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Abstract: Transmission Control Protocol TCP is no doubt most widely used congestion control protocol designed for highly 

reliable and end-to-end communication over the internet. TCP is not suitable in its standard form for modern and high speed 

networks. Various TCP variants are solution for this issue. CUBIC is a modern TCP variant designed for high speed and 

scalable networks. CUBIC is also adopted as default congestion control algorithm in Linux kernel. This survey paper contains 

a detailed discussion about TCP CUBIC and the directions for further improvements. It describes the CUBIC design 

architecture with the pseudo code of the algorithm, TCP support in Linux kernel and implementation of CUBIC, Network 

Simulator 2 and Network Simulator 3 based study of CUBIC along with its class diagram. Finally, the performance of CUBIC 

is evaluated both in wired and wireless environment under the parameters of goodput and intra-protocol fairness along with 

TCP NewReno and TCP Compound. The simulation results demonstrate that CUBIC is very suitable for wired and high speed 

networks but its performance degrades in wireless and low speed networks. 
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1. Introduction 

Congestion control is a technique used for the effective 

and efficient utilization of channel bandwidth by 

managing the extra network traffic that exceeds from 

the channel capacity. It is used to avoid packet losses, 

network delay or the blockage of network. With the 

advancement in internet and network technologies, 

various applications are being developed that run over 

the internet. The traditional networks have now been 

converted into high speed, long distance, large 

bandwidth and scalable networks. Significant amount 

of data is transmitted today over the internet by various 

wireless and hand-held devices and all the Hyper Text 

Transfer Protocol (HTTP) traffic relies on 

Transmission Control Protocol (TCP) [16]. 

Consequently, the performance of TCP is challenged in 

case of modern and high speed networks. TCP CUBIC 

has been designed to overcome such issues. 

CUBIC [11] is a modern TCP variant with the 

specialty of its improved congestion window growth 

function. It replaces the property of linear growth 

congestion window function of legacy or standard 

variants by a cubic function to improve its performance 

and to achieve high scalability. The key feature of 

CUBIC is that its window growth is defined in real 

time and it does not depend upon Round Trip Time 

(RTT). It depends only on the occurrence of two 

consecutive congestion events. 

 It is an improved and enhanced form of Binary 

Increase Congestion (BIC) TCP [27]. CUBIC has also 

advantage over other variants and after a continuous  

testing and careful performance evaluation, Linux 

Community implemented CUBIC as its default 

algorithm in its kernel version 2.6.19 in 2006 [11, 20]. 

Other TCP variants include Tahoe [25], Reno [14], 

New Reno [12], Vegas [6], Fast Active Queue 

Management Scalable TCP (FAST) [26], Compound 

[24], High Speed TCP (HSTCP) [9], West-Wood [8], 

Illinois [18], and Hybla [7, 21]. The performance 

analysis for the techniques is important [13].  

Rest of the paper is organized under the following 

structure. Section 2 includes background and related 

work, Section 3 emphasizes on the design architecture 

of CUBIC, Section 4 highlights the Linux kernel 

regarding TCP, Section 5 contains NS2 and NS3 

support regarding the simulation of CUBIC and 

Section 6 implements the performance analysis of 

CUBIC, NewReno and Compound. Section 7 

concludes the paper.  

2. Background and Related Work 

In TCP, congestion is inferred at the receiving end 

based on timeout or duplicate acknowledgement [19]. 

Congestion control algorithms have been classified 

into three general categories including loss based, 

delay based and hybrid methods [3, 15]. In loss based 

method, the size of congestion window (Cwnd) 

depends upon packet losses. In its normal behavior, the 

Cwnd size is increased after the acknowledgement of 

each packet. When there is a packet loss, the Cwnd 

decreases significantly [2, 17]. The loss based 
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algorithm includes TCP Tahoe, Reno, NewReno, 

STCP, HSTCP, BIC and CUBIC. 

In delay based algorithms, the size of Cwnd relies 

on RTT. These methods decrease Cwnd size according 

to RTT increase, which causes the increase of both in 

network router’s load as well as queue length. One 

difference between loss based and delay based 

approach is that Cwnd decreases after congestion in 

case of loss based while it decreases before congestion 

in delay based algorithms. Due to this reason, the 

performance of loss based method is better than that of 

delay based method when sharing a network link. 

