
1028 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

A Comprehensive Study of Modern and High Speed

TCP-Variant in Linux Kernel: TCP CUBIC

Abrar Khan, Umar Shoaib, and Muhammad Sarfraz

Department of Computer Science, Faculty of Computing and Information Technology, University of

Gujrat, Pakistan

Abstract: Transmission Control Protocol TCP is no doubt most widely used congestion control protocol designed for highly

reliable and end-to-end communication over the internet. TCP is not suitable in its standard form for modern and high speed

networks. Various TCP variants are solution for this issue. CUBIC is a modern TCP variant designed for high speed and

scalable networks. CUBIC is also adopted as default congestion control algorithm in Linux kernel. This survey paper contains

a detailed discussion about TCP CUBIC and the directions for further improvements. It describes the CUBIC design

architecture with the pseudo code of the algorithm, TCP support in Linux kernel and implementation of CUBIC, Network

Simulator 2 and Network Simulator 3 based study of CUBIC along with its class diagram. Finally, the performance of CUBIC

is evaluated both in wired and wireless environment under the parameters of goodput and intra-protocol fairness along with

TCP NewReno and TCP Compound. The simulation results demonstrate that CUBIC is very suitable for wired and high speed

networks but its performance degrades in wireless and low speed networks.

Keywords: TCP, Congestion control, Linux kernel, CUBIC, NewReno, Compound.

Received July 18, 2016; accepted July 20, 2017

1. Introduction

Congestion control is a technique used for the effective

and efficient utilization of channel bandwidth by

managing the extra network traffic that exceeds from

the channel capacity. It is used to avoid packet losses,

network delay or the blockage of network. With the

advancement in internet and network technologies,

various applications are being developed that run over

the internet. The traditional networks have now been

converted into high speed, long distance, large

bandwidth and scalable networks. Significant amount

of data is transmitted today over the internet by various

wireless and hand-held devices and all the Hyper Text

Transfer Protocol (HTTP) traffic relies on

Transmission Control Protocol (TCP) [16].

Consequently, the performance of TCP is challenged in

case of modern and high speed networks. TCP CUBIC

has been designed to overcome such issues.

CUBIC [11] is a modern TCP variant with the

specialty of its improved congestion window growth

function. It replaces the property of linear growth

congestion window function of legacy or standard

variants by a cubic function to improve its performance

and to achieve high scalability. The key feature of

CUBIC is that its window growth is defined in real

time and it does not depend upon Round Trip Time

(RTT). It depends only on the occurrence of two

consecutive congestion events.

 It is an improved and enhanced form of Binary

Increase Congestion (BIC) TCP [27]. CUBIC has also

advantage over other variants and after a continuous

testing and careful performance evaluation, Linux

Community implemented CUBIC as its default

algorithm in its kernel version 2.6.19 in 2006 [11, 20].

Other TCP variants include Tahoe [25], Reno [14],

New Reno [12], Vegas [6], Fast Active Queue

Management Scalable TCP (FAST) [26], Compound

[24], High Speed TCP (HSTCP) [9], West-Wood [8],

Illinois [18], and Hybla [7, 21]. The performance

analysis for the techniques is important [13].

Rest of the paper is organized under the following

structure. Section 2 includes background and related

work, Section 3 emphasizes on the design architecture

of CUBIC, Section 4 highlights the Linux kernel

regarding TCP, Section 5 contains NS2 and NS3

support regarding the simulation of CUBIC and

Section 6 implements the performance analysis of

CUBIC, NewReno and Compound. Section 7

concludes the paper.

2. Background and Related Work

In TCP, congestion is inferred at the receiving end

based on timeout or duplicate acknowledgement [19].

Congestion control algorithms have been classified

into three general categories including loss based,

delay based and hybrid methods [3, 15]. In loss based

method, the size of congestion window (Cwnd)

depends upon packet losses. In its normal behavior, the

Cwnd size is increased after the acknowledgement of

each packet. When there is a packet loss, the Cwnd

decreases significantly [2, 17]. The loss based

A Comprehensive Study of Modern and High Speed TCP-Variant in Linux Kernel: TCP CUBIC 1029

algorithm includes TCP Tahoe, Reno, NewReno,

STCP, HSTCP, BIC and CUBIC.

