
662 The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020

On Detection and Prevention of Zero-Day Attack

Using Cuckoo Sandbox in Software-Defined

Networks

Huthifh Al-Rushdan1, Mohammad Shurman2, and Sharhabeel Alnabelsi3,4
1Computer Engineering Depatmenr, Jordan University of Science and Technology, Jordan

2Network Engineering and Security Department, Jordan University of Science and Technology, Jordan
3Computer Engineering Department, Al-Balqa Applied University, Jordan

4Computer Engineering Department, AL Ain University, United Arab Emirates

Abstract: Networks attacker may identify the network vulnerability within less than one day; this kind of attack is known as

zero-day attack. This undiscovered vulnerability by vendors empowers the attacker to affect or damage the network operation,

because vendors have less than one day to fix this new exposed vulnerability. The existing defense mechanisms against the

zero-day attacks focus on the prevention effort, in which unknown or new vulnerabilities typically cannot be detected. To the

best of our knowledge the protection mechanism against zero-day attack is not widely investigated for Software-Defined

Networks (SDNs). Thus, in this work we are motivated to develop a new zero-day attack detection and prevention mechanism

for SDNs by modifying Cuckoo sandbox tool. The mechanism is implemented and tested under UNIX system. The experiments

results show that our proposed mechanism successfully stops the zero-day malwares by isolating the infected clients, in order

to prevent the malwares from spreading to other clients. Moreover, results show the effectiveness of our mechanism in terms of

detection accuracy and response time.

Keywords: Zero-day attack, Malwares, Controller, Intrusion Detection System, Cuckoo Sandbox, Software-Defined Networks.

Received March 1, 2020; accepted June 9, 2020

https://doi.org/10.34028/iajit/17/4A/11

1. Introduction

Software-Defined Network (SDN) is a new approach

that allows installing, controlling, managing, and

modifying networks in a dynamic manner. SDN

empowers a fast response to network requirements and

can be managed using a centralized controller, such that

switches and routers can be remotely reconfigured.

SDN architecture has three layers; first layer is the

forwarding layer that consists of routers and switches.

Second layer is the controller layer that consists of

controllers. Third layer is the application layer that

consists of application and services used to utilize SDN

and generate traffic. SDN has two planes: a data plane

and a control plane. The data plane operates under the

open flow protocol plane that is responsible for

forwarding packets, while the control plane decides the

routing path for packets [9, 18].

When a packet arrives to the switch for the first time,

a rule is inserted by the controller into the switch

forwarding-table (a strategic control point in the SDN

network that manages and controls the flows between

network elements) [7], in order to deal with this packet,

i.e., either forward it to a specific port or drop it. In

fact, the switch sends all packets addressed to the same

destination over the same route using the imposed rule.

The switch provides the controller with traffic

information [6], where the communication between

the controller and the switches is conducted using the

OpenFlow protocol [21]. Thus, network administrator

can centrally perform the necessary changes for the

forwarding rules of switches (i.e., changing priorities

or traffic blocking rules). Consequently, the popularity

of SDN technology made it a target of security

attacks.

In networks, there is still a risk of unknown attacks,

known as the zero-day attacks [12, 15]. The term

“zero-day” notion refers to the available time for

vendors to fix the vulnerability that has been exposed

[11]. When vendor fails to release a patch on time, the

hacker can exploit the exposed vulnerability, and

hence, the zero-day attack really occurs. The attacker

executes a piece of code on the vulnerable system, in

order to gain an illegal access. The term “vulnerability

is exploited” occurs when an exploited code has

successfully attacked the newly discovered

vulnerability [3].

In general, in order to defend networks against

unknown attacks, e.g., zero-day attack, an isolated

testing environment, named a sandbox, is used to

execute untested programs or files that may contain

viruses or malicious codes, such that the real

On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox ... 663

environment is not infected [23], due to the fact that the

sandbox is isolated from the real environment.

