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Abstract: Fuzzy C-Means (FCM) clustering technique is among the most effective partitional clustering algorithms available 

in the literature. The Capacitated Vehicle Routing Problem (CVRP) is an important industrial logistics and managerial NP-hard 

problem. Cluster-First Route-Second Method (CFRS) is one of the efficient techniques used to solve CVRP. In CFRS technique, 

customers are first divided into clusters in the first phase, then each cluster is solved independently as a Traveling Salesman 

Problem (TSP) in the second phase. This research is concerned with the clustering phase of CFRS, and TSP is then solved using 

a traditional optimization method. Three supervised FCM based techniques are proposed to solve the clustering phase at reduced 

cost via centroids (pre-FCM) initialization phase. The proposed pre-FCM initialization techniques are developed to be problem 

dependent. Hence, three initialization techniques are first developed using K-means technique, spatially equally distributed, and 

demand weighted center of mass. Then, a modified demand weighted fuzzy c-means objective function is employed to assign 

customers to clusters. To compare the performance of the proposed supervised FCM techniques, forty-two CVRP benchmark 

problems are solved using the traditional fuzzy C-means algorithm and the developed algorithms. Extensive comparisons are 

conducted between the traditional fuzzy C-means algorithm, the three proposed initialization techniques, and other fuzzy C-

means techniques available in the literature. Results show that the proposed three initialization techniques are efficient in terms 

of solution quality and computational cost. 
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1. Introduction 

Partitional clustering methods are widely used because 

of their simplicity in solving complex combinatorial 

problems. Partitional clustering methods mostly begin 

with initial random data assignments and then iteratively 

reallocate them. This moves data points between clusters 

until the objective function is optimized [48]. Although 

partitional clustering methods are of high efficiency, 

they are not suitable for a huge amount of data [63]. One 

of the partitional clustering methods is the Fuzzy C-

Means (FCM) clustering technique. FCM was initially 

defined by Dunn [17] and generalized later by Bezdek 

[6]. Since then, it has been applied in a wide range of 

both substantive areas and research studies. It permits 

data points to belong to more than one cluster with 

varying degrees of membership [68].  

The fuzziness parameter (m) or the partition matrix 

exponent in FCM was proposed by Dunn [17, 18] and 

Bezdek [6]. Although the value for(m) can be any 

number greater than one, the most chosen value for (m) 

is m=2 [46]. A method to find the optimum value for 

(m) was proposed by McBratney and Moore [44] for the 

application of climatic classification. In the same 

context, Cui et al. [15] argued that the best values for 

(m) are when (m) is in the range between 1.5 and 2.5. 

Another study by Choe and Jordan [10] stated that  

 

the choice of (m) is strongly related to the complexity of 

the data under investigation. Different values for (m) 

were tested ranging between 1 and 40 using fuzzy 

decision theory introduced by Bellman and Zadeh [5]. 

The Vehicle Routing Problem (VRP) is an important 

industrial real-life transportation problem. Most 

industries and delivery services face this problem when 

it comes to distributing their products [31]. Due to its 

complexity and high importance for industrial logistics, 

the problem has been subject to intensive research since 

it was defined by Dantzig and Ramser [16].The main 

objective of solving the classical VRP is to minimize the 

transportation cost. This is achieved by determining the 

optimal set of routes for the fleet of vehicles delivering 

products to customers under some constraints. 

According to the classical VRP definition, all the 

vehicles are initially located at a central depot. A vehicle 

starts its route from the central depot, visits all its pre-

determined customers, and ends the trip back at the 

central depot. The total cost is represented by the total 

accumulated distances traveled by the whole fleet to 

satisfy all the demand points. 

The VRP is a generalized form of the Traveling 

Salesman Problem (TSP). Each vehicle and its assigned 

customers can be separated and solved as a TSP, Figure 

1 shows the similarity between both problems. 
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Figure 1. Typical solution of a TSP and VRP. 

Several VRP variants are introduced by adding some 

constraints representing real-life circumstances. For 

instance, in some cases, the vehicles start their trips from 

different depots resulting in a multi-depot VRP [45]. 

Furthermore, some manufacturers collect their used 

products for proper disposal. This resulted in studying 

VRP within the context of reverse logistics [29, 33, 36, 

62]. Another extension is VRP with a heterogeneous 

fleet in which vehicles of different sizes are employed 

for product deliveries [23, 25]. Moreover, periodic VRP 

is when the demand is required to be fulfilled 

periodically [64]. Again, split delivery VRP allows 

fulfilling the demand on multiple deliveries that the 

demand may exceed the vehicle capacity [2]. In many 

cases, the problem parameters are stochastic, and hence 

stochastic VRP has been extensively studied [52, 57, 69]. 