However, the obtained throughput almost remains 

stable. TCP Vegas [6] is an example of delay based 

TCP variant. 

The hybrid algorithms combine both the features of 

loss based and delay based algorithms [15]. TCP 

Compound [24] is an example of such algorithms. 

TCP Tahoe was the first TCP variant introduced by 

Jacobson [14]. Its functionality covers slow start, 

congestion avoidance and fast retransmission [10]. 

TCP Reno adds the functionality of fast recovery in 

Tahoe. TCP NewReno was designed in 1996 and it is 

in fact a modification in existing Reno by improving 

the retransmission mechanism during the phase of fast 

recovery [5]. It recovers multiple packet losses and 

does not exit from the fast recovery phase until the 

acknowledgement of all the segments is received [12]. 

When an ACK is received the NewReno performs two 

functions. In case of partial ACK, it assumes that 

segment is lost and it retransmits the segment by 

marking duplicate ACK to zero until all the data is 

acknowledged. In case of full ACK it exits from fast 

recovery phase and continues its operation in 

congestion avoidance phase. 

Compound TCP [24] is also designed for fast and 

long distance networks. It was implemented as hybrid 

protocol as it utilizes both delay-based and loss-based 

approaches of congestion control to resolve the under 

utilization issue of channel capacity. Along achieving 

bandwidth scalability, it also attains RTT fairness. The 

core function of CTCP is that it increments a scalable 

component into the standard TCP Reno for the 

efficient utilization of link capacity and sensing the 

bottleneck queue. 

3. The TCP CUBIC-Algorithm  

The CUBIC is an enhanced form of the BIC algorithm 

for high scalability and RTT fairness [23]. The major 

specialty of BIC is its window growth function which 

is very suitable for high speed networks [27]. In 

smooth operation, the window size is set to maximum 

denoted by Wmax. After a packet loss in the network, 

the window size shrinks to Wmin. It then performs 

binary search to calculate its congestion window by 

moving rapidly between Wmax and Wmin. The 

maximum value that window can increase is Imax and 

the defined minimal distance to Wmax is Imin. Max 

probing phase is to find a nearby new saturation point 

by slowly increasing the window size. Figure 1 shows 

the phases of additive increase, binary search and max 

probing. The good performance of BIC-TCP is due to 

the slow increase in the region of Wmax and linear 

increment in the phase of additive increase and max 

probing. The pseudo code of BIC [23] algorithm is 

described in Algorithm 1. 

Firgure 1. TCP-BIC window growth function. 

Algorithm 1: Pseudo code of BIC 

BIC_Cwnd(Imax, Imin) 

begin 

Current congestion window is denoted by Wndc, target window 

as Wndt 

Let Wndc = 1 

#max_probing 

if(ACK=yes) then Wndc=Wndc++   

    else if (pckt_loss) then jump packet_loss 

else jump max_probing to repeat the process 

#packet_loss 

Wmax = Wndc 

Wndc = Wmax / 2 

jump additive_increase 

#additive_increase 

if (ACK = yes) then 

    if((Wmax – Wndc) < Imin) then  

    jump max_probing 

Wndt = (Wndc +Wmax) / 2 

if(Wndt – Wndc > Imax) then  

    Wndc = Wndc + Imax 

    jump additive_increase 

else jump binary_search 

if(pckt_loss) then jump packet_loss 

else jump additive_increase 

#binary_search 

if(“ACK = yes”) then Wndc = Wndt 

if(Wmax – Wndc < Imin) then jump max_probing 

else  

    Wndt = (Wndc + Wmax) / 2 

     jump binary_search  

if(pckt_loss) then jump packet_loss 

else jump binary_search 

end 

Although BIC achieves stability and scalability in 

high-speed networks but it is not suitable for low speed 

networks. The CUBIC is the next version of BIC 

which uses BIC as base algorithm with some 

modification in congestion window. CUBIC growth 
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function is real time depending upon the two 

consecutive events rather than RTT [11]. It uses a 

CUBIC function of the elapsed time from the last 

congestion event. In mathematics, a cubic function is 

written as: 

f(x) = ax3 + bx2 + cx + d 

Equation of CUBIC window growth function: 

W(t) = C(t − K)3 +Wmax 

Where ‘C’ denotes a CUBIC parameter, ‘t’ is the 

elapsed time from which the last packet has been lost. 