In delay based algorithms, the size of Cwnd relies

on RTT. These methods decrease Cwnd size according

to RTT increase, which causes the increase of both in

network router’s load as well as queue length. One

difference between loss based and delay based

approach is that Cwnd decreases after congestion in

case of loss based while it decreases before congestion

in delay based algorithms. Due to this reason, the

performance of loss based method is better than that of

delay based method when sharing a network link.

However, the obtained throughput almost remains

stable. TCP Vegas [6] is an example of delay based

TCP variant.

The hybrid algorithms combine both the features of

loss based and delay based algorithms [15]. TCP

Compound [24] is an example of such algorithms.

TCP Tahoe was the first TCP variant introduced by

Jacobson [14]. Its functionality covers slow start,

congestion avoidance and fast retransmission [10].

TCP Reno adds the functionality of fast recovery in

Tahoe. TCP NewReno was designed in 1996 and it is

in fact a modification in existing Reno by improving

the retransmission mechanism during the phase of fast

recovery [5]. It recovers multiple packet losses and

does not exit from the fast recovery phase until the

acknowledgement of all the segments is received [12].

When an ACK is received the NewReno performs two

functions. In case of partial ACK, it assumes that

segment is lost and it retransmits the segment by

marking duplicate ACK to zero until all the data is

acknowledged. In case of full ACK it exits from fast

recovery phase and continues its operation in

congestion avoidance phase.

Compound TCP [24] is also designed for fast and

long distance networks. It was implemented as hybrid

protocol as it utilizes both delay-based and loss-based

approaches of congestion control to resolve the under

utilization issue of channel capacity. Along achieving

bandwidth scalability, it also attains RTT fairness. The

core function of CTCP is that it increments a scalable

component into the standard TCP Reno for the

efficient utilization of link capacity and sensing the

bottleneck queue.

3. The TCP CUBIC-Algorithm

The CUBIC is an enhanced form of the BIC algorithm

for high scalability and RTT fairness [23]. The major

specialty of BIC is its window growth function which

is very suitable for high speed networks [27]. In

smooth operation, the window size is set to maximum

denoted by Wmax. After a packet loss in the network,

the window size shrinks to Wmin. It then performs

binary search to calculate its congestion window by

moving rapidly between Wmax and Wmin. The

maximum value that window can increase is Imax and

the defined minimal distance to Wmax is Imin. Max

probing phase is to find a nearby new saturation point

by slowly increasing the window size. Figure 1 shows

the phases of additive increase, binary search and max

probing. The good performance of BIC-TCP is due to

the slow increase in the region of Wmax and linear

increment in the phase of additive increase and max

probing. The pseudo code of BIC [23] algorithm is

described in Algorithm 1.

Firgure 1. TCP-BIC window growth function.

Algorithm 1: Pseudo code of BIC

BIC_Cwnd(Imax, Imin)

begin

Current congestion window is denoted by Wndc, target window

as Wndt

Let Wndc = 1

#max_probing

if(ACK=yes) then Wndc=Wndc++

 else if (pckt_loss) then jump packet_loss

else jump max_probing to repeat the process

#packet_loss

Wmax = Wndc

Wndc = Wmax / 2

jump additive_increase

#additive_increase

if (ACK = yes) then

 if((Wmax – Wndc) < Imin) then

 jump max_probing

Wndt = (Wndc +Wmax) / 2

if(Wndt – Wndc > Imax) then

 Wndc = Wndc + Imax

 jump additive_increase

else jump binary_search

if(pckt_loss) then jump packet_loss

else jump additive_increase

#binary_search

if(“ACK = yes”) then Wndc = Wndt

if(Wmax – Wndc < Imin) then jump max_probing

else

 Wndt = (Wndc + Wmax) / 2

 jump binary_search

if(pckt_loss) then jump packet_loss

else jump binary_search

end

Although BIC achieves stability and scalability in

high-speed networks but it is not suitable for low speed

networks. The CUBIC is the next version of BIC

which uses BIC as base algorithm with some

modification in congestion window. CUBIC growth

Additive

Increase

Binary

Search

Max

Probe

Time

Cwnd

1030 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

function is real time depending upon the two

consecutive events rather than RTT [11]. It uses a

CUBIC function of the elapsed time from the last

congestion event. In mathematics, a cubic function is

written as:

f(x) = ax3 + bx2 + cx + d

Equation of CUBIC window growth function:

W(t) = C(t − K)3 +Wmax

Where ‘C’ denotes a CUBIC parameter, ‘t’ is the

elapsed time from which the last packet has been lost.