Moreover, when customers are required to be served 

within specific time windows results in VRP with time 

Windows (VRPTW) [55]. Another recognized variant is 

the Capacitated Vehicle Routing Problem (CVRP). It 

considers capacity constraints on vehicles that the total 

demand for a set of customers served by a vehicle does 

not exceed the vehicle capacity [43, 57]. The 

mathematical model representing the CVRP [39] is 

formulated as follows: 
 

Minimize Z= ∑ ∑ ∑ Cijxijv
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xijk= {
1,   if  vehicle k travels from node i to node j,

0,   otherwise                                                        
 

I ≠ j ; I, j = 0, 1,…, N;  k= 1,…, K. 

Where Z is the objective function minimizing the total 

routing distance or cost, N is the total number of 

customers or demand points, K is the total number of 

vehicles, Q represents the capacity of a vehicle, Cij is the 

distance between the point (i) and point (j), di is the 

demand of the ith customer. Xijk is a binary decision 

variable it equals 1 if a vehicle (k) travels from a node 

(i) to another node (j). 

Constraint set (2) is to make sure that the number of 

routes is equal to the number of vehicles by setting the 

maximum number of trips leaving the depot (i= 0) equal 

to the total number of trucks (K). The constraint sets (3) 

and (4) are to make sure that for each truck there is only 

one complete route leaving and entering the depot. 

Furthermore, constraint set (5) is to assure that for each 

node i, only one arc emanates for each truck, while set 

(6) is to assure that for each node j, there is exactly one 

arc for each vehicle entering to it. This is to make sure 

that each node is visited only once. Constraint set (7) 

assures that the total demand assigned to each vehicle 

does not exceed its capacity. 

The vehicle routing problem areas extends to include 

routes optimization within industrial facilities such as 

Inventory Routing Problem (IRP). It is considered as a 

VRP and inventory management problem as it aims to 

obtain the optimal routes and inventory scheduling 

simultaneously [60].  

Technological advancement allowed collaborative 

vehicle routing. Online cooperation between the fleet of 

vehicles leads to a dramatic increase inefficiency and 

consequently reducing cost [23]. The cooperation may 

consider capacities, traffic jams, and served customers. 

For a deeper understanding of the problem view the 

research by Cruijssen et al. [14] and Guajardo and 

Rönnqvist [27]. 

The nature of the vehicle routing problem is proven to 

be NP-hard [40]. Relatively small instances can be 

solved using exact methods [13, 46]. However, the 

computational time is highly fluctuating and requires 

much effort. Therefore, heuristics and metaheuristics are 

employed to solve different size instances of the problem 

and its variants [53]. 

Cluster-first route-second is one of the methods 

utilized to solve CVRP, where the clustering phase 

represents the main step in the heuristic [9]. In the 

cluster-first route-second method, all demand points are 

grouped into several clusters. The number of clusters and 

the number of vehicles should be the same and each 

cluster must maintain the vehicle capacity constraint. 

Thus, the clustering phase can be considered as a 

Capacitated Clustering Problem (CCP). The routing 

phase takes place right after the clustering phase (route 

second). Determining routes requires setting the 

sequence to visit customers, by each vehicle, within a 

cluster [38].Various clustering approaches have been 

employed to solve complex VRP to save processing time 

[37, 56, 61]. Clustering techniques such as partitional, 
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density-based, hierarchical, and probabilistic clustering 

are among the approaches used to solve VRP.  

The authors spotted some previous studies that used 

the fuzzy theory to solve the vehicle routing problem 

since 1994. For instance, Kagaya et al. [32] considered 

fuzzy location vehicle routing problem by dividing the 

trips into groups of two relying on their fuzzy relation 

properties. Afterward, fuzzy integrals were used for 

similarity computations between the groups. The 

determined membership values approve the trips with 

higher membership. This methodology is considered of 

high flexibility and efficiency when it comes to high 

numbers of customers. This technique was used as a first 

step for solving the VRP using an optimization 

algorithm. 

Jiuh-Biing [31] employed a fuzzy clustering 

optimization for demand locations in the VRP. The 

technique considered the problem as of dynamic nature. 

