
920 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

Traceability between Code and Design

Documentation in Database Management System:

A Case Study

Mohammed Akour, Ahmad Saifan, and Osama Ratha'an

Computer Information Systems Department, Yarmouk University, Jordan

Abstract: Traceability builds many strong connections or links between requirements and design, so the main purpose of

traceability is to maintain consistency between a high level conceptual view and a low level implementation view. The purpose

of this paper is to have full consistency between all components over all phases in the oracle designer tool by allowing

traceability to be carried out not only between the requirements and design but also between the code and design. In this

paper, we propose a new methodology to support traceability and completeness checking between code and design of oracle

database applications. The new algorithm consists of a set of interrelated steps to initialize the comparison environment. An

example of a student information System is used to illustrate the work.

Keywords: Traceability, oracle designer, completeness checking, design, source code, database, pl/sql, testing.

Received February 18, 2016; accepted June 26, 2016

1. Introduction

In general an effective, maintainable and flexible

system allows all stakeholders to trace and follow up

the software in all system development phases.

Traceability refers to the ability to link between

different artefacts: code, user manuals, design, and

documentation development. The Center of Excellence

for Software and Systems Traceability (CoEST)[5]

defines traceability as “the ability to interrelate any

uniquely identifiable software engineering artefact to

any other, maintain required links over time, and use

the resulting network to answer questions of both the

software product and its development process”.

Traceability is an important issue in software

engineering in that it helps the developer to understand

the design better. Moreover, it allows the developer to

control the quality and the maintenance process of

software [20]. Based on our knowledge, one problem

in software engineering is that most software

developers do not stay in the same company for long.

Another problem is that software engineering,

including design and code, evolves over time. This

evolution in software systems causes serious

complications where the developers do not remember

vital details. In this case the model to code trace

becomes outdated or incomplete and becomes worse

over time. Traceability has been used in different types

of system to check the consistency and the differences

between the software development phases. It has been

used in object oriented systems [3], mobile agent

systems [6], and Oracle database application [17].

Several approaches, techniques and tools have been

proposed in the literature to support software

traceability such as [2, 4, 10, 11, 18, 21]. Surveys of

these approaches have been carried out and can be

found in [13, 19].

Standardization is being considered for traceability

in software development such as MIL-STD-489,

IEEE/EIA 12207, and ISO/IEC 12207.

There have been several primary studies on

traceability between design and source code base as

mentioned in [19]. However, it seems that relatively

little work that has been done to support traceability

between design and code base in Oracle designer.

Thousands of types of applications have been built

using Oracle designer such as online transaction

processing systems, decision support systems, and

multipurpose applications. The use of Oracle designer

has several benefits such as [14]:

 Single point of truth for application meta data.

 Accurate analysis of system requirements.

 Powerful default database and application design

transformers.

 Complete mobile infrastructure suitable for many

mobile enterprise demands.

During the evolution of software, several changes

occur in the source code; these can come about whilst

fixing a bug or adding features. Thus the programmer

updates the code level without changing the effected

requirements or even the design of that system, which

means that the code of the system does not reflect the

design. In this case when the developer needs to

transform the code from the design for some reason, all

previous changes to the code will disappear, because

changes in the code are not documented in the design

Traceability between Code and Design Documentation in Database ... 921

(generated design packages, modules, procedures

function or any customer service are popular in oracle

designer). The problem here occurs because there is no

traceability between the code level and the design level

[8].

The purpose of this paper is to provide full

consistency between all components over all phases in

the Oracle designer tool by allowing traceability to be

made not only between the requirements and design

but also between the code and design. So we need a

new traceability algorithm to check the consistency

and link the differences (if any) between the code level

and the design level. This paper uses Procedural

Language/Structured Query Language (PL/SQL)

Developer 10.1 to perform all tasks that relate to the

main algorithm. PL/SQL Developer is an Integrated

Development Environment that is specifically targeted

at the development of stored program units for Oracle

Databases. PL/SQL programming has become a

significant part of the total development process.

PL/SQL Developer focuses on ease of use, code

quality and productivity, and key advantages during

Oracle application development [1]. An example of

Student Information Systems (SIS) has been used to

illustrate and evaluate our approach. The systems

contains 215 packages developed in the Oracle

Designer tool with 595512 lines of code.

2. Related Work

Due to the importance of traceability, as we have

already mentioned a great deal of work exists in the

literature. In this paper we will mention some of them,

focusing on the traceability between the design and

code approaches. As mentioned above there have been

several primary studies on traceability between design

and source code base; however, it seems that relatively

little work has been carried out to support traceability

between design and code base in Oracle designer.