Finally, ‘K’ is the time period required to increase the

window up to ‘Wmax’ representing that there is no

further packet loss and it is calculated by the following

function:

 K=
c

W3 max

 ‘β’ is declared as a constant multiplicative decrease

factor. After the congestion event in the network, the

window continues to grow until Wmax. After this it

comes into probing state where it starts growing

convexly. This process continues until next congestion

event.

Figure 2. TCP-CUBIC window growth function.

Figure 2 depicts the CUBIC window growth

function. At the initial stage the window grows very

quickly up to the Wmax and afterwards it slows down

and increment almost becomes zero around Wmax.

After passing from this phase, it starts probing for

more bandwidth and again the window grows slowly.

This is very important feature of CUBIC that enhances

the stability and efficient utilization of network

bandwidth by the protocol around Wmax. After passing

Wmax, it accelerates its window size away from the

Wmax ensuring the scalability factor of the protocol.

Pseudo code of the CUBIC algorithm [2] is presented

below.

Algorithm 2: Pseudo code of CUBIC

#initialization

last-max = 0, loss-cwnd=0;

Let epoch start (ep_s) as the time between two consecutive loss

events and sst as slow start threshold

ep_s=0, sst =100, b = 2.5, c = 0.4

#on acknowledgement

min_delay = min (min_delay, RTT)

if (Cwnd < sst) then Cwnd = Cwnd + 1

 else if (ep_s = 0) then ep_s = Ct (current time)

 K = max(0, 3√(b * (lastmax –Cwnd)))

 origin point(org_p) will be

 org_p = max(lastmax –Cwnd)

 end if

 t = Ct + (min_delay – ep_s)

 target = org_p + (c * (t-K)3)

 if(Cwnd < target) then cnt = Cwnd / (target – Cwnd)

 else cnt = Cwnd * 100

 end if

 if (min_delay > 0) then

 cnt = max (cnt, cwnd/(min_delay * 20) * 8)

 end if

 if (loss_ Cwnd = = 0) then cnt = 50

 end if

 if (Cwnd_cnt > cnt) then

 Cwnd++

 Cwnd_cnt = 0

 else Cwnd_cnt++

 end if

end if

#on packet loss

ep_s = 0

if Cwnd < lastmax then lastmax = Cwnd * 0.9

else lastmax = Cwnd

end if

loss_ Cwnd = Cwnd

Cwnd = Cwnd * 0.8

4. CUBIC in Linux Kernel

The Linux kernel code is embedded with the support of

various portions of network stack to provide different

kind of functionalities. One of these implementations is

the code that relates to the description and

implementation of TCP congestion control [4]. As

discussed earlier, due to the unique features of CUBIC,

it is implemented as default Linux kernel. Before

moving to the CUBIC code in Linux kernel, it is very

important to study the basic design of the kernel. The

code is organized in different files and functions. The

main and important files are listed in the directory

“/net/ipv4”. The main files that deal with TCP are

presented in the Table 1.

Table 1. TCP files in Linux kernel.

File Name Description

tcp.h This is the header file including the definition of various
functions.

tcp.c Provides interface between different sockets and the rest of

code.

tcp_input.c It deals with all the incoming packets from the network. It

is an important file.

tcp_output.c It deals the outgoing packets to the network.

tcp_ipv4 IPv4 code to support TCP.

tcp_timer It includes time management functions.

tcp_cong.c Pluggable support for congestion control.

tcp_cubic.c This is the file that includes the implementation detail of

cubic in Linux.

The CUBIC framework achieves high level of

abstraction by initializing its code and uses pluggable

Time

C
o
n
g

es
ti

o
n
 W

in
d
o

w

Steady State Behavior Max Probing

Wmax

(1)

(2)

(3)

A Comprehensive Study of Modern and High Speed TCP-Variant in Linux Kernel: TCP CUBIC 1031

support of different files. To initialize the various

function calls, a static record of struct

tcp_congestion_ops is stored in tcp_cubic.c.