The proposed technique had multi phases. Firstly, the 

demand locations should be classified and clustered 

based on predetermined priorities. After that multi-

objective optimization algorithms should be employed to 

determine the routes. This technique was applied to case 

studies and improved the performance by 20%. 

Yong et al. [70] proposed an optimization algorithm 

based on three phases. The first phase was transforming 

the customers' characteristics into a linguistic form. Then 

the fuzzy integral technique was employed to plot sub-

criteria using a fuzzy trapezoidal objective function. The 

second phase is customers' clustering using Fuzzy Sets. 

Then comes the third phase, dynamic programming for 

routes' optimization. In the same context, Yalcın and 

Erginel [67] developed a multi-objective fuzzy 

algorithm for solving VRP with line hauls and 

backhauls. The technique consists of three phases, the 

first phase is concerned with customers' clustering. In 

this stage, all the vehicles are assigned to demand points 

using two objective functions. The goal is to minimize 

the distance to be traveled by the fleet and yet maximize 

the profit accordingly. The second phase is routes' 

designs in which the problem is divided into multiple sub 

problems. The last phase is using a local search 

algorithm to improve the routes. 

Ewbank et al. [20] proposed a fuzzy clustering 

methodology to accurately analyze and predict fuzziness 

parameters for the vehicle routing problem. An 

unsupervised fuzzy learning algorithm based on Fuzzy 

c-means was proposed to solve the CVRP in a reasonable 

processing cost. Moreover, clusters’ membership values 

were used to assign the demand points to clusters by 

considering the vehicle capacity.  

Bi et al. [7] integrated fuzzy clustering with a genetic 

algorithm to improve the initialization phase as a step 

towards developing an evolutionary algorithm for 

solving VRP with multiple depots and multi-objectives.  

Marinelli et al. [43] used the fuzzy c-means clustering 

technique to develop a dynamic approach for a two-

echelon CVRP. The exact algorithm was used to obtain 

the optimal routes by dividing the problem into sub 

problems.  

Xu et al. [66] developed a multi-stage algorithm for 

the Dynamic Vehicle Routing Problem (DVRP). In the 

first stage, the dynamic model was designed based on 

customers’ satisfaction levels and cost of operation. In 

the second stage, the fuzzy C-means clustering technique 

along with a justifiable granularity principle was 

integrated to solve the problem. In a more recent study, 

Shalaby et al. [58] used unsupervised modified FCM 

algorithm in the clustering phase to solve the classical 

CVRP. However, the authors did not expose the concept 

of supervised modified FCM and did not compare the 

results with original FCM results. Therefore, in this 

paper, three supervised FCM techniques are proposed by 

employing an initialization phase. The proposed pre-

FCM initialization techniques are developed to be 

problem dependent. The three proposed initialization 

techniques are developed based on K-means technique, 

spatially equally distributed, and demand weighted 

center of mass. 

This paper is organized as follows: section 2 describes 

in details the unsupervised FCM techniques and the 

proposed supervised FCM techniques. The 

computational experimentation setup is then presented in 

section 3. In section 4, a comprehensive comparative 

study is conducted. Forty-two instances are solved to 

evaluate the efficiency of the proposed techniques. This 

is by comparing the obtained values and their optimal or 

best-known values. The advantages, and limitations of 

such algorithms are discussed. Finally, section 5 

concludes the work presented in this paper. 

2. Proposed Methodologies 

The objective of the heuristics presented in this section 

is to assign the demand nodes or customers to several 

clusters. Then the optimum route passing all customers 

within a cluster is determined. This is with the condition 

that the total demand of each cluster does not exceed the 

vehicle capacity. It is also assumed that the fleet of 

vehicles is homogeneous. First, the clustering phase 

algorithm is illustrated. Afterward, the Traveling 

Salesman Problem (TSP) model used for the routing 

phase is presented. 

2.1. Clustering Phase (FCM and Modified FCM) 

Initially, the traditional unsupervised FCM model [6] is 

used in the clustering phase with adding the clusters’ 

capacity constraints as follows: 

Minimize 𝑍 = ∑ ∑ 𝜇𝑖𝑗
𝑚‖𝑥𝑖 − 𝐶𝑗‖

2
𝑌

𝑗=1

𝑁

𝑖=1

 

𝐶𝑗 =
∑ 𝜇𝑖𝑗

𝑚𝑥𝑖

𝐷

𝑖=1

∑ 𝜇𝑖𝑗
𝑚

𝐷

𝑖=1

  

(8) 
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Where Z represents the objective function of minimizing 

the distance between the data points and the generated 

centroids, N is representing the number of customers or 

demand points, Y is the number of clusters or vehicles, m 

is the fuzziness parameter for controlling the degree of 

fuzzy overlap, with m > 1, xi is the ith data point, cj is the 

center of the jth cluster, μij is the degree of membership 

of xi in the jth cluster. Dij is the demand of the ith point in 

the jth cluster, v is the number of points within a cluster, 

Q is the capacity of a single-vehicle. 

