
510 The International Arab Journal of Information Technology, Vol. 12, No. 5, September 2015

Enhancing Generic Pipeline Model for Code Clone

Detection using Divide and Conquer Approach

Al-Fahim Mubarak-Ali
1
, Sharifah Syed-Mohamad

1
, and Shahida Sulaiman

2

1
School of Computer Sciences, University Sains Malaysia, Malaysia
2
Faculty of Computing, University Technology Malaysia, Malaysia

Abstract: Code clone is known as identical copies of the same instances or fragments of source codes in software. Current

code clone research focuses on the detection and analysis of code clones in order to help software developers identify code

clones in source codes and reuse the source codes in order to decrease the maintenance cost. Many approaches such as textual

based comparison approach, token based comparison and tree based comparison approach have been used to detect code

clones. As software grows and becomes a legacy system, the complexity of these approaches in detecting code clones

increases. Thus, this scenario makes it more difficult to detect code clones. Generic pipeline model is the most recent code

clone detection that comprises five processes which are parsing process, pre-processing process, pooling process, comparing

processes and filtering process to detect code clone. This research highlights the enhancement of the generic pipeline model

using divide and conquer approach that involves concatenation process. The aim of this approach is to produce a better input

for the generic pipeline model by processing smaller part of source code files before focusing on the large chunk of source

codes in a single pipeline. We implement and apply the proposed approach with the support of a tool called Java Code Clone

Detector (JCCD). The result obtained shows an improvement in the rate of code clone detection and overall runtime

performance as compared to the existing generic pipeline model.

Keywords: Code clone detection, divide and conquer approach, generic pipeline model.

Received August 31, 2012; accepted February 23, 2014; published online September 4, 2014

1. Introduction

Code clones are fragments of a source code that form

clone pairs based on a given definition of similarity

[2]. Three types of code clone include Type 1, Type 2

and Type 3 [15]. Type 1 is an exact copy without

modifications with exception to white space and

comments. Type 2 identifies identical copy

syntactically. It only allows changes to variable, type

or function identifiers. Type 3 is a copy code with

further modifications. Modification involves

statements that are changed, added or removed.

Programmers use code clone to speed up development

process. This occurs when a new requirement is not

fully understood and a similar piece of code is present

in the system that is not designed for reuse [8]. The

programmers usually follow the low cost copy-paste

technique instead of the costly redesigning approach,

hence causing code clones. There are three scenarios

contribute to cloning [11]. The first scenario is clones

caused by poor design. These clones can be removed

by replacing it with functions or through the

refactoring process but technically there will be risks

that might cause the clone removal process difficult.

The second scenario is between long-lived clones and

temporary clones [11]. Long-lived clones are clones

that have existed in a program for a time while

temporary clones only exist during the creation of the

program. The third scenario is an essential clone that

cannot be eliminated from the program [11]. This

scenario occurs due to simplification of code as a

prime reason for clone removal and restriction of

programming language or design techniques.

Furthermore, clones cannot be eliminated if the

elimination of the clone affects quality of program.

Code clones cause unnecessary increase of

maintenance cost. This happens due to the frequent

changes carried out on clone instances [6]. If a code

contains a bug, there is possibility that other code clone

contains the same bug that needs to be fixed. Hence,

this increases maintenance work not only due to the

increase of the number of code clone but also bugs that

exist in the code clone itself [17]. As software evolves

rapidly, maintaining software becomes costly. Many

tools exist to detect and remove code clones but as the

software grows and becomes legacy, complexity of

existing code clone detection techniques in detecting

fully similar parts of the source code increases [2].

This makes code clones are difficult to be detected in

software. Since, software maintenance is estimated

more than half of a software development cost [9],

therefore necessary measure needs to be taken in order

to increase software maintenance productivity is by

eliminating causes of code cloning. Therefore, this

research highlights the needs of reducing clones in

development stage.