The kernel initialization is performed by sysctl

command. Tcp_register_congestion_control is used to

register the algorithm with the system and is located in

tcp_cong.c. The framework of CUBIC initialization in

Linux kernel is shown in Figure 3.

Figure 3. CUBIC initialization framework in Linux kernel.

Pluggable congestion module (tcp_congestion_ops)

is used to allow different algorithms to load

dynamically in Linux kernel and to be capable of

switching between the algorithms without re-compiling

the kernel. By the support of this module the new

congestion algorithm requires only to deal with

cong_avoid and ssthresh mechanisms to load itself in

the kernel. CUBIC initiates itself to access the TCP

code as follows:

static struct TcpCongestion_ops CubicTcp

 read_mostly =

{

 .init = BIC_Initialization,

 // slow start threshold ‘sst’

 .sst = BIC_recalc_sst,

 .cong_avoid = BIC_cong_avoid,

 .set_state = BIC_state,

 .undo_Cwnd = BIC_undo_ Cwnd,

 .pkts_ACK = BIC_ACK,

 .owner = THIS_MODULE,

 .name = “CUBIC”

};

5. CUBIC in NS2 AND NS3

The NS2 [1] is written in C++ and it is a very powerful

discrete event simulator. It is most commonly used

simulator which supports a variety of applications

including MAC, Network and Transport layer

protocols (e.g., TCP CUBIC). The user interface of

NS2 is an OTcl interpreter shell. Input model files are

called Tcl scripts that are input to the OTcl for

execution [10]. The network configuration is

developed in the form of object oriented classes. The

main advantage of NS2 is that it is freely distributed

and mostly it is deployed on Linux distributions (e.g.

Fedora, CentOS, Ubuntu etc.). The simulation is used

for hypothesis testing and its results are very close to

the real time implementations. The performance of

network is measured over a variety of parameters

known as performance metrics (e.g. throughput, delay,

packet drop etc.). Trace file stores overall information

of the simulation process and results. GNU Plot is used

to show the results in the form of graphics. The block

diagram of TCP CUBIC in NS2 is shown in Figure 4.

Figure 4. CUBIC block diagram in NS2.

NS3 [22] is designed to evaluate the performance of

modern technologies (e.g., 4G LTE) and high speed

networks. Its main objective was to improve the NS2

and enhance the support of different software modules.

It is being adopted by many researchers all over the

world in order to simulate a variety of network

applications and real time systems. But if we discuss

ns3 and its support in congestion control, it shows

shortcomings in its infrastructure and support

regarding various TCP options particularly window

scaling and time stamping. All of the TCP variants

supported in NS2 have not yet been ported in NS3.

Currently, it includes TCP Tahoe, Reno, NewReno and

Westwood. The class diagram of the TCP CUBIC

implementation in NS3 is presented in Figure 5.

TCP_CUBIC

tcp_v4_rcv()

tcp_recv_
state_process()

sysctl

Kernel main init

tcp_cong.c tcp_register_congeston_

control()

tcp_init_congeston_

control()

tcp_set_default_
congeston_control()

Init_tcp_

congeston_default()

GNU Plot

TCP CUBIC

TCP Scripts

NAM File Trace File

AWK Scripts

(Performance Metrics

Output

1032 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

Figure 5. CUBIC block diagram in NS3 [1].

6. Methodology and Performance Analysis

This section will elaborate the performance of CUBIC,

NewReno and Compound by using NS2. We shall

compare the performance of the CUBIC in various

scenarios including wired and wireless to study its

behavior towards congestion control.

6.1. Wired Scenarios

First scenario is very simple in which two TCP nodes

are connected through a dumbbell topology. The

source node is represented by S1, destination node D1,

while R1 and R2 are routers connecting S1 and D1

respectively. The link between the routers is bottleneck

link of 2 Mbps. Source and destination nodes are

connected to the routers with link speed of 1Gbps. The

network diagram is shown in Figure 6-a.

a) Network Topology with forward traffic only.

b) Network topology with forward and reverse traffic.

Figure 6. Network traffic orientation.