Finally, ‘K’ is the time period required to increase the 

window up to ‘Wmax’ representing that there is no 

further packet loss and it is calculated by the following 

function: 

  K=
c

W3 max 
  

 ‘β’ is declared as a constant multiplicative decrease 

factor. After the congestion event in the network, the 

window continues to grow until Wmax. After this it 

comes into probing state where it starts growing 

convexly. This process continues until next congestion 

event. 

 

 

 

 

 

 

 
 

 

 

 
 

 

Figure 2. TCP-CUBIC window growth function. 

 

Figure 2 depicts the CUBIC window growth 

function. At the initial stage the window grows very 

quickly up to the Wmax and afterwards it slows down 

and increment almost becomes zero around Wmax. 

After passing from this phase, it starts probing for 

more bandwidth and again the window grows slowly. 

This is very important feature of CUBIC that enhances 

the stability and efficient utilization of network 

bandwidth by the protocol around Wmax. After passing 

Wmax, it accelerates its window size away from the 

Wmax ensuring the scalability factor of the protocol. 

Pseudo code of the CUBIC algorithm [2] is presented 

below. 

Algorithm 2: Pseudo code of CUBIC 

#initialization 

last-max = 0, loss-cwnd=0;  

Let epoch start (ep_s) as the time between two consecutive loss 

events and sst as slow start threshold 

ep_s=0, sst =100, b = 2.5, c = 0.4 

#on acknowledgement 

min_delay = min (min_delay, RTT) 

if (Cwnd < sst) then Cwnd = Cwnd + 1 

    else if (ep_s = 0) then ep_s = Ct (current time) 

        K = max(0, 3√(b * (lastmax –Cwnd)))  

        origin point(org_p) will be 

        org_p = max(lastmax –Cwnd) 

    end if 

    t = Ct + (min_delay – ep_s) 

    target = org_p + (c * (t-K)3) 

    if(Cwnd < target) then cnt = Cwnd / (target – Cwnd) 

    else cnt = Cwnd * 100 

    end if 

    if (min_delay > 0) then 

        cnt = max (cnt, cwnd/(min_delay * 20) * 8) 

    end if 

    if (loss_ Cwnd = = 0) then cnt = 50 

    end if 

    if (Cwnd_cnt > cnt) then 

        Cwnd++ 

        Cwnd_cnt = 0 

    else Cwnd_cnt++ 

    end if 

end if 

#on packet loss 

ep_s = 0 

if Cwnd < lastmax then lastmax = Cwnd * 0.9 

else lastmax = Cwnd 

end if 

loss_ Cwnd = Cwnd 

Cwnd = Cwnd * 0.8 
 

4. CUBIC in Linux Kernel 

The Linux kernel code is embedded with the support of 

various portions of network stack to provide different 

kind of functionalities. One of these implementations is 

the code that relates to the description and 

implementation of TCP congestion control [4]. As 

discussed earlier, due to the unique features of CUBIC, 

it is implemented as default Linux kernel. Before 

moving to the CUBIC code in Linux kernel, it is very 

important to study the basic design of the kernel. The 

code is organized in different files and functions. The 

main and important files are listed in the directory 

“/net/ipv4”. The main files that deal with TCP are 

presented in the Table 1. 

Table 1. TCP files in Linux kernel. 

File Name Description 

tcp.h This is the header file including the definition of various 
functions.  

tcp.c Provides interface between different sockets and the rest of 

code. 

tcp_input.c It deals with all the incoming packets from the network. It 

is an important file. 

tcp_output.c It deals the outgoing packets to the network. 

tcp_ipv4 IPv4 code to support TCP. 

tcp_timer It includes time management functions. 

tcp_cong.c Pluggable support for congestion control.  

tcp_cubic.c This is the file that includes the implementation detail of 

cubic in Linux. 

