ d- yes

Ex3 a+ b- c+ d+ yes

Ex4 a+ b- c- d- no

Ex5 a+ b c+ d+ yes

Ex6 a+ b c+ d- no

Ex7 a- b- c- d- no

Ex8 a b- c- d- no

Let θ=0.2, then 5 patterns with Class- constraints

are discovered as illustrated in Table 2. Length of each

pattern is no less than 2. Class value is included in each

pattern. Itemset Q1=<a+, c+, yes> is a frequent pattern

with Class-constraints. Q1 appears in examples

Ex1，Ex2，Ex3，Ex5, so freq(Q1) = 4 and support(Q1)

= 4/8 = 0.5 > 0.2. There exists no parent itemest with

support equal to Q1. Itemset Q2=<a+, yes> is not

closed, for Q1 is the parent with the same support.

Table 2. Closed frequent patterns with θ=0.2.

Pid Pattern Frequency

Q1 < a+, c+, yes > 3

Q 2 < a+, c+, d+, yes > 2

Q 3 < a+, d-, no > 2

Q 4 < b-, c-, d-, no > 3

Q 5 < d-, no > 4

3. Algorithm PatHT

There are two main procedures to build classification

algorithms based on patterns. First, discover closed

frequent patterns with Class-constraint. Second, use

patterns to train decision trees.

Bifet proposed three steps of data stream

classification repeating cycle as shown in Figure 1[5].

In this paper, a novel cycle IPLmodel based on patterns

is proposed. There are four steps as shown in Figure 2.

Unlike in Figure 1, the training example is used to

generate patterns at first, and then patterns are used to

learn.

 Step 1. The algorithm processes a new training

example Exnew in a data stream.

 Step 2. The pattern mining algorithm processes

Exnew and gets its frequent pattern sets PSnew.

 Step 3. The classification algorithm processes PSnew,

updating its data structures.

 Step 4. The algorithm is prepared to receive the new

training example. Whenever necessary, it can

predict or classify test examples.

1100 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

Input

LearningModel

Training examples

Predictions

Test examples

Figure 1. The data stream classification cycle [5].

Input

Learning

Model

Training examples

Test examples

Predictions

Pattern

Figure 2. Novel data stream classification cycle IPLmodel.

Frequent pattern contains more information than a

single attribute and may drop noise information.

Because concept drift problem exists in some evolving

data stream, frequent patterns are discovered in new

examples. Therefore, pattern based methods can get

more reasonable decision tree than common methods.

3.1. Closed Frequent Pattern Mining Algorithm

We propose algorithm Constrained and Closed

Frequent Pattern Mining over data stream (CCFPM) to

discover frequent patterns with Class- constraints.

CCFPM includes two methods to deal with new

examples and historical examples based on the SWM.

Method CCFPMADD processes new example Exnew

and method CCFPMREMOVE processes old example

Exold.

The data structures to deal with new example and

old example are similar and the procedures are

inversed. So, we mainly introduce the procedure

CCFPMADD. There are three data structures

ClosedTable [29], CidList [29] and NewExample -

Table/OldExampleTable in CCFPM algorithm. Closed

itemsets are maintained in ClosedTable which consists

of three fields: Pid, CP and SCP. Each closed itemset

CP is assigned a unique closed identifier Pid, and its

frequency is denoted as SCP. When a new transaction

Exnew arrives, the frequencies of all itemsets associated

with Exnew in Closed Table are needed to be updated.

PidList is used to maintain the information of each

item in data stream and the related sets of Pid. New

Transaction Table, which consists of two fields:

TempItem and Pid is used to maintain the information

of new example Exnew. Variable TempItem is used to

store the information of itemsets which satisfy

condition{ newEx CP , }CP ClosedTable .

We store Exnew to table NewTransactionTable at first

after Exnew arrived. Next, compare each item in Exnew

with PidList to update New- TransactionTable. Finally,

add new patterns to ClosedTable or update existed

patterns in ClosedTable referring to

NewTransactionTable. Our algorithm processes each

new example repeatedly to update data structures.

In this paper, we propose an incremental updated

method to discover frequent patterns. Figure 3

illustrates the process to discover frequent patterns in

the new sliding window. Each new example is used to

update data structures about closed frequent patterns.