Unsupervised FCM randomly generates the cluster 

membership values and assigns the clusters’ centers. 

Then it updates the clusters iteratively each time the 

objective function is calculated, let’s call that the inner 

loop. The stopping criterion is when the maximum 

number of inner loop iterations is achieved, or the 

improvement is less than a pre-specified value. After 

that, the demand of all data points within a cluster is 

calculated. If the demand exceeds the capacity of the 

vehicle, the algorithm starts again until the capacity 

constraint is satisfied. In other words, there is another 

type of iterations in the case of violating the vehicle 

capacity, and let’s call that the outer loop. 

When traditional unsupervised fuzzy C-means is 

used for clustering the CVRP instances, it took a 

relatively high number of outer loop iterations and 

mostly gave inconvenient results. The traditional 

unsupervised FCM objective function shown in 

Equation (8) aims to minimize the distance between data 

points and the generated centroids regardless of the 

demand. Adding clusters’ capacity constraint in the 

clustering phase causes high computational cost and 

inefficient results. Thus, a demand weighted objective 

function is employed instead of the original objective 

function as in Equation (12). Making such modifications 

is completely valid in relevance to previous studies. In 

this context, many researchers modified the FCM 

algorithm for different applications such as studies 

present in [19, 24, 30, 35]. The routing phase treats the 

clusters as separate TSP. 

𝐽𝑚 = ∑ ∑ 𝜇𝑖𝑗
𝑚 ‖

𝑥𝑖−𝐶𝑗

𝐷𝑖
‖

2𝐷

𝑗=1

𝐷

𝑖=1

 

The flowchart in Figure 2 represents the followed 

methodology of using the modified FCM algorithm for 

solving the CVRP [58]. In the beginning, the number of 

clusters is introduced as a determined input. It is set to 

be the number of vehicles dedicated to products delivery. 

The second input is the co-ordinates of the customers or 

the demand points. Then the modified FCM is executed 

to get the clusters and their assigned data points. Then 

the total demand within each cluster is compared with 

the vehicle's capacity. This is to make sure all the 

demand points within a cluster are fulfilled by one 

vehicle. If the capacity constraint is violated the 

algorithm will be initialized again with new random 

centroids until the capacity constraint is satisfied. After 

that, the depot location is added to each cluster and the 

problem is solved as multiple TSP. The algorithm was 

executed using different random values of fuzziness 

exponent (m) each iteration for each instance, 2 ≤ m ≤ 

35. Each iteration ran 15 times and the lowest output was 

recorded. 

 

Figure 2. Flowchart of modified FCM methodology [58]. 

2.2. Proposed Supervised Fuzzy C-Means 

FCM might require a high computational cost to reach 

the desired results for several reasons such as the 

random initialization, the fuzziness parameter value, the 

number of data points, and the number of inner loop 

iterations. It is not an easy task to control all these 

factors especially that some of them are non-

controllable such as the number of data points. Thus, 

controlling some of them might reduce the 

computational cost, represented by needed the number 

of outer loop iterations. The maximum number of inner 

loop iterations, minimum objective function 

improvement value, and the (m) values should be 

determined by this step for each instance.  

Shalaby [59] suggested that the computational cost 

can be reduced significantly by assigning the clusters’ 

centroids as the 1st step of the traditional FCM algorithm 

for fingerprint recognition application. This assumption 

(10) 

(11) 

(12) 
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is tested for the CVRP by forcing the FCM algorithm to 

start with assigned initial centroids by three methods. 

 Initial Centroids Based on K-means Algorithm: K-

means clustering algorithm is one of the most well-

known partitional clustering algorithms [29]. It 

begins with random centroids and ends with having 

new centroids based on minimum distances between 

data points and the new centroids. The generated 

distance-based centroids are then used as the initial 

centroids for the modified FCM algorithm. The 

flowchart in Figure.3 represents the followed 

methodology of using the K-means as an 

initialization step for generating initial centroids. 