 The sandbox contains a set of resources such as

processors, memory, networks and applications that

provided by a virtualization technique. In other words,

the sandbox contains a number of Virtual Machines

(VMs) with different Operating Systems (OSs). Each

VM contains different programs, e.g., flash player,

java. When a user downloads a file or visits a URL, the

security system initially extracts the file or the URL,

and then forwards it to the sandbox for execution on all

VMs. Moreover, the sandbox sends some control

instructions to the VMs, such as mouse movements or

system time changes, because some malwares require

special actions [23].

We are motivated to modify the existing sandbox,

under UNIX OS, in order to integrate it with SDNs and

protect their clients’ PCs and controllers. This work is

organized as follows: section 2 discusses SDNs

security, section 3 presents the zero-day attack and

section 4 presents Cuckoo sandbox analysis. Section 5

illustrates the proposed solution against zero-day

attack. Section 6 demonstrates experiments results and

discussion. Finally, section 7 presents the conclusions.

2. Security of Software-Defined Network

SDN security protocols are different from the standard

networks, since its nature and characteristics are

different. Therefore, SDN introduces new attacks to the

controller platform and the connections between

different planes. SDN treats control plane as a single

entity, which indicates a single security implementation

between the control plane and application plane, and

between control plane and data plane.

Moreover, the implementation of distributed control

is not visible to SDN architecture, since this may

increase network exposure to attacks. On the other

hand, the actual controller implementation is more

complex and distributed, forcing stronger security

requirements. These security requirements can be

achieved by providing SDN controllers with a secure

environment.

2.1. Preliminary

In network management, a real-time monitoring can be

very useful, because it allows analysing and monitoring

log entries, for forensic analysis, and intruders or

attacks detection. It is possible to build SDN security

techniques that combine stations and network devices

security procedures, in order to detect and prevent

attacks. One method of security procedures is isolating

traffic between SDN users, and between users and

control plan. This separation could be more effective

and more dynamic than traditional networks, due to the

processing and functional capability of data plane

component.

The main security issues in SDN domain are the

insiders and operator’s errors that may compromise

the overall system integrity. To address these issues,

SDN architecture must contain a strong identity to

secure all entities and their associated states [10], in

addition to monitoring running processes.

2.2. Protection Methodology

SDNs do not change the associated protection and

restoration protocol, such that their controllers are

responsible for pre-computing resource recovery,

provisioning recovery, and subscribing notification.

Moreover, the SDN’s controller may restore traffic by

re-establishing the current route or selecting other

routes to optimize utilized resources. These resources

may be shared between more clients to satisfy their

demand; therefore, resources must be fulfilled by a

combination of the following procedures:

 Define a resource pool based on availability and

recovery time, then serve clients accordingly.

 Protect the resources based on the most restricting

requirement.

 Offer a default level of shared resources protection

and provide clients with more restriction

requirements.

3. Zero-Day Attack

The zero-day attack is a computer attack that exploits

an exposed vulnerability, the vulnerability is a

weakness in the software or in a security policy that

allows the attacker to gain illegal access to the system

that has not been known yet. Its aim is to get access or

threat a running system [19, 22]. It is very difficult to

defend against zero-day attack, since it is always

detected after the system has been already

compromised. The vulnerability, in zero-day attacks,

has no known signature and no specific mechanism,

which allows detecting and preventing it earlier [22].

Once the vulnerability has been announced to the

public, system administrator can patch the system, and

the antivirus companies can insert it in to the signature

update [19].

Although, system patching, upgrading, antiviruses,

and IDS can tackle many kinds of attack, the zero-day

attack cannot be tackled, due to the lack of

information about the attack’s nature [5]. Discovering

the zero-day vulnerability and figuring out how to stop

it is a very difficult task. The zero-day vulnerability is

considered as the most harmful threat for computer

organizations, because their system and services are

exposed to the public network and to the attacker

before the patch becomes available. Researchers paid

attention to zero-day attacks, in order to find solutions

[1, 13, 20]. Generally, there are four kinds of

traditional defense technology against attacks:

664 The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020

statistical-based, signature-based, behaviour-based, and

hybrid-based [24].