This paper highlights the enhancement of generic

pipeline model [3] using divide and conquers approach

Enhancing Generic Pipeline Model for Code Clone Detection Using Divide and Conquer Approach 511

that promotes concatenation process for code clone

detection. Section 2 reviews current work related to

code clone detection. Section 3 describes the proposed

enhancement that has been made to the model. Section

4 explains the implementation flow while section 5

shows the experimental setup for testing purposes.

Section 6 discusses the results and threats to the

validity of the work and finally this paper is concluded

in section 7.

2. Related Work

Various techniques and approaches such as textual

comparison, token based comparison and comparison

of Abstract Syntax Trees (AST) have been applied in

detecting code clones [15].

Textual based comparison uses source code line to

source code line comparison in order to find code

clones in the same partition. It is among the earliest

techniques for code clone detection. It has further

evolved to the metric based comparison where the

distance between metrics is used to compare the source

codes. Tree based comparison [13] uses partition sub

trees of the abstract syntax tree of a program based on

a hash function and then compare sub trees in the same

partition through a few techniques such as tree

matching or dynamic programming [8]. Clone tracker

[7] is an example of a tool that uses this approach with

dynamic programming. DECKARD [13] uses this

technique with tree matching technique. On the other

hand, token-based comparison approach [14] uses

token sequences, which contain lines of source code to

detect code clone. It is a widely used approach for code

clone detection. The tokens are differentiated uniquely

using hash function. CCFinder [14] is a famous tool

that uses this approach. This tool uses the combination

of token-based comparison clone detecting technique

with transformation rules.

Generic pipeline model [3] is a flexible yet

extensible code clone detection model that contains all

required steps in a code clone detection process. This

model gives more freedom to the user to customize

each process according to their needs. Java Code Clone

Detection (JCCD) [4] is a code clone detection tool

that implements this model.
Although, generic pipeline model [3] is an effective

model for code clone detection due to its flexibility and

extendibility, yet its inefficient way in handling source

files as an input leads to a decrease in its performance.

Furthermore, the generic pipeline model is highly

dependent on number of pipelines to cater source file

inputs, therefore causes load processing problem. The

optimization on load processing has been done as non-

automated process on CCFinder [14] but, it is only on

a large source code prior to code clone detection

process begins. Even though it is the first process done

before clone detection, it is not an automated process

that is embedded in the CCFinder [14] tool. Therefore,

concatenation process that adopts the divide and

conquers approach is proposed to improve the load

processing of the source file as an input for the generic

pipeline model.

3. Divide and Conquer Approach in

Generic Pipeline Model

The generic pipeline model [3] uses a combination of

processes to detect code clone. It is a flexible yet

extensible code clone detection process that contains

all required steps in a clone detection process. There

are five processes involved in this model that are

parsing process, pre-processing process, pooling

process, comparing process and filtering process.

Parsing process is a process that transforms source

code into source units. Source unit indicates the start

and end of a fragment in a source file. A source unit

might be represented in many forms such as a subtree

of an AST, a line or a subgraph of a program

dependence graph. The representation of a source unit

is highly dependent on the approach that has been

used. Furthermore, every approach requires different

additional techniques like a line extractor, a lexer or a

parser.

The source units are then normalized in the second

process, which is the pre-processing process.

Normalization turns the source units into a regular

form and makes different source units to be more

similar. It uses AST as the input and pre-processed

AST as the output. It is implemented using several-

cascaded processor. The normalization process

changes a set of source units into regular form thus it

makes different source units to be more similar.

The pre-processed AST source unit is then grouped

into a set of groups according to defined characteristics

based on the criteria set by users in the pooling

process. The set of groups is called as a pool. The pool

is then processed sequentially by comparing all

contained source units recursively in the comparing

process. This pool is then inputted to the filtering

process in order to remove irrelevant clone candidate

sets from the result set. This process is utilized in

removing non-relevant candidate sets out of the result

set.