 

Figure 3. Flowchart of K-means for generating the initial centroids for the 

modified FCM. 

 Initial Centroids: spatially equally distributed 

(SED): For the VRP problem, the cluster centers 

should normally be determined based on the 

locations of the customers to satisfy their demands 

and locations constraints. Hence, a good choice of 

initial centroids may take into consideration the 

spatial domain that contains the customers. In the 

proposed SED initialization, the boundaries of the 

customers’domain are first determined by knowing 

the maximum and minimum x,y coordinates of the 

data points. Then the centroids are distributed equally 

around the center of the working domain shaping a 

polygon. The side length (L) of the polygon is equal 

to half the distance between the domain center and 

the vertex of the working domain (V). The general 

setup for instance P-n101-k4 is shown in Figure 4 and 

generalized for all the instances. 

 

Figure 4.General setup for instance P-n101-k4 using the equal distance 

centroids method. 

 Initial Centroids Based on Demand Weighted center 

of mass (DWCM): The main idea behind this 

technique is to expect where the centroids should be 

and yet save computational cost. Conveniently, the 

best centroids should be near the high demand 

customers. Thus, instead of searching the full 

domain, the domain is reduced based on the high 

demand points as follows: 

𝑊𝑖 =
𝐷𝑖

∑ 𝐷𝑖
𝑛
1

 

𝐶𝑋 = ∑ (𝑈𝑖 . 𝑊𝑖)𝑛
1  

𝐶𝑌 = ∑ (𝐹𝑖 . 𝑊𝑖)𝑛
1  

Where Wi is the weighted demand of the point i. Di is the 

demand of the ith point. Ui is the x-component of the 

point i. Fi is the y-component of the ith point. CX is the X-

coordinate for the domain center. CY is the X-coordinate 

for the domain center. Once the domain and its weighted 

demand center of mass are determined, the equal 

distance centroids method is followed again. 

It is worth mentioning that in some cases the initially 

forced centroids lead to violated capacity. In such cases, 

the number of centroids is increased by one until the 

capacity constraint is satisfied. Adding more centroids 

means adding more clusters and more vehicles. This 

leads to increasing the overall traveled distance by the 

fleet and this is a limitation of using this method. The 

flowchart in Figure5 represents the followed 

methodology of the initialization step for generating 

initial centroids based on the proposed DWCM. 

 

2.3. Routing Phase 

After assigning customers to clusters the depot co-

ordinates are added to each cluster as the trip starting 

(13) 

(14) 

(15) 
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and ending point. Each cluster is treated as a separate 

TSP. This is due to the nature of the VRP as an NP-hard 

problem while the TSP is a complete NP problem [32]. 

Thinkaran et al. [60] formulated the TSP with subtour 

elimination constraints. TSP mathematical model is 

available in [41]. 

 

Figure 5. Flowchart generating the initial centroids for the modified 

FCM Based on DWCM. 

3. Computational Experimentation 

To test and verify the effectiveness of the proposed 

heuristics, a set of experiments are performed. The 

proposed heuristics are tested on 42 homogenous fleet 

CVRP instances from 8 different sets. Results then are 

compared with the optimal or best-known solutions. 

Sets A, B and P are developed by Augerat [3] while set 

F is developed by fisher [22]. Furthermore, sets M and 

CMT are developed by Christofides et al. [12] and set E 

was developed by Christofides and Elons [11]. Finally, 

the Golden set is developed by Golden et al. [26]. 

Most instances start with the name of the set that it 

belongs to, it is usually a letter. Then comes the number 

of data points in the form of the letter n followed by the 

number without spaces. After that comes the minimum 

number of vehicles which is also the minimum number 

of clusters in the form of the letter k followed by the 

number without spaces. For example, (P-n16-k8) is an 

instance belonging to P set and has 16 data points (15 

customers and the depot) requiring a minimum of 7 

trucks to satisfy the demand. It is worth mentioning that 

the number of vehicles is calculated by dividing the total 

demand by the truck capacity, rounding up fractions. 

Golden and CMT sets do not follow the previously 

stated nomenclature. In this paper, only Golden_1, 

Golden_2, and Golden_3 instances are solved. Golden_1 

instance has 550 data points and requires at least 9 

vehicles to satisfy the demand of all customers. 

Furthermore, the Golden_2 instance has 320 data points 

including the depot requiring a minimum of 10 trucks to 

satisfy the whole demand. On the other hand, the CMT 

sets solved in this article are CMT1, CMT12, and 

CMT14 with {50, 100, 100} data points respectively and 

requiring at least {5, 10, 11} vehicles to satisfy the 

demand of all customers. 