The goodput of network is evaluated for CUBIC,

NewReno and Compound by using the forward traffic.

Further, the reverse traffic is also injected by 10 TCP

sources on the same channel as used by the single TCP

source as shown in Figure 6(b). Comparative analysis

of goodput of these protocols is presented in Figure 7.

Figure 7. Goodput analysis of CUBIC, NewReno and Compound.

From Figure 7, it is clear that the goodput of all the

three TCP protocols is almost same and reaches

approximately up to the bottleneck capacity in the case

of forward traffic only. But when the reverse traffic is

on, the behavior of the protocols is totally changed.

With the presence of reverse traffic, the goodput of

CUBIC is best, while the NewReno shows the worst

goodput. However, TCP Compound has comparatively

better goodput than the NewReno.

In the second wired scenario, we increase the

number of connecting devices up to ‘n’ nodes ranging

from S0 to Sn where ‘n’ denotes the total number of

nodes. The same number of nodes are on the

destination side i.e. D0 to Dn. The participating nodes

are sharing a link of 10 Gbps. The main objective of

this scenario is to calculate the intra-protocol fairness.

The value of ‘n’ ranges from 20 to 200 in order to

evaluate fairness with respect to RTT. The simulation

time is set to 1000s. The reverse traffic is injected as

10 TCP sources on the same link to induce ACK

compression. The network topology is shown in Figure

8 and the results are shown in Figure 9.

Figure 8. Multiple connections with single bottleneck scenario

Bottlenec
k

S1 D1 R1 R2

Reverse
Traffic

10

TCP
Source

s

10 TCP

Sinks

Bottlenec
k

S1

R1 R2

Reverse

Traffic

10
TCP

Source

s

10 TCP

Sinks

S2

Sn

D1

D2

D
n

Forward

Traffic

Bottleneck

S1 D1 R

1

Forward
Traffic

 R

2

A Comprehensive Study of Modern and High Speed TCP-Variant in Linux Kernel: TCP CUBIC 1033

Figure 9. TCP intra-protocol fairness (wired).

As shown in Figure 9, it was observed that TCP

CUBIC improves overall more fairness in bandwidth

sharing as compared to Compound and NewReno.

Both NewReno and Compound show almost the same

fairness index at the start (where n < 70). But as

number of nodes increase, Compound shows better

performance than NewReno due to the fact that

Compound reduces its window size in response to

delay. The CUBIC achieves best fairness due to its

ideal window increase function. It does not depend

upon the receipt of ACKs rather than it increases its

window only at the occurrence of last congestion.

6.2. Wireless Scenario:

In this scenario, we modify the network topology as

discussed in Figure 8. We simply add wireless segment

on the receiving side to introduce high delays as shown

in Figure 10.

Figure 10. Multiple connections wireless scenario.

The ‘n’ numbers of nodes are connected at wired

portion of the network as the source nodes. Similarly,

on the destination side ‘n’ number of nodes are

connected but the link is wireless on destination side.

In order to induce reverse traffic, ten TCP sources are

connected at the wireless side and ten TCP sinks are

connected at the wired side of the network. The wired

link between router and wired devices is 1Gbps while

the link between base-station and mobile nodes is 54

Mbps. The mobile devices operate at IEEE 802.11g

protocol. The simulation time is set to 1000s. The

simulation results regarding the goodput and intra-

protocol fairness are shown in Figure 11-a and 11-b

respectively.

a) TCP goodput (wireless).

 b) TCP intra-protocol fairness (wireless).

Figure 11. The simulation results.

The goodput and intra-protocol fairness has been

evaluated for the three protocols. It is observed that the

Compound has the better goodput as compared to

CUBIC and NewReno which achieves almost the

similar goodput. The goodput of the protocols

significantly decreases with the increase in number of

users. It is very clear that all the three variants attain

very poor goodput although the wireless link capacity

is 54 Mbps. The reason is that reverse traffic is causing

delays in ACKs which affects the performance of these

protocols. In case of intra-protocol fairness, NewReno

performs better than CUBIC and Compound. CUBIC

has overall worst performance in wireless scenario.