4. Cuckoo Sandbox Analysis

Cuckoo sandbox has three VMs for testing which

contains three versions of windows: Windows XP,

Windows 7 and Windows 10. Once Cuckoo sandbox

receives the files or the URLs for analysis, the process

starts by restoring the current VM snapshot that

contains a clean windows environment with several

installed applications. Next, cuckoo sandbox will

execute the file or open the requested URL in the

browser, where the agent collects all changes in the

VMs by profiling memory dump and registry

information. After that, the agent transfers the collected

changes to cuckoo sandbox for analysis by examining

the memory dump, files created by the malware, and

the registry information [23].

Once the analysis is completed, a report is generated

for analysis result. The generated report has a score out

of 10 representing the severity of attack for the file or

the URL as follows:

 If (score < 2), this indicates the file or the URL is

harmless.

 If (2 ≤ score ≤ 5), this indicates the file or the URL

has high probability of being harmful.

 If (score > 5), then this indicates file or the URL is

definitely harmful.

 The score value will be sent to the controller to make

an appropriate decision which is either isolating the

client or blocking all its incoming traffic.

5. Proposed Solution against Zero-Day

Attack

Security in SDN network is different from the

traditional network security [2, 17] because the gateway

of SDN is directly connected to the internal network,

where all security devices are either installed in the

application layer (controlled by the controller for traffic

forwarding to the appropriate security device), or

installed in the gateway layer (connected to the internal

network). In this case, the controller has no control over

the devices of the gateway [14]. Another main

difference from traditional network is the controller

controls every node in the network and can block the

nodes’ traffic or forward it to a specific path.

In this work, we implement a new system in SDN

that protects two components:

1. The controller.

2. Client PCs against the zero-day attack. The proposed

mechanism eliminates malwares’ effect and protects

the whole network from infection. We will use the

mininet simulation tool [16], in order to implement

SDN, forwarding switches, and the client PCs.

Forwarding switches are connected to the controller

using OpenFlow protocol [8], where the controller

manages the traffic flow by forcing rules.

5.1. Client PCs Protection

In order to ensure client PCs protection, all traffic

passes the OpenFlow switches goes through two

stages: First, it is forwarded to the controller, on a

specific network interface, where a customized python

program extracts transferred files to the client or the

requested URLs by the client. Once the files or the

URLs have been extracted, the extraction program

will submit them to the cuckoo sandbox for analysis,

in order to detect malwares, if exist.

5.2. SDN Controller Protection

The protection of SDN controller from zero-day attack

is different from the client protection. Cuckoo

sandbox only tests the malware under windows

environment, while the controller is usually based on

UNIX environment that is not supported by Cuckoo.

Therefore, we are strongly motivated to build our

UNIX-based sandbox.

Our developed sandbox controller consists of an

agent installed on a VM, as an SDN controller, and an

application runs on a machine, which is hosting the

controller, where the communication between the

sandbox and the controller will be carried out through

a dedicated Ethernet channel.

In our study, the agent will monitor three main

parts that affect the status of the controller:

 Added or removed features to/from the controller.

 The status of the service port in the controller.

 The status of specific service in the controller’s OS.

If any feature is changed, thus a new attack has

occurred. The flowchart that demonstrates the steps of

our developed controller sandbox is illustrated in

Figure 1.

The steps in the flowchart, as shown in Figure 1,

are explained as follows:

 Step 1: Sandbox with Controller in VM: The

sandbox is installed on Ubuntu OS and runs a

server software that manages all operations and

controls the VM’s controller, the server contains

VMWare Workstation 12 Pro virtualization

software. The controller’s software is Open

Daylight (ODL) Hydrogen version.

 Step 2: The operational controller with the installed

agent: Hydrogen ODL is installed with a number of

features, based on the networks requirements that

required for running the controller. The installed

features should run in the active state, in order to

ensure that the controller is in the operational state.

On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox ... 665

Figure 1. The steps for our developed controller sandbox.

The ports associated with the installed features

should be opened and in the listening state, such that

they are closed when their features are removed.

Apparently, a specific software is needed, and

therefore, is installed in order to monitor the controller

from attacks. That software is called the agent.