The instances are chosen to have different capacity 

values, demand tightness, number of customers, and 

number of vehicles. The number of customers varied 

between 31 and 399 that the number of customers is the 

total number of data points excluding the depot. The 

number of vehicles also varies between 2 and 11. The 

vehicle capacity varies between 35 and 30000. This 

variation is set to test the proposed algorithms’ 

robustness. 

Regarding FCM, there is a debate on the best fuzzy 

exponent (m) to be used for a set of data. Initially, the 

authors used random values of (m) and solved the 

problem until a good solution is obtained. Then trials to 

improve the solution take place by slightly increasing 

and decreasing the last obtained value of (m). This 

technique proved to be effective for improving the 

initially obtained solutions.  

The effect of the fuzzy exponent (m) and how to 

optimize it has been studied in many previous research 

papers such as [8, 54]. For instance, used a genetic 

algorithm to optimize the parameter (m). Okeke and 

Karnieli [52] used the Linear mixture model approach 

for selecting fuzzy exponent value. Furthermore, Choe 

and Jordan [10] used fuzzy decision theory for the 

proper selection of fuzzy exponent (m). Ewbank et al. 

[20] used a neural network to find optimum (m) for 

CVRP instances but within a discrete specific range. In 

this context, the authors are looking forward to 

developing a universal empirical equation based on the 

experimental data to predict the suitable (m) for CVRP. 

The equation should rely on average demand at each 

point and average distances from the depot in addition 

to the coefficient of variation of both the distances and 

demand. 

The clustering process stopping criteria is when the 

objective function improvement is less than a specified 

value or achieving the maximum number of iterations. 

Better results can be obtained by setting a relatively high 

number of iterations and a low minimum objective 

function improvement value. Thus, the maximum 

number of inner loop iterations for FCM is set to be 1000 

and the minimum objective function improvement value 

of 10-5. 

Computational experiments are executed using 

MATLAB 2019b software on a PC with AMD Ryzen 7 

3700X 8-core processor 3.6 GHz and 16.0 GB memory. 

Computational times for all instances range between a 

few seconds to a maximum of 15 minutes. At first, 
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random fuzziness parameter (m) values are used to solve 

the problem until a good enough solution is obtained, 

then the fuzziness exponent (m) value is changed by ± 

0.1, 0.3, and 0.5 trying to obtain a better result. Each 

iteration involves solving each cluster as a separate TSP. 

The open-source code [44] used for solving the TSP 

depends on binary integer programming. The total 

distance traveled is calculated representing the CVRP 

solution. The code is executed 5 times for each fuzziness 

exponent (m) and the best result is recorded. 

4. Comparative Study and Analysis 

The unsupervised FCM algorithms and the proposed 

supervised FCM algorithms were applied on 42 different 

instances following the previously stated methodology. 

The best solutions were recorded for comparisons. In 

order to compare the obtained solution by the different 

techniques, three metrics have been employed, namely, 

deviation, total deviation, and average deviation. These 

metrics are calculated with respect to the optimum 

solution as follows: 

Deviation% =  
𝐵𝑒𝑠𝑡−𝑂𝑝𝑡𝑖𝑚𝑢𝑚

𝑂𝑝𝑡𝑖𝑚𝑢𝑚
× 100 

Total deviation =  
∑ 𝐵𝑒𝑠𝑡−∑ 𝑂𝑝𝑡25

1
25
1

∑ 𝑂𝑝𝑡 25
1

× 100 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  
∑ 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛%

25
 

Table 1 shows the results for each algorithm and the best 

result for each instance is selected as the best obtained 

solution. It is noticed that 33 best solutions out of the 42 

are relying mainly on the modified FCM without the 

forced centroids in the initialization phase. This is 

because when we force the algorithm to start with 

specific centroids using any of the three techniques could 

limit the chances to find the best obtained solution. 

However, modified FCM took thousands of outer loop 

iterations to get best obtained solutions. On the other 

hand, for example, the demand weighted center of mass 

technique reached the same best obtained solution for 8 

instances in only one iteration. This shows the 

significance of the forced pre-FCM initialization 

technique in terms of computational cost. 

Table 1. Test problems and comparison of obtained results. 