The CUBIC framework achieves high level of 

abstraction by initializing its code and uses pluggable 
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support of different files. To initialize the various 

function calls, a static record of struct 

tcp_congestion_ops is stored in tcp_cubic.c.  

The kernel initialization is performed by sysctl 

command. Tcp_register_congestion_control is used to 

register the algorithm with the system and is located in 

tcp_cong.c. The framework of CUBIC initialization in 

Linux kernel is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. CUBIC initialization framework in Linux kernel. 

Pluggable congestion module (tcp_congestion_ops) 

is used to allow different algorithms to load 

dynamically in Linux kernel and to be capable of 

switching between the algorithms without re-compiling 

the kernel. By the support of this module the new 

congestion algorithm requires only to deal with 

cong_avoid and ssthresh mechanisms to load itself in 

the kernel. CUBIC initiates itself to access the TCP 

code as follows: 

static struct TcpCongestion_ops CubicTcp 

 read_mostly =  

{ 

 .init = BIC_Initialization, 

 // slow start threshold ‘sst’ 

 .sst = BIC_recalc_sst, 

 .cong_avoid = BIC_cong_avoid, 

 .set_state = BIC_state, 

 .undo_Cwnd = BIC_undo_ Cwnd, 

 .pkts_ACK = BIC_ACK, 

 .owner = THIS_MODULE, 

 .name = “CUBIC” 

}; 

5. CUBIC in NS2 AND NS3 

The NS2 [1] is written in C++ and it is a very powerful 

discrete event simulator. It is most commonly used 

simulator which supports a variety of applications 

including MAC, Network and Transport layer 

protocols (e.g., TCP CUBIC). The user interface of 

NS2 is an OTcl interpreter shell. Input model files are 

called Tcl scripts that are input to the OTcl for 

execution [10]. The network configuration is 

developed in the form of object oriented classes. The 

main advantage of NS2 is that it is freely distributed 

and mostly it is deployed on Linux distributions (e.g. 

Fedora, CentOS, Ubuntu etc.). The simulation is used 

for hypothesis testing and its results are very close to 

the real time implementations. The performance of 

network is measured over a variety of parameters 

known as performance metrics (e.g. throughput, delay, 

packet drop etc.). Trace file stores overall information 

of the simulation process and results. GNU Plot is used 

to show the results in the form of graphics. The block 

diagram of TCP CUBIC in NS2 is shown in Figure 4. 

 

Figure 4. CUBIC block diagram in NS2. 

NS3 [22] is designed to evaluate the performance of 

modern technologies (e.g., 4G LTE) and high speed 

networks. Its main objective was to improve the NS2 

and enhance the support of different software modules. 

It is being adopted by many researchers all over the 

world in order to simulate a variety of network 

applications and real time systems. But if we discuss 

ns3 and its support in congestion control, it shows 

shortcomings in its infrastructure and support 

regarding various TCP options particularly window 

scaling and time stamping. All of the TCP variants 

supported in NS2 have not yet been ported in NS3. 

Currently, it includes TCP Tahoe, Reno, NewReno and 

Westwood. The class diagram of the TCP CUBIC 

implementation in NS3 is presented in Figure 5. 
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Figure 5. CUBIC block diagram in NS3 [1]. 

6. Methodology and Performance Analysis 

This section will elaborate the performance of CUBIC, 

NewReno and Compound by using NS2. We shall 

compare the performance of the CUBIC in various 

scenarios including wired and wireless to study its 

behavior towards congestion control.  

6.1. Wired Scenarios 

First scenario is very simple in which two TCP nodes 

are connected through a dumbbell topology. The 

source node is represented by S1, destination node D1, 

while R1 and R2 are routers connecting S1 and D1 

respectively. The link between the routers is bottleneck 

link of 2 Mbps. Source and destination nodes are 

connected to the routers with link speed of 1Gbps. The 

network diagram is shown in Figure 6-a. 

 

 

 

  
 

a) Network Topology with forward traffic only. 

 

 

 

 

 

 
 

 

 

b) Network topology with forward and reverse traffic. 

Figure 6. Network traffic orientation. 
 

The goodput of network is evaluated for CUBIC, 

NewReno and Compound by using the forward traffic. 