The disadvantage of the generic pipeline model is

that it is highly dependent on the use of single pipeline

to cater all the process in the model [3]. This causes

bottleneck in the pipeline due to the concurrent running

of the process, which affects the runtime performance

of the generic pipeline model. Another disadvantage of

this model within its implemented tool that is JCCD

allows pipeline manipulation for clone detection in

large source files. Therefore, it causes the overhead

cost such as the computer processors to increase [4].

Furthermore, each source file name and location has to

be entered one by one into JCCD [4]. Hence, it

increases the effort to enter a large amount of source

512 The International Arab Journal of Information Technology, Vol. 12, No. 5, September 2015

files into the tool. In order to, overcome the problem,

we propose divide and conquer approach that includes

a concatenation process as an enhancement to the

current generic pipeline model [16]. It also improves

code clone detection for similar code paths and solves

the load processing problem.The common divide and

conquer approach consists of three major steps [5].

• Step 1: Is breaking the source into sub problems that

are themselves smaller instances of the same type of

problem.

• Step 2: Is recursively solving these sub problems.

• Step 3: Is appropriately combining all the solved

problems.

In order to solve the current problem, the first and

second step is combined while the third step is

replaced by a step named refactoring step. Below

shows the pseudo code of the divide and conquer

approach that is applied in the concatenation process.

Algorithm 1: Concatenation process

Source file, [S1, S2, S3, ..., Sn]

Sub source file:[T1, T2, T3, ..., Tn]

Function, [F1, F2, F3 ..., Fn]

1. For each source file S1,

2.Check function, Fn exist,

3. If function does not exist

4. discard source file S1,

5. Else

6. For each existing function, Fn

7. check function, Fn type

8. For each function, Fn is nested or loop

9. divide source file, S1 into sub source file [T1,

 T2, T3, ..., Tn]

10. For each function count >=2

11. divide source file, S1 into sub source file

 [T1, T2, T3, ..., Tn]

12. Repeat on other source file, [S2, S3, ..., Sn]

13. Refactor all the sub source files, [T1, T2, T3, ...Tn]

The combined first and second step is applied by
breaking a source file into sub source files based on
singular and nested functions. This process is
recursively done on all the functions that exist in the
source file. The combined step is then continued on
other source files that exist in a program until all the
source files have gone through this combined step.
During this combined steps, empty source files and
source files that do not have any function existence are
removed from the Java application.
The third step is the refactoring step. This step is to

refactor all the functions that exist in the sub source
files. This is to preserve the structure of the functions
that exist in the sub source file.

4. The Implementation

There are three main components involved in the
concatenation process. Figure 1 illustrates the
components involved together with the divide and
conquer and approach that is applied as part of the
concatenation process.

Figure 1. Divide and conquer approach in the concatenation

process.

The first component is the input. The input currently

limits to Java source codes since, the generic pipeline

only supports this language. As for testing the

enhanced generic pipeline model, this study uses Java

applications of different amount of lines of codes and

different amount of source files.

The second component is the concatenation process

that speeds up the load processing by focusing on the

smaller part of source code files before working on the

large chunk of source code in a single pipeline. This

concatenation process partially adopts parallel

concatenation approach. Source codes in a source file

are segmented iteratively based on function type,

which is singular and nested type functions. This

process is done until all the functions are segmented

out and represented in the form of sub source files. The

function definition of the concatenation process is

shown below:

• F: Be the set of all source code files.

• G=F×N×N×N×N×C be the set of all sub source files.

• C: Be the set of concatenation sub source file.

• P (F): Is the power set of F.

Therefore, the concatenation step is defined by a

function of:

concat: P(F) → P(G)

The third and final component is the output. The output

of the concatenation process is the concatenated sub

source files. These concatenated sub source files are

stored in a folder. It serves as an input for the next

process in the generic pipeline model, which is the

parsing process. As mentioned in the previous section,

parsing process is the first process in the generic

pipeline model, which transforms source code into

source units. The concatenated sub source files serves

as a better input for the generic pipeline model.