Javed and Zdun [13] studied 11 different traceability

approaches and tools between the architecture design

and source code. They studied the benefits and

liability, existing empirical existence, and the

challenges of the approach, and classified the

approaches based on different criteria such as nature of

the approach and automation of the approach.

Several event-based traceability tools (between

design and code) have been presented in the literature

e.g., [4, 11]. Buchgeher and Weinreich [4] developed a

semi-automatic tool called Language for Integrated

Software Architecture (LISA) that captures the

traceability between the architectural component

model and the source code. The LISA tool is based on

a semi-formal architectural specification model e.g.,

UML or Architecture Description Languages (ADL).

Another tool, developed by Hammad et al. [11], is the

SrcTracer that is used to check whether the design is

consistent with the code especially when changes

occur in the code. An approach that is similar to our

approach has been presented in [12]. The Catia

prototype [12] is used to support traceability for

change impact analysis of object oriented software.

The approach present the ability of integrating the high

level with low level software models. They applied

their approach to a case study of an embedded system.

Ubashi and Kamei [22] presented an approach to

support traceability between the architecture design

and code based on observer design pattern. In their

approach they selected what are called architecture

points that describe the design, e.g. message send;

then, they selected the corresponding program points,

e.g., method call in the code; after that, they

established the traceability by mapping the architecture

points with the program points based on observer

design pattern.

Antoniol et al. [3] used information retrieval to

identify the consistencies and differences between the

design and code base. They used the reverse

engineering process to extract the design from code.

Then, they built a tool to check the similarities and

differences between the extracted design and the actual

design. Their work is limited to checking the

consistencies and differences in the classes only; it

does not cover the methods and relationships.

Ghabi and Egyed [9] proposed an approach to

determine the shortcomings, errors and uncertainty in

traceability between the design and the code. They

defined a set of rules to identify the relationship

between the model elements (e.g., components, states,

transitions) and code elements (line of code, method,

class or package).

Alves-Foss et al. [2] produced an XML-based

traceability tool called ArgUML, which is used to

support traceability between Unified Modeling

Language (UML) design specification and its

corresponding code. In this tool, they used XML

metadata interchange to specify the design and

JavaML to represent the code.

Cysneiros and Zisman [6] proposed a similar

approach to ours, in which they described a rule-based

approach to support automatic generation of

traceability to identify the missing elements in

Prometheus models [15] and JACK code [24]

specification for agent-oriented systems. The model is

represented in Extensible Markup Language (XML)

format. Moreover, they developed a translator

component using ANother Tool for Language

Recognition (ANTLR) parser generator [16] to

transform the JACK code into an XML format. After

that, they compared the design with the code in order

to check the correctness and completeness of the

models.

922 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

3. Requirement To Design Traceability in

Oracle Designer Tool

Oracle Designer provides a multi-user repository based

on Oracle SCM, and is closely integrated with Oracle

Forms Developer, Oracle's declarative database

application development tool. In this way, Designer

allows organizations to design and rapidly deliver

scalable, client/server systems that can adapt to

changing business needs [14]. Oracle designer tool has

a strong traceability technique that ensures a high level

(up to 100%) of consistency between model system

requirements and design or even database level and

modules which act as an interface for end users. This

return to have huge arrangement effective repository

contains all connected components by linking all the

software stored in it and the tools have many utilities to

manage repository.

When a test case discovers an error in the source

code the developer uses the traceability algorithm to

correct the requirement(s) that caused the error and

then correct the design. However, we can start the

correction process from the design level. The following

example shows the traceability between the system

model requirements and the design level in Oracle

designer tool.

In order to build the system model requirements we

first construct the entities using the Entity Relationship

Diagrammer. In this example, we create an entity and

call it Courses. This entity has three attributes: id as

primary key with numeric data type, code with char

data type, and NO with numeric data type. We then

transform the entity (system model requirements) into

database design using database design transformer.

Figure 1 shows this process.

Figure 1. Transform system model requirement into database

design.

After that, the developer generates the tables

(database level). However, it is clear that the structure

of this table has an error especially when the content of

the NO attribute contains a value with a letter for

example 281A. In this case the developer will change

the data type of the NO attribute from numeric to char

at the design level. Once this is done, the developer

will automatically notice that some changes have

occurred in the design and the design does no longer

confirms the requirements. The traceability algorithm

in Oracle designer tool will help in this case, as the

changes made to the design will be shown in red or by

a red circle filled beside the corresponding

requirements model, as shown in Figure 2.