7. Conclusions

In this paper we have discussed TCP CUBIC in detail

in various aspects including its design architecture,

CUBIC support in Linux kernel, CUBIC in network

simulators (NS2 & NS3). At the end CUBIC has been

evaluated for goodput and inter-protocol fairness both

in wired and wireless environments along with two

other variants TCP Compound and NewReno.

Simulation results prove that CUBIC is excellent in

high speed wired environment and achieves better

level of goodput and fairness as compared to other two

variants. The goodput of CUBIC is not affected in

wired network in the presence of reverse traffic. On the

other hand, in wireless network CUBIC has

S2

Sn

D1

D2

Dn

Forward

Traffic

Bottleneck

S1

R1

Reverse

Traffic

10 TCP

Sources
10 TCP

Sinks

1034 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

performance issues. It does not achieve goodput and

better level of fairness.

This gives us an open issue regarding the poor

performance of CUBIC in wireless or low speed

networks. Further study may include improving the

performance of CUBIC in wireless networks as it is

very suitable for high speed and scalable networks.

References

[1] A Discrete-Event Network Simulator, ns-3

simulator Tutorial,

https://www.nsnam.org/docs/tutorial/html, last

Visited, 2016.

[2] Ahmad M., Ngadi A., Nawaz A., Ahmad U.,

Mustafa T., and Raza A., “A Survey on TCP

CUBIC Variant Regarding Performance,” in

Proceedings of 15th International Multitopic

Conference, Islamabad, pp. 409-412, 2012.

[3] Ahmad N., Shoaib U., and Prinetto P., “Usability

of Online Assistance from Semiliterate Users’

Perspective,” International Journal of Human-

Computer Interaction, vol. 31, no. 1, pp. 55-64,

2015.

[4] Arianfar S., “TCP’s Congestion Control

Implementation in Linux Kernel,” in Proceedings

of Seminar on Network Protocols in Operating

Systems, pp. 1-6. 2012.

[5] Bisen D. and Sharma D., “Improve Performance

of Tcp New Reno over Mobile Ad-Hoc Network

Using Abra,” International Journal of Wireless

and Mobile Networks, vol. 3, no. 2, pp. 102-111,

2011.

[6] Brakmo L. and Peterson L., “TCP Vegas: End to

End Congestion Avoidance on A Global

Internet,” IEEE Journal on Selected Areas in

Communications, vol. 13, no. 8, pp. 1465-1480,

1995.

[7] Caini C. and Firrincieli R., “TCP Hybla: A TCP

Enhancement for Heterogeneous Networks,”

International Journal of Satellite

Communications and Networking, vol. 22, no. 5,

pp. 547-566, 2004.

[8] Casetti C., Gerla M., Mascolo S., Sanadidi M.,

and Wang R., “TCP Westwood: End-to-End

Congestion Control for Wired/Wireless

Networks,” Wireless Networks, vol. 8, no. 5, pp.

467-479, 2002.

[9] Floyd S., “High Speed TCP for Large Congestion

Windows,” Network Working Group, 2003.

[10] Gharge S. and Valanjoo A., “Simulation Based

Performance Evaluation of TCP Variants and

Routing Protocols in Mobile Ad-Hoc Networks,”

IEEE International Conference on Advances in

Engineering and Technology Research, Unnao,

pp. 1-8, 2014.

[11] Ha S., Rhee I., and Xu L., “CUBIC: A New TCP-

Friendly High-Speed TCP Variant,” ACM

SIGOPS Operating Systems Review, vol. 42, no.

5, pp. 64-74, 2008.

[12] Henderson T., Floyd S., Gurtov A., and Nishida

Y., “The Newreno Modification to TCP's Fast

Recovery Algorithm” Network Working Group,

2012.

[13] Irfan M., Oriat C., and Groz R., “Model

Inference and Testing,” Advances in Computers,

vol. 89, pp. 89-139, 2013.

[14] Jacobson V., “Berkeley TCP Evolution From

4.3-Tahoe to 4.3-Reno,” in Proceedings of the

18th Internet Engineering Task Force,

Vancouver, 1990.

[15] Kozu T., Akiyama Y., and Yamaguchi S.,

“Improving Rtt Fairness on Cubic Tcp,” in

Proceedings of 1st International Symposium on

Computing and Networking, Matsuyama, pp.

162-167, 2013.