There are three main modules used in the

implementation of the concatenation process that are:

readLine() function module, extractFile() function

module and concatFile() function module. Figure 2

Divide and Conquer Approach

Next Source

File

Refactoring Step

Java

Application

Concatenated

Sub Source File

public Tokenizer (File file)
{

This.file=file;

}

Sample Output

Sub Source File

Singular

Function
Nested

Function

public void Tokenize ()

{
Try{
readFile();
} catch(Eception UOE);
{
System.out.println(UOE)
;
}

}

Divided into

Source Files

Enhancing Generic Pipeline Model for Code Clone Detection Using Divide and Conquer Approach 513

illustrates the implementation flow of the

concatenation process.

Figure 2. Concatenation process implementation flow.

The first module of the implementation is

readLine() function module. Figure 3 shows the flow

of readLine() function module. The purpose of this

function module is to read each line from the source

file and store into the array. The process starts with

reading source file. This recursive process removes

empty source files and irrelevant files and keeps source

files that only contain Java source codes in a Java

application. The process continues with the reading of

source code line in the source file. This is a recursive

process to make sure each line of source codes has

been read and empty source code line has been

removed. Each line in the source file is stored in an

array separately. The set of arrays is then used in the

next module function for function extraction. Figure 5

illustrates readLine() function module flow that is

applied in the concatenation process.

Figure 3. ReadLine() function module flow.

The second module of the implementation is
extractFile() function module. extractFile() function
module is the first module in the concatenation process
implementation. The purpose of this function is to
extract the functions from the original source file and
store it into sub source file before it is being
concatenated. Since, the extraction is done on
functions, there are few conditions that need to be
considered in order to detect the functions. These
conditions are to distinguish between functions and
basic declarations that exist in the source file.

The conditions are:

1. Backslash and front slash (/, \): The backslash and
front slash are used for commentary purposes. This
becomes an issue if there are functions highlighted
in the comments.

2. Curly brackets ({, {) and semicolon (;): Curly
brackets and semicolons are used to open and close
the function. The issue arises for curly brackets that
are not used or commented. The detected functions
are stored in a newly created source file and are then
concatenated. The sub source files are then used as
input for the other process in the generic pipeline
model.

The third module is the concatFile() function module.
The purpose of this function module is to reformat and
preserve each code structure in the sub source file. This
is to make sure that all the criteria for a function exist
and the structures of the functions are in proper.

5. Experimental Results

Three open source applications that are JHotDraw
7.0.6 [12], ANTLR 4 [1] and SableCC 3.2 [18] provide
the data set to evaluate the enhanced generic pipeline
model. These Java applications have proven to have
occurrences of clones in their source codes [10]. The
experiment used a workstation with the specification of
1.73GHz quad core CPU, 4GB of memory with
Windows 7 as its operating system. JCCD [4] supports
the implementation of the proposed approach and its
testing. It is a tool for code clone detection that uses
the generic pipeline model in detecting similar code
parts. Each process of the model is implemented
separately and integrated together in the tool. This
research enhances the tool by adding and integrating
the concatenation process, as the first process in the
tool.

5.1. Code Clone Detection

Table 1 shows the amount of code clones that have
been detected in JHotDraw 7.0.6, SableCC 3.2 and
ANTLR 4 using both generic pipeline and enhanced
generic pipeline model.

Table 1. Code clone detection results.

Application
Clone Detected using Generic

Pipeline Model

Clone Detected using Enhanced

Generic Pipeline Model

JHotDraw 7.0.6 2322 2336

SableCC 3.2 2072 2084

ANTLR 4 326 330

There were 2322 clones detected in JHotDraw 7.0.6
using the generic pipeline model but the number of
clones detected increased 0.6% to 2336 using the
enhanced generic pipeline model. As for SableCC 3.2,
there were 2072 clones detected using the generic
pipeline model but, the number of clones detected
increased 0.57% to 2084 using the enhanced generic
pipeline model. There were 326 clones detected in
ANTLR 4 using the generic pipeline model but the
number of clones detected increased 1.2% to 330 using

Read Source

Go Next Source File

Go Next Source Code Line

Read Each Source Code Line

Store Line into Array

Source File

Empty?