Figure 2. Requirement to design traceability result.

4. Code To Design Traceability Approach

Our code to design traceability approach consists of the

following four steps:

1. Prepare the code at the design and database levels.

2. Manage distributed database systems by database
link.

3. Compare the records of the two tables.

4. Provide suggestions.

4.1. Prepare the Code at the Design and

Database Levels

In this paper we deal with the code at both the design

level and the code level as text. Both levels have their

own syntax which must be understood in order to

convert both of them into the same format. The

purpose of this conversion is to facilitate the

comparison process.

In Oracle all the source codes of the database level

(code level) will be saved in a table called

USER_SOURCE. Table 1 shows part of the contents

of USER_SOURCE Table. This Table consists of

multiple recodes. Each record has several attributes

such as:

 Name. Which refer to name of package, trigger or

function.

 Type. Which contains procedure, package, trigger

and function.

 Line. Which means sequence of line in source code.

 Text. Which represents one line of the source code.

Transform to database design

Traceability between Code and Design Documentation in Database ... 923

Table 1. Part of the USER_SOURCE (code level) table.

Text Line Type Name

Declare 6 Trigger Component name

--declare 7 Trigger Component name

V_Ace_Code Number(2); 8 Trigger Component name

V_Rce_Code Number(2); 9 Trigger Component name

V_Program Number(1); 10 Trigger Component name

V_Student_No Number(10); 11 Trigger Component name

--local variable here 12 Trigger Component name

This Table exists in the schema owned by Oracle

database. In our approach we call this Table

CODE_LEVEL_DB.

At the design level the code structure is more

complex than at the code level, because codes are

saved as blocks in a table called RM_TEXT_LINES.

This table has multi attributes such as TXT_TEXT,

TXT_SEQ … etc., The Table exists in the design level

schema owned by Oracle designer as shown in Table

2:

Table 2. A block saved in RM_TEXT_LINES (design level).

TXT_SEQ TXT_TEXT

274 L_first := false; l_prefix:= ‘where’; else…

275
L_command :=

l_command||prefix||’sad.adm_rating=to_nur…

276 --p_transfer is not null if p_program is not null then

277 l_first := false; l_prefix := ‘where’ ; else…

278
L_command:= l_command

||prefix||’sad.check_prerequiste…

Therefore, there is a clear difference between the

structure of the design level table and the code level

table. The text on both sides has been saved in tables in

which each record in CODE_LEVEL_DB table

corresponds to one line in the source code. On the

other hand, a record in the second table

RM_TEXT_LINES corresponds to multiple lines

(block of code) in the source code table.

To facilitate the process of comparison, the blocks

in the RM_TEXT_LINES should be split into separate

lines of code so that the two tables have the same

format; we use the PL/SQL developer to do this, but

first we need to create a procedure which we call

Split_block. This procedure has one parameter,

packge_name, that represents the name of the package

that we are working on. Below is the algorithm of this

procedure:

CREATE PROCEDURE Split_block (packge_name

varchar2 (20)as

Begin

<Source code>;

End;

The body of the split_block procedure (source code) is

used to construct a cursor in order to fetch all blocks in

the package_name parameter which exists in

rm_text_lines, ci_plsql_modules, sdd_folders, and

sdd_folder_members.

The procedure splits each block into multi lines for

each record in the RM_TEXT_LINES table by reading

each block, line by line, and inserts each line in an

intermediate table using r substr, instr and replace

functions. Figure 3 shows the pseudo code for

split_block procedure.

Figure 3. Split block procedure.

By applying this procedure we obtain an

intermediate table (DESIGN_LEVEL_DB) for the

design level that has the same structure as the

CODE_LEVEL_DB table. Both tables have four

attributes: name, type, line, and text.

4.2. Manage Distributed Database Systems by

Database Link

The previous step constructed two tables, both with the

same structure, in preparation for conducting the

comparison process. However, it should be noted that

both tables exist on two different databases schemas

which means we have distributed database systems.

The central concept in distributed database systems

is a database link. A database link is a connection

between two physical database servers that allows a

client to access them as one logical database. In other

words, a database link is a pointer that defines a one-

way communication path from one Oracle Database

server to another. The link pointer is defined as an

entry in a data dictionary table. To access the link, we

must be connected to the local database that contains

the data dictionary entry [23].