And examples in the sliding window are denoted as Bi,

and mined pattern sets are denoted as PSi. That is,

input data stream DS and output frequent patterns PS.

Both DS and PS can be used as training examples.

However, PS must be the latest patterns PSnew and

historical patterns are dropped.

T1, T2, T3, ..., TSW, TSW+1, TSW+2, ..., Ti, Ti+1, ..., Ti+SW

PatternSet1 PatternSet2

Input

Output

PS1 PS2

B1
B2

Bnew

PatternSetnew

PSnew

Figure 3. Process of mining frequent patterns.

Two kinds of training examples are used in the

proposed algorithm, as shown in Figure 4. Use the

pattern set PS as training examples only, or use PS and

original data set DS together as training examples.

Patterns used in the former are more than in the later.

For the number of patterns is far less than a number of

original training data, using PS only can significantly

improve the efficiency of training. The aim is to get

almost same accuracy as traditional classification.

Using PS and DS together as training data will not

significantly add time cost, and aim to get higher

classification accuracy than traditional classification.

PS2

PSi

PS1

...

...

PS

Input

DS’

Output

Ti, Ti+1, ..., Ti+SWBi

DS

PS

DS’

B1 T1, T2,…, TSW

PS1

T2, T3,…, TSW+1

...

PSi

B2

PS2

Input Output

...

 a) using PS. b) using PS and DS.

Figure 4. Two ways to use PS as training examples.

3.2. Classification Algorithm based on Patterns

When choosing the decision tree split tests, there are

some popular and mature standards. Maybe the most

ordinary is access to information gain. Therefore, we

use information gain to build a pattern-based decision

tree. The weight or frequency of pattern should be

PatHT: An Efficient Method of Classification over Evolving Data Streams 1101

considered. So, examples from the original data stream

and discovered patterns should be modified. The

process includes:

a. Adding weight ‘1’ to each example, and the data set

denotes as DS.

b. Adding missing values to each pattern and using

frequency as weight, and the data set denotes as PS.

In order to compare the process of selecting splitting

nodes, some variables are used as shown in Table 3.

Table 3. Some variables.

Variable Content

Ai the ith attribute

Aij the jth value of Ai

Ck the kth value of class label

WVk the total weights of Ck

WVij the total weights of Aij

WVijk the total weights of Aij under the condition of Ck

SumWV the total weights of all examples in sliding window

 Example 2. Let’s change from examples in Tables 1

and 2 to examples in Table 4 (DS1) and Table 5

(PS1). Weight of original data is 1 and weight of

pattern is its frequency. And add missing values ‘?’

to pattern. There are 8 examples in DS1 and 20

probability statistics of WVijk needed to be

computed. While, there are 5 examples in PS1 and

only 12 probability statistics of WVijk needed to be

computed.

Table 4. Dataset DS1 with weights.

Example A1 A2 A3 A4 Class Weight

Ex1 a+ b+ c+ d+ yes 1

Ex2 a+ b+ c+ d- yes 1

Ex3 a+ b- c+ d+ yes 1

Ex4 a+ b- c- d- no 1

Ex5 a+ b c+ d+ yes 1

Ex6 a+ b c+ d- no 1

Ex7 a- b- c- d- no 1

Ex8 a b- c- d- no 1

Table 5. Pattern set PS1 with weights.

Example A1 A2 A3 A4 Class Weight

Ex1 a+ ? c+ ? yes 3

Ex2 a+ ? c+ d+ yes 2

Ex3 a+ ? ? d- no 2

Ex4 ? b- c- d- no 3

Ex5 ? ? ? d- no 4

From Tables 4 and 5, training on the pattern sets can

reduce time consumption and generate more compact

tree structure. These shortages of the two ways to build

trees are followings, the former tree may be too big

and may get overfitting problem; the later tree may

have insufficient information and may get the lower

classification accuracy. Therefore, when dealing with

mass data, top-k frequent patterns and original data can

be used together to learn a model. Advantage is that it

can improve the efficiency of selecting splitting

attribute and get high classification accuracy.