Instance 

 
Original FCM Modified FCM 

Supervised Centroids Initialization 
Optimum/Best Known Value Best Obtained Deviation 

K-means initialization Equal Distribution Weighted Demand 

A-n32-k5 840 808* 830 837 901 784 808 3.06% 

A-n33-k6 769 761* 765 769 761* 742 761 2.56% 

A-n36-k5 857 816* 857 816* 848 799 816 2.13% 

A-n33-k5 695 687* 807 689 719 661 687 3.93% 

A-n39-k6 876 857* 869 867 858 831 857 3.13% 

A-n45-k6 1116 992* 1029 994 1029 944 992 5.08% 

B-n31-k5 694 689* 700 693 709 672 689 2.53% 

B-n41-k6 888 860* 974 942 951 829 860 3.74% 

B-n44-k7 965 931* 1022 971 1056 909 931 2.42% 

B-n51-k7 1039 1032* 1048 1035 1039 1032 1032 0.00% 

B-n35-k5 1043 994* 1052 996 1054 955 994 4.08% 

B-n43-k6 865 771* 808 816 777 742 771 3.91% 

B-n45-k6 779 715* 786 812 778 678 715 5.46% 

B-n38-k6 887 821* 860 880 864 805 821 1.99% 

P-n20-k2 241 232* 232* 238 238 216 232 7.41% 

P-n22-k2 218* 218* 218* 218* 218* 216 218 0.93% 

P-n21-k2 213* 213* 213* 213* 213* 211 213 0.95% 

P-n45-k5 535 518* 556 543 520 510 518 1.57% 

P-n50-k7 595 571* 595 585 575 554 571 3.07% 

P-n50-k8 678 665* 700 727 697 631 665 5.39% 

P-n55-k8 654 599* 642 654 614 576 599 3.99% 

P-n55-k7 603 584* 622 627 589 568 584 2.82% 

P-n76-k4 615 609* 620 617 609* 593 609 2.70% 

P-n76-k5 646 645* 771 653 655 627 645 2.87% 

P-n40-k5 663 468* 493 537 480 458 468 2.18% 

P-n16-k8 491 452* 455 471 471 450 452 0.44% 

P-n101-k4 789 701* 709 711 705 681 701 2.94% 

M-n101-k10 875 825* 829 860 829 820 825 0.61% 

M-n121-k7 1153 1086* 1130 1157 1087 1034 1086 5.03% 

F-n45-k4 925 736* 736* 750 739 724 736 1.66% 

F-n72-k4 258 252* 266 287 254 237 252 6.33% 

E-n22-k4 383* 383* 390 395 383* 375 383 2.13% 

E-n23-k3 569* 569* 569* 569* 569* 569 569 0.00% 

E-n30-k3 605 553* 606 608 607 534 553 3.56% 

E-n51-k5 567 537* 575 618 540 521 537 3.07% 

E-n76-k7 745 720* 730 744 731 682 720 5.57% 

CMT1 543 554 580 542* 543 524.61 542 3.31% 

CMT12 829* 837 838 876 829* 819.56 829 1.15% 

CMT14 877 881 892 872 868* 866.37 868 0.19% 

Golden_1 5774* 5868 5868 6342 6342 5627.54 5774 2.60% 

Golden_2 8876 8728* 8728* 9410 8924 8447.92 8728 3.32% 

Golden_3 11564* 11614 11831 11716 11720 11036.22 11564 4.78% 

* Best value obtained among the FCM version. 

The modified fuzzy c-means approachreaches 

optimum or near optimum solution for the 42 instances. 

The maximum deviation from optimum recorded 

is7.4%. The deviation percentage is calculated according 

to Equation (16), and the total deviation from optimum 

for the 42 test instances combined is3.7%, according to 

Equation (17), while the average deviation is 3.1%, 

(16) 

(17) 

(18) 
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according to Equation (18). The results can be refined if 

better fuzzy exponent (m) values are employed. It is 

noted that the algorithm has high efficiency and robust 

regardless of the size of the problem. Moreover, the 

solution quality is not affected by the tightness of the 

instances, as the maximum error recorded for the highly 

most tight problem (0.99 tightness) did not exceed 7.4%. 

Summary calculations for all the heuristic versions are 

presented in Table 2. 

Table 2. Comparison of modified FCM versions' results. 

 

Some of these instances are solved in a recent study 

by Korayem et al. [40]. Korayem et al. used the grey 

wolf algorithm [44], hybridized with k-means to solve 

the problem. Korayem has obtained excellent results but 

with a limited number of customers (i.e., between 31 

and 76). Besides, the capacity of vehicles did not exceed 

300. The results of the proposed modified FCM 

approach are generally close to Korayem's results. 