Source Code
Line is

Empty?

No

No

Yes

Yes

Source File

Concatenated Sub Source File

readLine() Function Module

extractLine() Function Module

concateFile() Function Module

Concatenation Process

Implementation

514 The International Arab Journal of Information Technology, Vol. 12, No. 5, September 2015

the enhanced generic pipeline model. Based on the
comparison done, it shows the detection rate of code
clone for all the applications increased. Therefore, the
enhanced generic pipeline managed to detect more
code clones as compared to the generic pipeline model.

5.2. Runtime Performance

1. Parsing Process: Figure 4 shows the runtime of the

parsing process using both generic pipeline and

enhanced generic pipeline model.

T
im
e
(i
n
 M
il
li
se
co
n
d
)

 JHotDraw 7.0.6 SableCC 3.2 ANTLR 4

 Sample Data

 � Generic Pipline Model � Enhanced Generic Pipline Model

 Figure 4. Parsing process runtime performance.

The runtime of the parsing process is 309.82
millisecond in JHotDraw 7.0.6 by using the generic
pipeline model but the runtime increased 16% to
361.69 millisecond using the enhanced generic
pipeline model. As for SableCC 3.2, runtime of the
parsing process is 859.02 millisecond by using the
generic pipeline model but the runtime decreased
73.9% to 224.26 millisecond using the enhanced
generic pipeline model. The runtime detected in
ANTLR 4 is 2785.90 millisecond by using the
generic pipeline model but the runtime decreased
92.1% to 218.86 millisecond using the enhanced
generic pipeline model.
Based on the comparison done, it shows that the

runtime of the parsing process decreased for
SableCC 3.2 and ANTLR 4 but increased for
JHotDraw 7.0.6. The increase runtime of the parsing
process in JHotDraw 7.0.6 is might be influenced by
the length of code in a function for detecting code
clone. Since, parsing is the process of producing
source units by determining the start and end point,
it takes more time for functions that has lengthy
source code lines to be determined as source units.
Therefore, the functions in JHotDraw 7.0.6 might
have contained lengthy source codes thus causing
the runtime to increase.

2. Pre-Processing Process: Figure 5 shows the runtime
of the pre-processing process using both generic
pipeline and enhanced generic pipeline model.

T
im
e
(i
n
 M
il
li
se
co
n
d
)

 JHotDraw 7.0.6 SableCC 3.2 ANTLR 4

 Sample Data

 � Generic Pipline Model � Enhanced Generic Pipline Model

 Figure 5. Pre-processing process runtime performance.

The runtime of the pre-processing process is

231.84 millisecond in JHotDraw 7.0.6 by using the

generic pipeline model but the runtime increased

16.3% to 269.68 millisecond using the enhanced

generic pipeline model. As for SableCC 3.2,

runtime of the pre-processing process is 268.50

millisecond using the generic pipeline model but the

runtime decreased 52.3% to 128.05 millisecond

using the enhanced generic pipeline model. The

runtime detected in ANTLR 4 is 247.76 millisecond

using the generic pipeline model but the runtime

increased 30.8% to 324.15 millisecond using the

enhanced generic pipeline model.

Based on the comparison done, it shows that the

runtime of the pre-processing process decreased for

SableCC 3.2 but increased for JHotDraw 7.0.6 and

ANTLR 4. The increase runtime of the pre-

processing process in JHotDraw 7.0.6 and ANTLR

4 is might be influenced by the amount of white

spaces that exists in the source units and also the

process of adding additional notations to the source

units. Since, pre-processing is the process of

normalizing and adding additional notations of

source units, it takes more time for functions that

has a lot of whitespaces and the use of additional

annotations in normalizing the source units.

Therefore, the source units in JHotDraw in 7.0.6 and

ANTLR 4 might have contained a lot of

whitespaces in it thus causing the runtime to

increase.