Further, the reverse traffic is also injected by 10 TCP 

sources on the same channel as used by the single TCP 

source as shown in Figure 6(b). Comparative analysis 

of goodput of these protocols is presented in Figure 7. 

 

 

 

 

 

 

 

 

 
 

Figure 7. Goodput analysis of CUBIC, NewReno and Compound. 

From Figure 7, it is clear that the goodput of all the 

three TCP protocols is almost same and reaches 

approximately up to the bottleneck capacity in the case 

of forward traffic only. But when the reverse traffic is 

on, the behavior of the protocols is totally changed. 

With the presence of reverse traffic, the goodput of 

CUBIC is best, while the NewReno shows the worst 

goodput. However, TCP Compound has comparatively 

better goodput than the NewReno. 

In the second wired scenario, we increase the 

number of connecting devices up to ‘n’ nodes ranging 

from S0 to Sn where ‘n’ denotes the total number of 

nodes. The same number of nodes are on the 

destination side i.e. D0 to Dn. The participating nodes 

are sharing a link of 10 Gbps. The main objective of 

this scenario is to calculate the intra-protocol fairness. 

The value of ‘n’ ranges from 20 to 200 in order to 

evaluate fairness with respect to RTT. The simulation 

time is set to 1000s. The reverse traffic is injected as 

10 TCP sources on the same link to induce ACK 

compression. The network topology is shown in Figure 

8 and the results are shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Multiple connections with single bottleneck scenario 
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Figure 9. TCP intra-protocol fairness (wired). 

 

As shown in Figure 9, it was observed that TCP 

CUBIC improves overall more fairness in bandwidth 

sharing as compared to Compound and NewReno. 

Both NewReno and Compound show almost the same 

fairness index at the start (where n < 70). But as 

number of nodes increase, Compound shows better 

performance than NewReno due to the fact that 

Compound reduces its window size in response to 

delay. The CUBIC achieves best fairness due to its 

ideal window increase function. It does not depend 

upon the receipt of ACKs rather than it increases its 

window only at the occurrence of last congestion.  

6.2. Wireless Scenario: 

In this scenario, we modify the network topology as 

discussed in Figure 8. We simply add wireless segment 

on the receiving side to introduce high delays as shown 

in Figure 10. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Multiple connections wireless scenario. 

The ‘n’ numbers of nodes are connected at wired 

portion of the network as the source nodes. Similarly, 

on the destination side ‘n’ number of nodes are 

connected but the link is wireless on destination side. 

In order to induce reverse traffic, ten TCP sources are 

connected at the wireless side and ten TCP sinks are 

connected at the wired side of the network. The wired 

link between router and wired devices is 1Gbps while 

the link between base-station and mobile nodes is 54 

Mbps. The mobile devices operate at IEEE 802.11g 

protocol. The simulation time is set to 1000s. The 

simulation results regarding the goodput and intra-

protocol fairness are shown in Figure 11-a and 11-b 

respectively.  

a) TCP goodput (wireless). 

 b) TCP intra-protocol fairness (wireless). 

Figure 11. The simulation results. 

The goodput and intra-protocol fairness has been 

evaluated for the three protocols. It is observed that the 

Compound has the better goodput as compared to 

CUBIC and NewReno which achieves almost the 

similar goodput. The goodput of the protocols 

significantly decreases with the increase in number of 

users. It is very clear that all the three variants attain 

very poor goodput although the wireless link capacity 

is 54 Mbps. The reason is that reverse traffic is causing 

delays in ACKs which affects the performance of these 

protocols. In case of intra-protocol fairness, NewReno 

performs better than CUBIC and Compound. CUBIC 

has overall worst performance in wireless scenario. 

 

7. Conclusions 

In this paper we have discussed TCP CUBIC in detail 

in various aspects including its design architecture, 

CUBIC support in Linux kernel, CUBIC in network 

simulators (NS2 & NS3). At the end CUBIC has been 

evaluated for goodput and inter-protocol fairness both 

in wired and wireless environments along with two 

other variants TCP Compound and NewReno. 

Simulation results prove that CUBIC is excellent in 

high speed wired environment and achieves better 

level of goodput and fairness as compared to other two 

variants. The goodput of CUBIC is not affected in 

wired network in the presence of reverse traffic. On the 

other hand, in wireless network CUBIC has 
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performance issues. It does not achieve goodput and 

better level of fairness. 