 Step 3:

a) Agent monitors controller configuration (log file):

When a feature is installed, it is parameters and

configurations are stored in the configuration files of

the controller. Therefore, installing or removing any

feature illegally results in compromising some

controller’s functions. For example, if the

authentication feature is removed, thereby, any

connection at the OpenFlow switch can add or remove

flows at the controller. If a specific feature is installed

without a proper configuration, this may lead to illegal

controller’s operation. Consequently, the agent always

monitors adding and removing any feature as in the

controller’s configuration files.

b) Agent monitors controller’s services:

The controller is installed in a Linux based OS, and it

use several Linux services such as NTP, Java, etc. If

any of these services failed or changed its status, the

controller will stop working. Thus, the agent monitors

all Linux services that are crucial to the controller

operation, such that if any service is stopped the agent

will try to restart this service. However, if this service

is failed to restart, the agent triggers an alarm to the

controller and transmits the log file for analysis.

c) Agent monitors controller operation ports:

The controller uses specific ports for operation, e.g.;

OpenFlow switches communicates with the controller

over port 6653. If an attack destroys the corresponding

features of this port, the controller will no longer be

listening to the port requests. Therefore, the agent

must monitor the operational ports, such that if the

controller failed to respond three consecutive times to

the controller, the agent starts analysing the log files

and triggers an alarm to cuckoo sandbox.

 Step 4: Agent analyzes log file for changes in the

controller:

If any alarm was triggered in step 3, the agent starts

analysing the log file in order to find out the

problem, and if there is any illegal access. The log

files that will be analysed are as follows:

 Opendaylight.log: this file has all feature

installation and removal in the Open Day light

controller, such that if any feature was initialized

or destroyed it is profiled.

 tomcat0.log: this file profiles the status of

features whether they are changed from running

to stopping or from stopping to running state.

The agent analyses this file to find the status of

the corrupted feature in the controller.

 audit.log: this file profiles the status of accessing

the controller, a success or failure. The agent

finds whether there are any illegal access

attempts.

 web_access_log.log: this file profiles any access

attempt, using either web browser or REST API

access. The agent finds any link between this

access and feature corruption or any illegal flow

insertion.

 Step 5: The agent sends the log file to cuckoo

sandbox with the results:

The agent sends the analysis result with all log files

to the sandbox for more analysis and starts the

recovery procedure, if needed.

 Step 6: Sandbox checks for controller availability:

The sandbox will check the availability of the

controller using these steps:

1. Checking all controller’s operational ports that

are open and in listening state.

2. Checking agent log for services status.

3. Installing a static flow in the controller.

4. Sniffing on the controller traffic to ensure that

the controller installed the flow in the OpenFlow

switch.

5. Analysing the agent logs to find out what is

really happening.

YES NO

Start Recovery

Procedure

Operational Controller

Operati

onal?

Agent sends the result with logs

to the Sandbox

Agent analyses log file for

changes in the controller

Sandbox checks for Controller

Availability

Sandbox with a Controller as a VM

Operational Controller with an Installed Agent

Agent Monitors
Controller OS

Services

Start

Agent Monitors

Controller Config-

uration & log file

Agent Monitors
Controller

Operation Ports

Rise Alarm

666 The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020

6. Raising an alarm to the administrator with the

results.

 Step 7: Rise an alarm to further investigation:

If the controller passed all the tests in step 6, raise an

alarm to the administrator with all logs for deeper

investigation.

 Step 8: Start Recovery Procedure: If the controller

failed with any of the performed tests in step 6, it

will conduct the following procedures:

1. Pull all controller log file and save it for future

analysis.

2. Clone the controller VM for more investigation.

3. Restore the controller VM to the previous

snapshot.

4. Raise an alarm to the administrator with the

attack.

 Step 9: Operational Controller: the controller is back

to its operational status monitored by the agent.

For the aforementioned steps, each step has a linear-

time complexity, O(N), where N is the number of its

internal steps. Therefore, the overall time complexity

for all steps is also linear.

6. Experimental Results and Discussion

6.1. Platforms

Simulation experiments are conducted using these

tools:

 Client Machines: Intel® Core™2 i5-3230M CPU, 8

GB DDR3 RAM, which is used to download the

malware and act as infected client.