Moreover, in a more recent study in 2019, Ewbank et al. 

[21] developed an improved fuzzy c-means algorithm 

for allocating customers to routes. This is after 

determining the number of clusters using a memetic 

algorithm. In their studies, they have solved some of the 

Augerat [66] instances. Again, the number of customers 

(i.e., between 31 and 100) and the capacity of the 

vehicles didn't exceed 400. Table3 shows a comparison 

between the common instances solved using the 

proposed FCM approach and those solved in [21, 38]. 

It is seen from Table 3thatsome of the results 

obtained in [21, 38] for the common instances are 

slightly better than those obtained by the proposed 

modified FCM techniques. However, the proposed 

modified FCM techniques are developed straight 

forward based only on a clustering technique. On the 

other hand, the solution technique proposed in [38] is a 

technique that utilizes the traditional k-means clustering 

algorithm, hybridized with grey wolf optimizer. 

Furthermore, the solutions obtained from [21] are based 

on using fuzzy c-means along with a memetic algorithm 

and local search algorithm. Hence, the proposed FCM-

based techniques are simpler and straightforward 

solution for obtaining reliable solutions for CVRP. 

5. Conclusions 

 CVRP is well recognized for its importance. Cluster-

First Route-Second (CFRS) is one of the techniques 

widely used to solve CVRP. (FCM) clustering 

algorithm is known for its efficiency in solving 

clustering problems. This paper developed three 

heuristics based on the cluster-first route-second 

method to solve CVRP. The three proposed heuristics 

solved the clustering phase of CFRS using supervised 

FCM, then the routing phase was solved using 

traditional traveling salesman problem optimization 

methods. A modified demand weighted supervised 

FCM clustering algorithm was employed in the three 

heuristics, along with three different pre-initialization 

techniques, namely, K-means, spatially equal 

distributed, and demand weighted center of mass.  

The proposed heuristics were tested on 42 instances 

with different characteristics. The results obtained from 

the three pre-FCM initialization techniques were 

compared with each other and with the traditional and 

modified unsupervised fuzzy c-means algorithms, in 

addition to the most recent techniques available in the 

literature. It was found that for the CVRP, the proposed 

supervised FCM techniques are capable of achieving the 

best obtained solution for some instances at a significant 

reduction of computational cost. For the remaining 

instances, the proposed techniques were also able to 

achieve reasonable solutions at the significant reduction 

of computational cost in comparison to other recent 

FCM based techniques. 

Table 3. Comparison of FCM versions' results and [40, 69]. 

Instance 
Deviation from Optimum Difference 

Best Obtained [69] [38] [69] [38] 

A-n32-k5 3.1% 3.6% - -0.5% - 

A-n33-k6 2.6% 1.9% 1.6% 0.7% 1% 

A-n36-k5 2.1% 2.1% 1.9% 0.0% 0.2% 

A-n33-k5 3.9% 2.9% - 1.0% - 

A-n39-k6 3.1% 1.7% 0.7% 1.4% 2.4% 

B-n31-k5 2.5% 0.6% 0.0% 1.9% 2.5% 

B-n41-k6 3.7% 2.7% 1.9% 1.0% 1.8% 

B-n44-k7 2.4% 2.1% 3.4% 0.3% -1% 

B-n35-k5 4.1% 2.6% - 1.5% - 

B-n43-k6 3.9% 3.4% - 0.5% - 

B-n38-k6 2.0% 3.7% - -1.7% - 

P-n20-k2 5.5% 0.9% 0.5% 4.6% 5.0% 

P-n22-k2 0.9% 0.5% 0.0% 0.4% 0.9% 

P-n21-k2 0.9% 3.8% 0.0% -2.9% 0.9% 

P-n45-k5 1.6% 0.4% 0.0% 1.2% 1.6% 

P-n50-k7 0.9% 4.5% - -3.6% - 

P-n55-k8 4.0% 3.1% 3.1% 0.9% 0.9% 

P-n55-k7 2.8% 12.4% - -9.6% - 

P-n76-k4 3.4% 2.7% 3.5% 0.7% -0.1% 

P-n76-k5 2.2% 1.4% 1.3% 0.8% 0.9% 

P-n40-k5 2.2% 2.2% - 0.0% - 

P-n101-k4 2.9% 4.1% - -1.2% - 
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