3.3. Novel Algorithm PatHT

A Novel way to build a decision tree based on frequent

patterns is proposed in this paper. First, it

incrementally updating generates closed frequent

patterns with Class-constraints. The sliding window is

used to mine patterns in new examples. Then,

incrementally update decision tree using top-k closed

frequent patterns and original data.

Five rules are used in novel algorithms:

 Rule 1. Only closed frequent pattern with class label

are discovered. It means that at least one class value

and one attribute value are included in a pattern.

 Rule 2. The top-k pattern is chosen if it contains

most or all of distinguishable values of class.

 Rule 3. Missing value is engaged in the statistics of

SumWV.

 Rule 4. If the difference in observed information

gain is more than ε, then split on the best attribute.

Else if Gain(best attribute) - Gain(second best

attribute) < ε, then select the attribute with more

total weights (missing values are not included) as

the best attribute.

 Rule 5. If the total weights of the two best attributes

are still same, then choose the first one as the split

attribute.

The novel algorithm Pattern-based Hoeffding Tree

(PatHT) includes three parts. Algorithm PatHT is the

main function. Input parameters are S, SW, θ and δ.

Output parameter is HT. Two kinds of training data PS

only or PS and DS together are used as introduced

before.

Algorithm PatHT()

Pattern-based Hoeffding Tree

Input: S data stream,

θ minimum support,

SW size of sliding window,

δ desired probability of choosing the correct

attribute at any given node

Output: HT decision tree

1 For each transaction Tnew in S Do

 Get novel set of patterns PSnew = CCFPM(Tnew, θ, SW);

Goto step 2 to 4

2 Let HT be a tree with a single leaf(root)

3 Initial counts WVijk at root

4 For each example (x, y, weight) in PSnew (and Tnew) Do

HTreeGrow((x, y, weight), HT, δ)

Algorithm CCFPM is used to discover frequent

patterns incremental updated. Function support()

means support of itemsets. All patterns are satisfied

class-constraints. That means that class and attribute

must be contained in a pattern and length of a pattern is

more than 2. The used three data structures are

ClosedTable, CidList and NewTransactionTable.

Algorithm CCFPM()

Mining closed frequent patterns with constraints over data

stream

Input: Tnew new example,

θ minimum support,

SW size of sliding window,

1102 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

Output: PS set of novel closed frequent patterns

1 Add Tnew to NewTransactionTable

2 Let inters = Tnew ∩ ClosedTable() according to PidList

3 Add inters to NewTransactionTable

4 For each TempItem in NewTransactionTable Do

 If interS ∈ ClosedTable

Then update support(interS) and add interS to PSnew.

Else if support(interS) ≥ θ

Then add <interS, support(interS)> to ClosedTable and

PSnew.

5 If item ∈ Tnew And item is not in PidList

Then add item to PidList

6 Return PSnew.

Algorithm HTreeGrow trains decision tree incremental

updated, and it is a Hoeffding tree with some

improvements. It adds weights to training examples.

Therefore:

1. Statistical information should consider weights of

examples.

2. Choosing the best splitting node should consider the

information of frequency. That is in Rule 4. Concept

drift detector ADWIN[3] is used to find concept

change. Function G() means information gain and

function MaxWeightAttr() is used to find a attribute

of higher total weight.

Algorithm HTreeGrow()

Growth of Hoeffding Tree

Input: example (x, y, weight)

HT decision tree

δ desired probability of choosing the correct attribute at

any given node

Output: HT decision tree

1 Sort (x, y, weight) to leaf l using HT

2 Update counts WVijk with weight at leaf l

3 Compute information gain G for each attribute from counts

WVijk

4 Split leaf

4.1 If G(Best Attr. BA1)-G(2nd best Attr. BA2) > ε

Then let BA1 to be best attribute BA

4.2 Else let best attribute

BA = MaxWeightAttr(Best Attr., 2nd best Attr.)

4.3 Split leaf l on BA

5 For each branch Do

5.1 Start new leaf l and initialize estimators ADWIN

5.2 If ADWIN has detected change

Then create a subtree st

5.3 If no sunbtree

Then st as a new subtree

Else if st is more accurate

Then replace current node with st

4. Experimental Analysis

4.1. Data Streams

In order to compare the pros and cons of different

methods, real and synthetic data streams are used in

this paper. The real one is Poker-hand from UCI [13].