 Controller Sandbox: Intel® Core™2 i7-4770M

CPU, 24 GB DDR4 RAM, which has the application

that monitors the SDN controller and the

virtualization software that hosts the VM controller.

 Controller: Intel® Core™2 i7-4770M CPU, 4 GB

DDR4 RAM, a virtual machine that installed with

the controller software and the agent which monitors

the SDN controller.

 Cuckoo Host: Intel® Core™2 i7-4770M CPU, 12

GB DDR4 RAM, equipped with the cuckoo

software.

 Cuckoo VM: Intel® Core™2 i7-4770M CPU, 2 GB

DDR4 RAM, a virtual machine that used by cuckoo

sandbox to test the malware.

 Switch: OpenFlow switch v1.0.

Figure 2 shows the testing environment for our

proposed solution, in which SDN client is protected

from the zero-day attack. Figure 3 shows the

environment used to test the proposed solution that

protects the SDN’s controller from the zero-day attack.

Figure 2. Testing environment for SDN client.

Figure 3. Testing environment for SDN controller.

6.2. Results

Python 3.5 programming language is used under

Linux, in order to implement all required functions of

our proposed mechanism.

For clients’ PCs protection, we use Snort tool which

is a free open source network Intrusion Detection

System (IDS) and Intrusion Prevention System (IPS).

This tool contains a feature that allows us to extract

the files from live network traffic stream and the

corresponding client IP address. Once the file is

extracted, our developed python program sends the

file to the cuckoo sandbox for analysis and wait the

result. After the sandbox finishes the analysis, these

results are sent to the python program, such that if the

results indicate an attack has occurred, the python

program blocks the client PC using the controller API.

For SDN controller protection, the agent monitors

the controller features, listed in subsection 5.2, in

order to detect any change that caused by the zero-day

attack. The functionality of the controller depends on

the installed features, where initially the controller

begins with zero features installed. Later, for example,

during the operation, if the controller needs to handle

open flow switches, the odl-l2switch-switch feature is

On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox ... 667

A
n

al
y

si
s

ti
m

e
(s

ec
)

A
n

al
y

si
s

ti
m

e
(s

ec
)

installed. Another example, if GUI interface is needed,

the odl-dlux-core feature is enabled.

Different python libraries are used, such as socket

for interfacing, system-specific parameters and

functions, shutil for file operations, threading

parallelism, watchdog observers, and others.
We introduce three performance metrics to assess the

proposed mechanism effectiveness as follows:

1. Execution time: is the total execution time starting

from the moment that the malware is download to

the moment when the controller finishes blocking

the infected client.

2. Analysis time: this represents the cuckoo sandbox

analysis time which includes: the summation

processes, malware execution inside the VM,

collecting data, analysing data, and result analysis

and summation.

3. Processing (or blocking) time: is required time for

processing sandbox resultant data, which includes

the malware file reconstruction and controller

blocking process. Thus, the processing time = total

execution time – cuckoo sandbox analysis time.

The preliminary results of this work have been

presented in [4]. For cuckoo sandbox, Table 1 shows

the number of successfully identified malwares, with

different sizes, with respect to number of tested

malwares. Results show that cuckoo sandbox has

successfully identified 353 malwares of 361. Thus, the

success percentage is 97.78%, which can be further

improved by customizing cuckoo sandbox

configuration.

Table 2 shows the test result of the controller for

sandbox, a total of 50 tests are conducted for each

service type. Our proposed scheme succeeded to

recover the controller 192 times of 200 (96%), and

failed 8 times out of 200 (4%).

Figure 4 shows the malware analysis time with

respect to malware’s size. Results show the execution

time is proportional to the malware size, moreover, the

analysis time is about 132 s and 152 s when the

malware size is 2 KB and 1400 KB, respectively.

Apparently, even when malware size increases

dramatically from 2 KB to 1400 KB, the analysis time

increases only 15.1%. Clearly, this demonstrates the

effectiveness of our proposed technique.