This gives us an open issue regarding the poor 

performance of CUBIC in wireless or low speed 

networks. Further study may include improving the 

performance of CUBIC in wireless networks as it is 

very suitable for high speed and scalable networks. 

References 

[1] A Discrete-Event Network Simulator, ns-3 

simulator Tutorial, 

https://www.nsnam.org/docs/tutorial/html, last 

Visited, 2016. 

[2] Ahmad M., Ngadi A., Nawaz A., Ahmad U., 

Mustafa T., and Raza A., “A Survey on TCP 

CUBIC Variant Regarding Performance,” in 

Proceedings of 15th International Multitopic 

Conference, Islamabad, pp. 409-412, 2012. 

[3] Ahmad N., Shoaib U., and Prinetto P., “Usability 

of Online Assistance from Semiliterate Users’ 

Perspective,” International Journal of Human-

Computer Interaction, vol. 31, no. 1, pp. 55-64, 

2015. 

[4] Arianfar S., “TCP’s Congestion Control 

Implementation in Linux Kernel,” in Proceedings 

of Seminar on Network Protocols in Operating 

Systems, pp. 1-6. 2012. 

[5] Bisen D. and Sharma D., “Improve Performance 

of Tcp New Reno over Mobile Ad-Hoc Network 

Using Abra,” International Journal of Wireless 

and Mobile Networks, vol. 3, no. 2, pp. 102-111, 

2011. 

[6] Brakmo L. and Peterson L., “TCP Vegas: End to 

End Congestion Avoidance on A Global 

Internet,” IEEE Journal on Selected Areas in 

Communications, vol. 13, no. 8, pp. 1465-1480, 

1995. 

[7] Caini C. and Firrincieli R., “TCP Hybla: A TCP 

Enhancement for Heterogeneous Networks,” 

International Journal of Satellite 

Communications and Networking, vol. 22, no. 5, 

pp. 547-566, 2004. 

[8] Casetti C., Gerla M., Mascolo S., Sanadidi M., 

and Wang R., “TCP Westwood: End-to-End 

Congestion Control for Wired/Wireless 

Networks,” Wireless Networks, vol. 8, no. 5, pp. 

467-479, 2002. 

[9] Floyd S., “High Speed TCP for Large Congestion 

Windows,” Network Working Group, 2003. 

[10] Gharge S. and Valanjoo A., “Simulation Based 

Performance Evaluation of TCP Variants and 

Routing Protocols in Mobile Ad-Hoc Networks,” 

IEEE International Conference on Advances in 

Engineering and Technology Research, Unnao, 

pp. 1-8, 2014. 

[11] Ha S., Rhee I., and Xu L., “CUBIC: A New TCP-

Friendly High-Speed TCP Variant,” ACM 

SIGOPS Operating Systems Review, vol. 42, no. 

5, pp. 64-74, 2008. 

[12] Henderson T., Floyd S., Gurtov A., and Nishida 

Y., “The Newreno Modification to TCP's Fast 

Recovery Algorithm” Network Working Group, 

2012. 

[13] Irfan M., Oriat C., and Groz R., “Model 

Inference and Testing,” Advances in Computers, 

vol. 89, pp. 89-139, 2013. 

[14] Jacobson V., “Berkeley TCP Evolution From 

4.3-Tahoe to 4.3-Reno,” in Proceedings of the 

18th Internet Engineering Task Force, 

Vancouver, 1990. 

[15] Kozu T., Akiyama Y., and Yamaguchi S., 

“Improving Rtt Fairness on Cubic Tcp,” in 

Proceedings of 1st International Symposium on 

Computing and Networking, Matsuyama, pp. 

162-167, 2013. 

[16] Kumari D., Tahiliani M., and Shenoy U., 

“Experimental Analysis of CUBIC TCP in Error 

Prone Manets,” in Proceedings of 5th 

International Conference on the Applications of 

Digital Information and Web Technologies, 

Bangalore, pp. 256-261, 2014. 