It consists of 1,000,000 instances and 11 attributes.

Synthetic evolving data stream SEA is from MOA

[19]. It consists of 50,000 instances and 4 attributes. In

order to discover patterns, numeric attributes of SEA

are discretized by method Discretize() in WEKA[28].

Synthetic data stream LED is generated by using

generators in MOA [19]. About 1,000,000 examples of

LED are generated. In order to analyze the ability of

algorithm PatHT, two kinds of LEDs are generated in

this paper: with and without concept drift. Method

ConceptDriftStream [19] in MOA is used to set

different widths of concept change W. And W is set

less than or more than size of the sliding window.

In this paper, we compare the pros and cons of the

algorithms NB, VFDT [10], HAT [21], HOT [2],

AdoHOT [27], ASHT [27], OzaBoost [3],

OzaBagAdwin [3] with PatHT. Method

EvaluatePrequential [19] in MOA is used to test the

performances of these algorithms by testing then

training each example in sequence.

4.2. Performance

At first, analyze the discovered frequent patterns on

data streams. Let the sliding window size SW = 1000

which is as same as size of window in method

EvaluatePrequential [19] and the common size of the

sliding window used in frequent pattern mining

algorithms. In order to explain the changing trend of

patterns, 5,000 examples are divided into 5 blocks {B1,

B2, B3, B4, B5}. Size of each block (denoted as BS) is

equal to size of sliding window. Then, mining closed

frequent patterns with class-constraints on each block.

Table 6 shows the frequent patterns on stable data

stream Poker-hand, evolving data streams SEA and

LED. At the same minimum support threshold, some

conclusions can be got as following:

1. Discovered frequent patterns on Poker- hand are the

most among three data streams. And the average

length and maximal frequency of patterns are

similar to each other of five blocks as shown in

Table 6. The length of pattern in each block is from

2 to 4 and the average length is 2.83. Length of

example in the data stream is 11, so the length of

pattern to example ratio is 1 to 3.9 (2.83:11). The

number of examples in each block is 1000 and the

average number of patterns is 300, so the number of

pattern to example ratio is 1 to 3.3 (300:1000).

2. Discovered patterns on SEA are less than on other

two data streams, as shown in Table 6. The length of

pattern in each block is from 2 to 3 and the average

length is 2.3. The average number of patterns is

about 75, so the number of pattern to example ratio

is 1 to 17.5. Therefore, compared with the number

of examples in each block, the number of patterns is

small.

3. When the width of change W is set to 500, a number

of patterns in five blocks on LED are different from

each other as shown in Table 6. For example, the

number of pattern in B1 is 17 and the number in B5

is 264 particularly. Besides number, length and

frequency of patterns in LED change obviously

PatHT: An Efficient Method of Classification over Evolving Data Streams 1103

compared with other two data streams. There are

two reasons for this. One is the feature of LED and

another is that the width of change is less than size

of the sliding window. So, the concept drift problem

cannot be handled by the sliding window. The

average length of pattern on LED is 7.46, so the

length of pattern to example ratio is 1 to 3.5

(7.46:25). The average number of patterns is 131, so

the number of pattern to example ratio is 1 to 7.6.

4. When W < SW, the distribution of pattern lengths on

LED is shown in Figure 5. It can get that the

distributions of patterns in B1 is very different from

these patterns in B5. The numbers in B5 and B3 are

more than numbers in other blocks. Numbers in B4

and B2 are in the middle of the five blocks, and the

number in B1 is the lowest. Overall, the distributions

of patterns vary widely from different blocks.

5. Table 7 shows the ratios of pattern to example.

Three data streams with different features have

diverse ratios. Such as, patterns on Poker are far

more than patterns on SEA. Compared with the

length of original example, the length of pattern in

LED is the shortest relatively and the length of

pattern in SEA is the longest relatively.

Table 6. Pattern sets on data streams.