The system blocking time includes file reassemble,

analysis result submission, network communication,

and controller blocking process. Figure 5 shows the

system blocking time (or processing time) for infected

clients with respect to different malware's sizes. As

illustrated, clearly this time is negligible, because for

different malware sizes it is below 0.01 s. As a result,

our proposed system reacts to a zero-day malware and

blocks it very fast regardless of the malware size when

the analysis results received from cuckoo sandbox.

However, the system’s recovery time varies with

respect to the damage caused by the malware, because

the modified files must be restored.

Table 1. Number of tested and successfully identified malwares.

Experiment

number

Malware

size (KB)

Number of

tested

malwares

number of

successfully

identified

malwares

1 2 20 19

2 30 18 18

3 50 22 21

4 70 22 20

5 80 19 19

6 90 20 20

7 100 17 16

8 150 16 16

9 200 20 20

10 300 19 19

11 400 18 17

12 500 17 16

13 600 19 19

14 700 20 20

15 800 20 20

16 900 21 21

17 1000 13 13

18 1200 21 21

19 1400 19 18

Total 361 353

Table 2. Number of succeeded and failed tests for different
services.

Test type Number of tests Succeeded Failed

Remove Feature 50 48 2

Remove Port Service 50 50 0

Change Controller

Configuration
50 46 4

Stop Linux Service 50 48 2

Summation 200 192 8

Malware Size (KB)

Figure 4. Analysis time for different malware sizes.

Malware Size (KB)

Figure 5. System blocking time with respect to malware size.

668 The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020

Figure 6. Analysis time for different malware’s and RAMs sizes.

Figure 7. Controller recovery time for

different CPU’s types.

Intuitively, reacting to the malware and blocking it is

very fast, simply by informing the firewall to block it

and dispose its corresponding code from the memory.

Figure 6 shows the cuckoo sandbox analysis time for

the first 13 malwares, which presented in Table 1 using

different RAM sizes in MB (512, 1024 and 1536) of the

tested VM’s. Apparently, malware analysis time is

faster with bigger RAM size. That is, when using a VM

with higher capabilities, e.g.; RAM size, for hosting the

cuckoo sandbox. Consequently, the infected client is

blocked before the malware finishes execution and

attacks other clients.

Figure 7 shows the recovery time for the controller

according to the processor speed, results shows that the

controller recovery time is faster with higher host CPU

speed.

Our proposed approach computation complexity as

evaluated by the simulation is very low and almost

negligible. That is due to the fact that the time

complexity of the proposed system includes: trace file

processing (N1 bytes), memory dump processing (N2

bytes), files created by the malware extraction or URL

extraction process (N3 bytes), and finally, reporting the

generated file (constant time of value C), where N1, N2,

and N3 are integer numbers.

As presented in subsection 5.2, the internal steps

within each process has a linear-time complexity.

Consequently, the time complexity of the system is the

summation of time-complexities for all mentioned

independent stages as: O(N1)+O(N2)+O(N3)+O(C).

That is, the time complexity is linear, O(M), where M

is equal to N1 + N2 + N3 + C.

In our simulation model, analysis time is found

between 130-150 seconds, this variation in analysis

time is due to malware and RAM sizes. In our

simulation model, we considered one zero-day

malware. In the future, we will test the model for

multiple zero-day malwares and investigate the system

performance.

7. Conclusions

The zero-day attack has a severe effect on Software-

Defined Networks (SDNs), especially, it is

unpredictable. This kind of attacks exposes

undiscovered networks vulnerability, in order to get

illegal access to the network and cause harmful effect.

Moreover, software developers have a zero-day, in

order to resolve this attack and protect the network.

The proposed mechanism that based on cuckoo

sandbox identifies and prevents malwares within a

zero-day time, in order to protect two components:

First, the clients’ PCs that are protected by our

customized-developed python code that resides in the

controller. Second, attacks on SDN controller which is

prevented using our proposed and the developed

UNIX-based Cuckoo sandbox. In this controller,

traffic is monitored by the imposed detection rules.