This requires work to build a DATABASE LINK

between the two different instant (CODE_LEVEL_DB

and DESIGN_LEVEL_ DB) to enable each schema to

see the other using the following PL/SQL code:

Create DATABASE LINK <link_name> local

CONNECT TO <user_name>

IDENTIFIED BY <password>

USING <service_name>

When we run the previous statement under

CODE_LEVEL instance we can see all objects (tables,

views, sequences, package etc.,) that exist at the

DESIGN_LEVEL; for example if we need to execute a

selected statement from CODE_LEVEL to retrieve all

records from student table that exists at the

DESIGN_LEVEL then we should use database link

after table name in select statement after “@” symbol

:-
select *

from student@db_link

4.3. Compare the Records of the Two Tables

The two different tables contain a text of code taken

from the source code and design code. In this case, we

924 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

can carry out the comparison process between the

source code and the design code and vice versa as

required. In our case we are going to check whether the

source code (code level) matches with the design code

or not by following steps:

4.3.1. Create Procedure to Perform the Comparison

Process

This procedure has two parameters; the first parameter

is package name which represents the name of the

package that is used in the comparison process. The

second parameter is service name which refers to the

name of the service on which the comparison process

is to be applied. Service Name is an optional parameter

but package name is a mandatory parameter. If service

name is not null, then the comparison is made at the

service level, whereas if it is null the comparison is

made for the package code. Then we construct a cursor

to fetch the sequence to construct the rows of the two

Tables: CODE_LEVEL_DB and

DESIGN_LEVEL_DB as shown in Table 3.

Table 3. Constructs the records from CODE_LEVEL_DB and

DESIGN_LEVEL_DB.

Row No Code_ level Rowno Design_ level result

1
Function cs_create_

Student_ no...
1

Function

cs_create_student_no.

..

2
(p_program_

Nature...
2

(p_program_

Nature...

3 ,p_program... 3 ,p_program...

4 ,p_adm_id... 4 ,p_adm_id...

5 ,p_dpt_id... 5 ,p_dpt_id...

6 ,p_id... 6 ,p_id...

7) 7)

8 Return number 8 Return number

9 is 9 is

The Table contains four columns where column 1

and column 2 represent the record number and one line

of code respectively taken from the

CODE_LEVEL_DB. Column 3 and column 4

represent the record number and one line of code

respectively taken from DESIGN_LEVEL_DB.

4.3.2. Comparison Mechanism

The rtrim, ltrim, trim, subst and instr functions are used

to remove any extra space from the left hand side and

right hand sides. Now the two columns became ready

for comparison. To complete the comparison process

we should compare all the rows of columns 2 and 4. If

the row content of the first column matches the content

of the corresponding row in the second column then

we insert the word “matched” in the corresponding

result column. Otherwise, “unmatched” is inserted.

The comparison process does not always go

smoothly. For example, when there is “unmatched” in

the result column this result will affect the comparison

process between the lines that follow it. For

clarification, see the following example in Table 4.

Table 4. Code to design traceability algorithm results.

Row

no

Code

level

Row

no

Design

level
Result

1 Begin 1 Begin matched

2 X:= 5; 2 Y:=6; unmatched

3 Y:= 6; 3 Z:=100; matched

4 Z:=100; 4 M:=18; matched

5 C:=C+1; 5 W:=30; unmatched

6 M:=18; 6 If Y>M then matched

The comparison result of row 2 is (unmatched) but

we note that in the code of the design level the

statement Y:=6; appears in the code level in the next

line (line 3). This indicates that line 2 of the code level

(X:=5;) is a new line and it does not exists in the

design level. But line 3 in the code level is an old line

and exists in the design level in line 2. Therefore, we

need to go back one step to compare between code

level line 3 and design level line 2. This explains why

the result is matched in line 3 even though the lines are

not matched. The number of steps we go back will

increase according to the number of unmatched results

between the lines of codes. This appears in line 6 when

we go back two steps because two unmatched results

appear from the beginning of the comparison process.

The pseudo code in Figure 4 represents how we solved

the problem we mentioned previously in the

comparison process.

Figure 4. Backward procedure for the comparison algorithm.