[17] Liaqat M., Chang V., Gani A., Hamid H., Toseef 

M., Shoaib U., and Ali R., “Federated Cloud 

Resource Management: Review and Discussion,” 

Journal of Network and Computer Applications, 

vol. 77, pp. 87-105, 2017. 

[18] Liu S., Başar T., and Srikant R., “TCP-Illinois: A 

Loss-And Delay-Based Congestion Control 

Algorithm for High-Speed Networks,” 

Performance Evaluation, vol. 65, no. 6, pp. 417-

440, 2008. 

[19] Monowar M., Rahman O., Pathan A., and Hong 

C., “Prioritized Heterogeneous Traffic-Oriented 

Congestion Control Protocol for Wsns,” The 

International Arab Journal of Information 

Technology, vol. 9, no. 1, pp. 39-48, 2012. 

[20] Prinetto P., Shoaib U., and Tiotto G., “The Italian 

Sign Language Sign Bank: Using Wordnet for 

Sign Language Corpus Creation,” in Proceedings 

of International Conference on Communications 

and Information Technology, Aqaba, pp. 134-

137, 2011. 

[21] Rahman A., Sarfraz S., Shoaib U., Abbas G., and 

Sattar M., “Cloud based E-Learning, Security 

Threats and Security Measures,” Indian Journal 

of Science and Technology, vol. 9, no. 48, 2016. 

[22] Riley G., and Henderson T., “The Ns-3 Network 

Simulator,” in Proceedings of Modeling and 

Tools for Network Simulation, Berlin, pp. 15-34, 

2010. 

[23] Šošić M. and Stojanović V., “Resolving Poor 

TCP Performance on High-Speed Long Distance 

Links-Overview and Comparison of BIC, CUBIC 

and Hybla,” in Proceedings of IEEE 11th 



A Comprehensive Study of Modern and High Speed TCP-Variant in Linux Kernel: TCP CUBIC                                          1035 

International Symposium on Intelligent Systems 

and Informatics, Subotica, pp. 26-28, 2013. 

[24] Tan K., Song J., Zhang Q., and Sridharan M., “A 

Compound TCP Approach For High-Speed and 

Long Distance Networks,” in Proceedings of 

IEEE INFOCOM 25th IEEE International 

Conference on Computer Communications, 

Barcelona, 2006. 

[25] Wang Z. and Crowcroft J., “Eliminating Periodic 

Packet Losses in the 4.3-Tahoe BSD TCP 

Congestion Control Algorithm,” ACM 

SIGCOMM Computer Communication Review, 

vol. 22, no. 2, pp. 9-16, 1992.  

[26] Wei D., Jin C., Low S., and Hegde S., “FAST 

TCP: Motivation, Architecture, Algorithms, 

Performance,” IEEE/ACM Transactions on 

Networking, vol. 14, no. 6, pp. 1246-1259, 2006. 

[27] Xu L., Harfoush K., and Rhee I., “Binary 

Increase Congestion Control For Fast Long-

Distance Networks,” in Proceedings of IEEE 

INFOCOM 23rd Annual Joint Conference on 

Computer and Communications Societies, Hong 

Kong, pp. 2514-2524, 2004. 

Abrar Khan received his master 

degree in Information Technology 

from University of the Punjab, 

Gujranwala Campus and M.Phil (IT) 

from University of Gujrat, Pakistan. 

His research interests include TCP 

variants, cloud computing and big 

data analysis.  

Umar Shoaib did his PhD in 

Department of Computer and 

Control Engineering Politecnico di 

Torino, Italy. His current research 

interests include Machine Learning, 

Robotics, Artificial Intelligence, 

Scalable Networks, Cloud 

Computing, Natural Language Processing, Text mining 

and Internet of Things. 

Muhammad Sarfraz received his 

Ph.D in Remote Sensing & GIS from 

Asian Institute of Technology, 

Thailand. He is Associate Professor 

at University of Gujrat, Pakistan. He 

is members of numerous 

international societies like Telecoms 

Sans Frontiers for emergency response in Asia-Pacific, 

ISPRS Health and Geological Society of America. His 

research interests include Remote sensing, Geospatial 

analysis, Scalable networks and Digital image 

processing. 

 

 

 

 

 

 

 