Poker-hand SEA LED(W=500)

#P
Average

length

Max

weight
#P

Average

length

Max

weight
#P

Average

length

Max

weight

B1 330 2.87 142 45 2.27 92 17 6.94 47

B2 277 2.83 148 64 2.33 107 122 7.11 79

B3 296 2.82 140 61 2.33 96 161 7.84 83

B4 277 2.81 139 57 2.32 96 93 7.15 81

B5 320 2.82 140 59 2.25 111 264 8.27 88

Table 7. The length ratio and number ratio of pattern to example.

 Length ratio Number ratio

Pocker-hand 1 : 3.9 1 : 3.3

LED 1 : 3.5 1 : 7.6

SEA 1 : 1.7 1 : 17.5

Figure 5. Distribution of patterns of LED (W=500).

The second experiment is used to analyze the

performances of 7 algorithms on real data stream

Poker-hand. The comparisons of time cost, memory

cost, and accuracy are shown in Figure 6. There are

two kinds of training examples. One is only pattern

sets used in PatHT1, and another is the combination of

pattern sets and original examples used in PatHT2. The

top-k patterns are used in algorithm PatHT, and the

number of patterns in PatHT1 (about 30% of

examples) is more than in PatHT2 (about 20% of

examples).

The classification accuracy of algorithm PatHT1 is

about 4% lower than the average accuracy of other six

algorithms, as illustrated in Figure 6-c. But the training

time cost of PatHT1 is much less than others, that is

about 80% time is reduced as shown in Figure 6-a.

This is because the number of training patterns is about

30% of original training examples from data streams.

Top-k patterns and original examples are used as

training data in PatHT2. From Figure 6, it can get that

accuracy of PatHT2 is about 20% more than the

average accuracy of other algorithms. For the number

of patterns is very small, the time cost and memory

cost are little more than other algorithms. But

additional time and memory costs are used to discover

patterns.

Last experiment is used to compare the

performances of different algorithms on data stream

SEA and LED. The width of change in SEA is

uncertain. There are three kinds of LEDs with no drift,

width of change W=500 (less than SW) and W=2000

(more than SW). Table 8 shows the accuracies of nine

algorithms on data stream SEA and LED.

a) time.

b) memory.

c) accuracy.

Figure 6. Performances of algorithms on Poker-hand.

1104 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

Table 8. Comparisons of accuracies on evolving data streams SEA and LED.

SEA LED LED LED

Drift No Drift W=500 W=2,000

Time Acc. Mem. Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

NB 1.01 82.8 0.76 3.88 72.1 1.28 3.31 73.2 1.28 3.57 73.5 0.80

VFDT 1.47 86.3 0.99 6.18 72.4 0.98 5.43 73.1 1.06 5.63 74.7 1.42

HAT 2.62 90.4 0.99 9.30 71.3 0.75 8.64 72.1 1.06 9.20 73.9 1.12

HOT50 2.39 86 2.1 6.91 72.7 0.92 6.63 73.5 1.47 8.13 74.4 1.10

AdoHOT5 2.34 86 2.1 6.93 72.7 0.68 6.61 73.5 1.49 8.52 74.3 1.13

ASHT 1.47 86.3 1.01 5.69 72.4 1.07 5.48 73.1 1.34 6.16 74.7 1.31

OzaBagAdwin 7.78 90 2.41 53.98 72.6 1.91 54.65 73.7 2.10 54.58 74.5 2.22

OzaBoost 5.44 88.4 2.79 40.65 73.2 1.81 41.32 73.2 1.82 41.14 74.8 2.26

PatHT 2.3 91.7 2.6 7.80 73.4 1.31 6.81 71.9 0.75 7.23 75.8 1.51

From all the experiments above mentioned, the

conclusions can be drawn as follows.

1. When dealing with the dense and stable data

streams, such as real data stream Poker-hand, the

accuracy of PatHT is same as other algorithms. But

only frequent patterns are used as training data

which are much less than original training

examples. Therefore, compared with known

algorithms, a lot of training time cost can be

reduced.

2. When processing stable data streams, using

combination training data of top-k patterns and

original examples, PatHT algorithm can get better

performance than other algorithms. The additional

cost is using more time to train. The number of

pattern is small, so the additional time cost is little.

Because only high frequency patterns are used in

training, the classification model is more compact.

Therefore, the memory cost is lower than some

known algorithms.