4.4. Provide Suggestions

After we complete the comparison process our

approach provides the ability to automatically make

some changes, whether in the code level or the design

level. For example, it can automatically change all the

records that have unmatched result.
Moreover, our approach has the ability to replace all

codes of the design level based on the code level or

vice versa. These two types of changes can be made by

passing two parameters to the PL/SQL procedure. The

first parameter is the domain parameter which

indicates the domain we are going to change. This

parameter has two values ‘design level’ and ‘code

level’. If it is ‘design level’ then we change the design

so it matches the code level. If it is ‘code level’ then

we change the code so it matches the design level. The

Traceability between Code and Design Documentation in Database ... 925

second parameter indicates the type of change we are

going to make. This parameter has two values ‘true’ or

‘false’. If it is ‘true’, then all records that have an

unmatched result can be changed; otherwise the

package can be replaced with another package. Figure

5 shows the suggested change procedure.

Figure 5. Suggested changes procedure.

5. Evaluate The Results

After applying the suggested changes procedure and in

order to check the correctness of our approach we used

the diffchecker tool [7] which takes two texts as input

and checks the similarity between them. We collected

all the records as text for design and code level and

input them to the diffchecker tool. We found that the

two texts were 100% identical. So, the algorithm

accomplished traceability between code and design

documentation with extra suggestions.

This result is very high because the source code

packages which are used in the code level were

generated from design level and the changes in code

level was very little. This result may change when this

algorithm is applied to determine the similarity

between design and code level if we have huge

changes between the codes.

6. Threats to Validity

Threats to Validity our case study was with single

large project written in Oracle, so the results might not

generalize to other, projects, languages, or

implementations. Moreover, the suggested changes

algorithm is applicable on the text of the source code

only. However, it should be also applied on the

structure of the database for example column, domain,

index, sequence, cluster definitions. Finally, the

comparison process is not always that easy this

because the source code written in a sequential manner

and the comparison process must be performed

between the corresponding Lines in both side's source

code level and design level. The comparison process

started by comparing a line with row number (n) in

source code level to the corresponding line with row

number (n - i) in design level, where (i) represent the

backward step start with zero and i will be increased

when the unmatched result is appeared. In other words,

in the first iteration of the comparison process we

compare the line with row number (1) in code level

into line with row number (1) in design level. If the

comparison result was unmatched then the next

iteration in comparison is done between line with row

number (2) in code level into line with row number (2-

1) in design level which means current row number

minus the backward step as shown in Figure 4.

7. Conclusions

We can avoid a lot of documentation problems in

design level by applying traceability between code and

design. In this paper we have developed an approach to

support automatic traceability between the code and

the design and vice versa for the Oracle designer tool.

In this approach we prepared the design code and the

database code so that they had the same format in order

to carry out the comparison process. A Student

Information System was used to evaluate and illustrate

the work. The results of our evaluation suggest that our

approach is very effective in the code to design

traceability for Oracle database applications.

References

[1] Allround Automations, PL/SQL, 2012

Developer, http://www.allroundautomations.com,
/plsqldev.html, Last Visited, 2016.

[2] Alves-Foss J., de Leon D., and Oman P.,

“Experiments in the Use of Xml to Enhance

Traceability between Object-Oriented Design

Specifications and Source Code,” in Proceedings

of the 35th Annual Hawaii International

Conference on System Sciences, Big Island, pp.

3959-3966, 2002.

[3] Antoniol G., Caprile B., Potrich A., and Tonella

P., “Design-Code Traceability for Object-

Oriented Systems,” Annals of Software

Engineering, vol. 9, no. 1-4, pp. 35-58, 2000.

[4] Buchgeher G. and Weinreich R., “Automatic

Tracing of Decisions to Architecture and

Implementation,” in Proceedings of the 9th

Working IEEE/IFIP Conference on Software,
Boulder, pp. 46-55, 2011.

[5] CoEST: Center of Excellence for Software

Traceability, http://www.CoEST.org. Last

Visited, 2015.

[6] Cysneiros G. and Zisman A., “Traceability and

Completeness Checking for Agent-Oriented

Systems,” in Proceedings of the ACM

Symposium on Applied Computing, Fortaleza, pp.

71-77, 2008.

[7] Diff checker tool, https://www.diffchecker.com/,

Last Visited, 2016.

[8] Espinoza A., Botterweck G., and Garbajosa J.,

“A Formal Approach to Reuse Successful

http://www.allroundautomations.com/
http://www.coest.org/
https://www.diffchecker.com/

926 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

Traceability Practices in SPL Projects,” in

Proceedings of the ACM Symposium on Applied

Computing, Sierre, pp. 2352-2359, 2010.

[9] Ghabi A. and Egyed A., “Exploiting Traceability

Uncertainty Between Architectural Models and

Code,” in Proceedings of Joint Working

IEEE/IFIP Conference on Software Architecture

and European Conference on Software

Architecture, Helsinki, pp. 171-180, 2012.