Experimental results show our proposed

mechanism is effective in detecting different malwares

attacks, and has a high success probability in

identifying different malwares. Moreover, the results

demonstrate that the blocking time is negligible when

our proposed technique is employed, also the analysis

time increases slightly when the malware size

increases. However, when utilizing VMs with high

capabilities, the analysis times decreases.

References

[1] Afek Y., Bremler-Barr A., and Feibish S., “Zero-

Day Signature Extraction for High-Volume

Attacks,” IEEE/ACM Transactions on

Networking, vol. 27, no. 2, pp. 691-706, 2019.

[2] Alauthman M., Aslam N., Al-Kasassbeh M.,

Khan S., Al-Qerem A., and Choo K., “An

Efficient Reinforcement Learning-Based Botnet

Detection Approach,” Journal of Network and

Computer Applications, vol. 150, pp. 102479,

2020.

[3] Almukaynizi M., Nunes E., Dharaiya K.,

Senguttuvan M., Shakarian J., and Shakarian P.,

“Proactive Identification of Exploits in the Wild

Through Vulnerability Mentions Online,” in

Proceedings of IEEE International Conference

on Cyber Conflict, Washington, pp. 82-88, 2017.

[4] Al-Rushdan H., Shurman M., Alnabelsi S., and

Althebyan Q., “Zero-Day Attack Detection and

Prevention in Software-Defined Networks,” in

Proceedings of the International Arab

C
u

ck
o
o

 A
n

al
y

si
s

T
im

e
(s

ec
)

CPU type

T
im

e
(s

ec
)

On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox ... 669

Conference on Information Technology, Alain,

pp. 278-282, 2019.

[5] Bilge L. and Dumitras T., “Before We Knew It an

Empirical Study of Zero-Day Attacks in The Real

World,” in Proceedings of ACM Conference on

Computer and Communications Security, Raleigh

North Carolina, pp. 833-844, 2012.

[6] Braun W. and Menth M., “Software-Defined

Networking Using OpenFlow: Protocols,

Applications and Architectural Design Choices,”

Journal of Future Internet, vol. 6, no. 2, pp. 302-

336, 2014.

[7] Doria A., Salim J., Haas R., Khosravi H., Wang

W., Dong L., Gopal R., and Halpern J.,

Forwarding and Control Element Separation

(ForCES) Protocol Specification, RFC 5810, pp.

1-124, 2010.
[8] Goto Y., Ng B., Seah W., and Takahashi Y.,

“Queueing Analysis of Software Defined

Network with Realistic Openflow-Based Switch

Model,” Computer Networks, vol. 164, pp. 301-

306, 2019.

[9] Haleplidis E., Denazis S., Koufopavlou O., Salim

J., and Halpern J., “Software-Defined

Networking: Experimenting with the Control to

Forwarding Plane Interface,” in Proceedings of

the European Workshop on Software Defined

Networks, Darmstadt, pp. 91-96, 2012.

[10] Karakus M. and Durresi A., “A Survey: Control

Plane Scalability Issues and Approaches in

Software-Defined Networking (Sdn),” Computer

Networks, vol. 112, pp. 279-293, 2017.

[11] Kaur R. Singh M., “A Survey on Zero-Day

Polymorphic Worm Detection Techniques,” IEEE

Communications Surveys and Tutorials, vol.

16, no. 3, pp. 1520-1549, 2014.

[12] Keramati M., “An Attack Graph Based Procedure

for Risk Estimation of Zero-Day Attacks,” in

Proceedings of The 8th International Symposium

on Telecommunications, Tehran, pp. 723-728,

2016.

[13] Kim J., Bu S., and Cho S., “Zero-Day Malware

Detection Using Transferred Generative

Adversarial Networks Based on Deep

Autoencoders,” Information Sciences, vol. 460,

pp. 83-102, 2018.

[14] Kreutz D., Ramos F., and Verissimo P., “Towards

Secure and Dependable Software-Defined

Networks,” in Proceedings of the 2nd ACM

SIGCOMM workshop on Hot Topics In Software

Defined Networking, China, pp. 55-60, 2013.