3. When processing evolving data streams, PatHT can

get high accuracy over data streams with the big

width of change (more than size of the sliding

window). But the accuracy may be low when

handling data streams with small width of change

(less than size of sliding window).

4. Addition time and memory may be used in PatHT

for mining frequent patterns.

5. Conclusions

A data stream classification repeating cycle common

has three steps of input-training-model. There is some

useless information in training data, such as noises. In

order to drop some useless information, a novel

classification repeating cycle IPLmodel is proposed in

this paper: input - pattern - training - model. That is

pattern mining on examples before training.

Incremental updated pattern mining algorithm is used

to discover closed frequent patterns with class-

constraints. And these patterns are used as training data

independently or as a part of combination. An

evaluation study on real and synthetic data streams

figures that compared with some famous methods, the

new algorithm PatHT has better performance. The

classification method based on patterns can get high

classification accuracy or

can reduce the training time significantly. The

additional costs are the time and memory consumption

of discovering frequent patterns. And in order to

discover patterns, numeric attributes are required to be

discretized.

References

[1] Assunção M., Veith A., and Buyya R.,

“Distributed Data Stream Processing and Edge

Computing: A Survey on Resource Elasticity and

Future Directions,” Journal of Network and

Computer Applications, vol. 103, pp. 1-17, 2018.

[2] Bifet A. and Gavaldá R., “Adaptive Learning

from Evolving Data Streams,” in Proceedings of

the 8th International Symposium on Intelligent

Data Analysis, Lyon, pp. 249-260, 2009.

[3] Bifet A. and Gavaldá R., “Learning from Time-

Changing Data with Adaptive Windowing,” in

Proceedings of the 7th SIAM International

Conference on Data Mining, Minnesota, pp. 443-

448, 2007.

[4] Bifet A., Gavaldà R., Holmes G., and Pfahringer

B., Machine Learning for Data Streams with

Practical Examples in MOA, MIT Press, 2018.

[5] Bifet A., Holmes G., and Pfahringer B., “New

Ensemble Methods for Evolving Data Streams,”

in Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge

Discovery and Data Mining, Paris, pp. 139-148,

2009.

[6] Bifet A., Zhang J., and Fan W., He C., Zhang J.,

Qian J., Holmes G., and Pfahringer B.,

“Extremely Fast Decision Tree Mining for

Evolving Data Streams,” in Proceedings of the

23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Halifax,

pp. 1733-1742, 2017.

[7] Bustio-Martínez L., Cumplido R., Hernández-

León R., Bande-Serrano J., and Feregrino-Uribe

C., “On the Design of Hardware Software

Architectures for Frequent Itemsets Mining on

Data Streams,” Journal of Intelligent Information

Systems, vol. 50, no. 3, pp. 415-440, 2018.
[8] Chen H., Shu L., Xia J., and Deng Q., “Mining

Frequent Patterns in A Varying-Size Sliding

Window of Online Transactional Data Streams,”

https://dl.acm.org/author_page.cfm?id=81367594869&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=99659193762&coll=DL&dl=ACM&trk=0

PatHT: An Efficient Method of Classification over Evolving Data Streams 1105

Information Sciences, vol. 215, no. 12, pp. 15-36,

2012.

[9] Chi Y., Wang H., Yu P., and Muntz R., “Catch

the Moment: Maintaining Closed Frequent

Itemsets over A Data Stream Sliding Window,”

Knowledge and Information Systems, vol. 10, no.

3, pp. 265-294, 2006.

[10] Domingos P. and Hulten G., “Mining High-

Speed Data Streams,” in Proceeding of the 6th

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Boston,

pp. 71-80, 2000.

[11] Farhat A., Gouider M., and Said L., “New

Algorithm for Frequent Itemsets Mining From

Evidential Data Streams,” Procedia Computer

Science, vol. 96, pp. 645-653, 2016.

[12] Farid D., Zhang L., Hossain A., Rahman C.,

Strachan R., Sexton G., and Dahal K., “An

Adaptive Ensemble Classifier for Mining

Concept Drifting Data Streams,” Expert Systems

with Applications, vol. 40, no. 15, pp. 5895-5906,

2013.