[10] Haitzer T. and Zdun U., “DSL-Based Support

For Semi-Automated Architectural Component

Model Abstraction Throughout the Software

Lifecycle,” in Proceedings of the 8th

International ACM SIGSOFT Conference on

Quality of Software Architectures, Bertinoro, pp.

61-70, 2012.

[11] Hammad M., Collard M., and Maletic J.,

“Automatically Identifying Changes That Impact

Code-To-Design Traceability During Evolution,”

Software Quality Journal, vol. 19, no. 1, pp. 35-

64, 2011.

[12] Ibrahim S., Idris N., Munro M., and Deraman A.,

“Integrating Software Traceability for Change

Impact Analysis,” The International Arab

Journal of Information Technology, vol. 2, no. 4,

pp. 301-308, 2005.

[13] Javed M. and Zdun U., “A Systematic Literature

Review of Traceability Approaches between

Software Architecture And Source Code,” in

Proceedings of the 18th International Conference

on Evaluation and Assessment in Software

Engineering, London, p. 16, 2014.

[14] Oracle Designer 6i Product Overview.

http://www.oracle.com/technetwork/testcontent/o

tn-des6i-pover-wp-134818.pdf. Last Visited,

2015.

[15] Padgham L. and Winikoff M., Developing

Intelligent Agent Systems: A Practical Guide,

John Wiley and Sons, 2005.

[16] Parr T., The Definitive ANTLR Reference:

Building Domain Specific Languages, Pragmatic

Programmer, 2007.

[17] Requirements Management Ensuring Project

Success.http://www.serena.com/docs/repository/

products /rm/ds900-001-0704.pdf, Last Visited,

2016.

[18] Saifan A., Akour M., Alazzam I., and Hanandeh

F., “Regression Test-Selection Technique Using

Component Model Based Modification: Code to

Test Traceability,” International Journal of

Advanced Computer Science and Applications,

vol. 7, no. 4, pp. 90-95, 2016.

[19] Spanoudakis G. and Zisman A., Handbook of

Software Engineering and Knowledge

Engineering, World Sci Pub Co, 2005.

[20] Tiako P., Designing Software-Intensive Systems:

Methods and Principles: Methods and Principles,

IGI Global, 2008.

[21] Tran H., Zdun U., and Dustdar S., VbTrace:

“Using View-Based and Model-Driven

Development to Support Traceability in Process-

Driven Soas,” Software and Systems Modeling,

vol. 10, no. 1, pp. 5-29, 2011.

[22] Ubayashi N. and Kamei Y., “Architectural Point

Mapping For Design Traceability,” in

Proceedings of the 11th Workshop on

Foundations of Aspect-Oriented Languages,

Potsdam, pp. 39-44, 2012.

[23] Urman S. and McClain L., Oracle database 10g

PL/SQL programming. McGraw-Hill, Inc.; Last

Visited, 2004.

[24] Winikoff M., Multi-Agent Programming,

Springer, Boston, MA, 2005.

Mohammed Akour is an Assistant

Professor in the Department of

Computer Information System at the

Yarmouk University (YU). obtained

his Ph.D degree in software

engineering from NDSU with

honor.

Ahmad Saifan is an assistant

professor in the department of

computer information systems at

Yarmouk University (YU). He

obtained his Ph.D degree in software

engineering from Queen's University

(Canada).

Osama Ratha'an is a master

student in the department of

computer information systems at

Yarmouk University (YU).

http://www.oracle.com/technetwork/testcontent/otn-des6i-pover-wp-134818.pdf
http://www.oracle.com/technetwork/testcontent/otn-des6i-pover-wp-134818.pdf
https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAA&url=http%3A%2F%2Fwww.serena.com%2Fdocs%2Frepository%2Fproducts%2Frm%2Fds900-001-0704.pdf&ei=knwGVbK1OoLsaPOWgrAD&usg=AFQjCNHBS2OXwvqe7eod6Q43CEj59eCl6A
https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAA&url=http%3A%2F%2Fwww.serena.com%2Fdocs%2Frepository%2Fproducts%2Frm%2Fds900-001-0704.pdf&ei=knwGVbK1OoLsaPOWgrAD&usg=AFQjCNHBS2OXwvqe7eod6Q43CEj59eCl6A
http://www.serena.com/docs/repository/products%20/rm/ds900-001-0704.pdf
http://www.serena.com/docs/repository/products%20/rm/ds900-001-0704.pdf