[15] Meneely A. and Lucidi S., “Vulnerability of the

Day: Concrete Demonstrations for Software

Engineering Undergraduates,” in Proceedings of

the 35th International Conference on Software

Engineering, San Francisco, pp. 1154-1157, 2013.

[16] Rashma B. and Poornima G., “Performance

Evaluation of Multi Controller Software Defined

Network Architecture on Mininet,” in

Proceedings of the International Conference on

Remote Engineering and Virtual

Instrumentation, Switzerland, pp. 442-455,

2019.

[17] Sachdeva M., Singh G., Kumar K., and Singh

K., “DDoS Incidents and their Impact: A

Review,” The International Arab Journal of

Information Technology, vol. 7, no. 1, pp. 14-20,

2010.

[18] Shin M., Nam K., and Kim H., “Software-

Defined Networking (SDN): A Reference

Architecture and Open APIs,” in Proceedings of

the International Conference on ICT

Convergence, Jeju Island, pp. 360-361, 2012.

[19] Singh U., Joshi C., and Singh S., “Zero-day

Attacks Defense Technique for Protecting

System Against Unknown Vulnerabilities,”

International Journal of Scientific Research,

Computer Science and Engineering, vol. 5, no.

1, pp. 13-18, 2017.

[20] Singh U., and Joshi C., and Kanellopoulos D.,

“A Framework for Zero-Day Vulnerabilities

Detection and Prioritization,” Journal of

Information Security and Applications, vol. 46,

pp. 164-172, 2019.

[21] Sood M., “Software Defined Network-

Architectures,” in Proceedings of International

Conference on Parallel Distributed and Grid

Computing, Solan, pp. 451-456, 2014.

[22] SDN Architecture, Open Networking

Foundation, Technical Report, 2016.

[23] Vasilescu M., Gheorghe L., and Tapus N.,

“Practical Malware Analysis Based on

Sandboxing,” in Proceedings of RoEduNet

Conference 13th Edition: Networking in

Education and Research Joint Event RENAM 8th

Conference, Chisinau, pp. 1-6, 2014.

[24] Wang L., Zhang M., Jajodia S., Singhal A., and

Albanese M., “Modeling Network Diversity for

Evaluating The Robustness of Networks Against

Zero-Day Attacks,” in Proceedings of the 19th

European Symposium on Research in Computer

Security, Wroclaw, pp. 494-511, 2014.

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6880447

670 The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020

Huthifh Al-Rushdan received his

B.Sc. degree in Computer

Engineering, Jordan University of

Science and Technology, Jordan,

2007. He received his M.Sc. in

Computer Engineering, Jordan

University of Science and

Technology, 2018. Currenly, he is head of datacenters

in Jordan Army. His research interests are in SDN,

compuer security, datacenters, computer networks and

virtualization.

Mohammad Shurman received his

B.Sc. degree in Electrical and

Computer Engineering from Jordan

University of Science and

Technology, Irbid, Jordan, 2000.

Also, he received his M.Sc. and

Ph.D. degrees in Computer

Engineering-Wireless Networks from University of

Alabama-Huntsville (UAH) in 2003 and 2006,

respectively. Presently, he is with the Network

Engineering and Security Department, Jordan

University of Science and Technology, Irbid, Jordan.

His research interests include wireless Ad-hoc

networks, security and key management of wireless

networks, wireless sensor networks, network coding,

wireless communication and mobile networks, software

defined networks (SDN), cognitive radio, WiMAX, 4G

and 5G technologies and Blockchains.

Sharhabeel Alnabelsi is an

associate professor at Computer

Engineering Dept. at Al-Balqa

Applied University, Amman, Jordan.

Also, he is an associate professor in

Computer Engineering Dept. at Al

Ain University, UAE. He received

his Ph.D. in Computer Engineering from Iowa State

University, USA, 2012. Also, he received his M.Sc. in

Computer Engineering from The University of

Alabama in Huntsville, USA, 2007. His research

interests are cognitive radio networks, wireless sensors

networks, network resources optimization, and cloud

computing. He is a member of honorary societies

including Eta Kappa Nu and Phi Kappa Phi.