[13] Frank A. and Asuncion A., UCI Machine

Learning Repository [EB/OL]. Irvine, CA:

University of California, School of Information

and Computer Science, http://

archive.ics.uci.edu/ml, Last Visited, 2010.

[14] Gama J., Fernandes R., and Rocha R., “Decision

Trees for Mining Data Streams,” Intelligent Data

Analysis, vol. 10, no. 1, pp. 23-45, 2006.

[15] Gama J. and Medas P., “Learning Decision Trees

from Dynamic Data Streams,” Acm Symposium

on Applied Computing, vol. 11, no. 8, pp. 1353-

1366, 2005.

[16] Gomes H., Barddal M., Enembreck F., and Bifet

A., “A Survey on Ensemble Learning for Data

Stream Classification,” ACM Computing Surveys,

vol. 50, no. 2, pp. 1-23, 2017.

[17] Hammer H., Yazidi A., and Oommen B., “On the

Classification of Dynamical Data Streams Using

Novel “Anti-Bayesian” Technique,” Pattern

Recognition, vol. 76, pp. 108-124, 2018.

[18] Han M., Ding J., and Li J., “TDMCS: An

Efficient Method for Mining Closed Frequent

Patterns Over Data Streams Based on Time

Decay Model,” The International Arab Journal

of Information Technology, vol. 14, no. 6, pp.

851-860, 2017.

[19] Holmes G., Kirkby R., and Pfahringer B., MOA:

Massive Online Analysis. http://sourceforge.net/

projects/moa-datastream. Last Visited, 2014.

[20] Hulten G, Spencer L., and Domingos P., “Mining

Time-Changing Data Streams,” in Proceedings of

the 7th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, San

Francisco, pp. 97-106, 2001.

[21] Kourtellis M., Morales G., Bifet A., and

Murdopo A., “VHT: Vertical Hoeffding Tree,” in

Proceedings of the IEEE International

Conference on Big Data, Washington, pp. 915-

922, 2016.

[22] Kusumakumari V., Sherigar D., Chandran R.,

and Patil N., “Frequent Pattern Mining on Stream

Data Using Hadoop Cantreegtree,” Procedia

Computer Science, vol. 115, pp. 266-273, 2017.

[23] Lim Y. and Kang U., “Time-Weighted Counting

for Recently Frequent Pattern Mining in Data

Streams,” Knowledge and Information Systems,

vol. 53, no. 2, pp. 391-422, 2017.

[24] Mello R., Vaz Y., Grossi C., and Bifet A., “On

Learning Guarantees to Unsupervised Concept

Drift Detection on Data Streams,” Expert

Systems with Applications, vol. 117, pp. 90-102,

2019.

[25] Oza N. and Russell S., Online Bagging and

Boosting. Morgan Kaufmann, 2001.

[26] Reddy V., Rao T., and Govardhan A., “Fast and

Lossless Mining of Closed Frequent Itemsets

Over Data Streams,” Journal of Advanced

Research in Dynamical and Control Systrems,

vol. 1, pp. 256-263, 2018.

[27] Wang P., Wu X., Wang C., Wang W., and Shi B.,

“CAPE-A Classification Algorithm Using

Frequent Patterns Over Data Streams,” Journal

of Computer Research and Development, vol. 41,

no. 10, pp. 1677-1683, 2004.

[28] Witten I. and Frank E., Data Mining: Practical

Machine Learning Tools and Techniques,

Morgan Kaufmann, 2005.

[29] Yen S., Lee Y., Wu C., and Lin C., “An Efficient

Algorithm for Maintaining Frequent Closed

Itemsets Over Data Stream,” Next-Generation

Applied Intelligence, vol. 5579, no. 1, pp. 767-

776, 2009.

[30] Yen S., Wu C., Lee Y., Tseng V., and Hsieh C.,

“A Fast Algorithm for Mining Frequent Closed

Itemsets Over Stream Sliding Window,” in

Proceedings of IEEE International Conference

on Fuzzy Systems, Taipei, pp. 996-1002, 2011.

Han Meng born in 1982, Ph.D.,

associate professor. Her research

interests include data mining and

machine learning.

Jian Ding born in 1977, M.S.,

associate professor. His research

interests include machine learning

and data mining.