[16] Kumari D., Tahiliani M., and Shenoy U.,

“Experimental Analysis of CUBIC TCP in Error

Prone Manets,” in Proceedings of 5th

International Conference on the Applications of

Digital Information and Web Technologies,

Bangalore, pp. 256-261, 2014.

[17] Liaqat M., Chang V., Gani A., Hamid H., Toseef

M., Shoaib U., and Ali R., “Federated Cloud

Resource Management: Review and Discussion,”

Journal of Network and Computer Applications,

vol. 77, pp. 87-105, 2017.

[18] Liu S., Başar T., and Srikant R., “TCP-Illinois: A

Loss-And Delay-Based Congestion Control

Algorithm for High-Speed Networks,”

Performance Evaluation, vol. 65, no. 6, pp. 417-

440, 2008.

[19] Monowar M., Rahman O., Pathan A., and Hong

C., “Prioritized Heterogeneous Traffic-Oriented

Congestion Control Protocol for Wsns,” The

International Arab Journal of Information

Technology, vol. 9, no. 1, pp. 39-48, 2012.

[20] Prinetto P., Shoaib U., and Tiotto G., “The Italian

Sign Language Sign Bank: Using Wordnet for

Sign Language Corpus Creation,” in Proceedings

of International Conference on Communications

and Information Technology, Aqaba, pp. 134-

137, 2011.

[21] Rahman A., Sarfraz S., Shoaib U., Abbas G., and

Sattar M., “Cloud based E-Learning, Security

Threats and Security Measures,” Indian Journal

of Science and Technology, vol. 9, no. 48, 2016.

[22] Riley G., and Henderson T., “The Ns-3 Network

Simulator,” in Proceedings of Modeling and

Tools for Network Simulation, Berlin, pp. 15-34,

2010.

[23] Šošić M. and Stojanović V., “Resolving Poor

TCP Performance on High-Speed Long Distance

Links-Overview and Comparison of BIC, CUBIC

and Hybla,” in Proceedings of IEEE 11th

A Comprehensive Study of Modern and High Speed TCP-Variant in Linux Kernel: TCP CUBIC 1035

International Symposium on Intelligent Systems

and Informatics, Subotica, pp. 26-28, 2013.

[24] Tan K., Song J., Zhang Q., and Sridharan M., “A

Compound TCP Approach For High-Speed and

Long Distance Networks,” in Proceedings of

IEEE INFOCOM 25th IEEE International

Conference on Computer Communications,

Barcelona, 2006.

[25] Wang Z. and Crowcroft J., “Eliminating Periodic

Packet Losses in the 4.3-Tahoe BSD TCP

Congestion Control Algorithm,” ACM

SIGCOMM Computer Communication Review,

vol. 22, no. 2, pp. 9-16, 1992.

[26] Wei D., Jin C., Low S., and Hegde S., “FAST

TCP: Motivation, Architecture, Algorithms,

Performance,” IEEE/ACM Transactions on

Networking, vol. 14, no. 6, pp. 1246-1259, 2006.

[27] Xu L., Harfoush K., and Rhee I., “Binary

Increase Congestion Control For Fast Long-

Distance Networks,” in Proceedings of IEEE

INFOCOM 23rd Annual Joint Conference on

Computer and Communications Societies, Hong

Kong, pp. 2514-2524, 2004.

Abrar Khan received his master

degree in Information Technology

from University of the Punjab,

Gujranwala Campus and M.Phil (IT)

from University of Gujrat, Pakistan.

His research interests include TCP

variants, cloud computing and big

data analysis.

Umar Shoaib did his PhD in

Department of Computer and

Control Engineering Politecnico di

Torino, Italy. His current research

interests include Machine Learning,

Robotics, Artificial Intelligence,

Scalable Networks, Cloud

Computing, Natural Language Processing, Text mining

and Internet of Things.

Muhammad Sarfraz received his

Ph.D in Remote Sensing & GIS from

Asian Institute of Technology,

Thailand. He is Associate Professor

at University of Gujrat, Pakistan. He

is members of numerous

international societies like Telecoms

Sans Frontiers for emergency response in Asia-Pacific,

ISPRS Health and Geological Society of America. His

research interests include Remote sensing, Geospatial

analysis, Scalable networks and Digital image

processing.