3. Pooling Process: Figure 6 shows the runtime of the

pooling process using both generic pipeline and

enhanced generic pipeline model.

 T
im
e
(i
n
 M
il
li
se
co
n
d
)

 JHotDraw 7.0.6 SableCC 3.2 ANTLR 4

 Sample Data

 � Generic Pipline Model � Enhanced Generic Pipline Model

 Figure 6. Pooling process runtime performance.

The runtime of the pooling process is 960.98
millisecond in JHotDraw 7.0.6 by using the generic
pipeline model but the runtime decreased 2.4% to
937.69 millisecond using the enhanced generic
pipeline model. As for SableCC 3.2, runtime of the
pooling process is 78.43 millisecond by using the
generic pipeline model but the runtime decreased
30% to 58.85 millisecond using the enhanced
generic pipeline model. The runtime detected in
ANTLR 4 is 847.70 millisecond by using the
generic pipeline model but the runtime decreased
53.8% to 391.62 millisecond using the enhanced
generic pipeline model.
Based on the comparison done, it shows that the

runtime of the pooling process decreased for all the

Enhancing Generic Pipeline Model for Code Clone Detection Using Divide and Conquer Approach 515

sample data. Therefore, the enhanced generic

pipeline was able to reduce the runtime of the

pooling process as compared to the generic pipeline

model.

4. Comparing Process: Figure 7 shows the runtime of

the comparing process using both generic pipeline

and enhanced generic pipeline model.

 T
im
e
(i
n
 M
il
li
se
co
n
d
)

 JHotDraw 7.0.6 SableCC 3.2 ANTLR 4

 Sample Data

 � Generic Pipline Model � Enhanced Generic Pipline Model

 Figure 7. Comparing process runtime performance.

The runtime of the comparing process is 1181.25
millisecond in JHotDraw 7.0.6 by using the generic
pipeline model but the runtime decreased 73.5% to
314.20 millisecond using the enhanced generic
pipeline model. As for SableCC 3.2, runtime of the
comparing process is 817.17 millisecond by using
the generic pipeline model but the run time
decreased 25.1% to 611.67 millisecond using the
enhanced generic pipeline model. The runtime
detected in ANTLR 4 is 27.02 millisecond by using
the generic pipeline model but the runtime increased
81.4% to 55.02 millisecond using the enhanced
generic pipeline model.
Based on the comparison done, it shows that the

runtime of the comparing process decreased for
JHotDraw 7.0.6 and SableCC 3.2 but increased for
ANTLR 4. The increase in runtime of the
comparing process in ANTLR 4 is might be
influenced by the amount of pools exist in ANTLR
4. Since comparing is a recursive process of
comparing pools to form similarity group, it takes
more time for applications that has a lot of pools.
Therefore, there might have been a lot of pools in
ANTLR 4 thus causing the runtime to increase.

5. Filtering Process: Figure 8 shows the runtime of the

filtering process using both generic pipeline and

enhanced generic pipeline model.

 T
im
e
(i
n
 M
il
li
se
co
n
d
)

 JHotDraw 7.0.6 SableCC 3.2 ANTLR 4

 Sample Data

 � Generic Pipline Model � Enhanced Generic Pipline Model

 Figure 8. Filtering process runtime performance.

The runtime of the filtering process is 36.30
milliseconds in JHotDraw 7.0.6 by using the generic
pipeline model but, the runtime increased 11% to
40.77 millisecond by using the enhanced generic

pipeline model. As for SableCC 3.2, runtime of the
filtering process is 383.03 millisecond by using the
generic pipeline model but the runtime decreased
92.2% to 29.97 millisecond using the enhanced
generic pipeline model. The runtime detected in
ANTLR 4 by using the generic pipeline model and
the enhanced generic pipeline model are the same
which is 0.01 milliseconds.
Based on the comparison done, it shows that the

runtime of the filtering process increased for
JHotDraw 7.0.6, decreased for SableCC 3.2 and
stayed the same for ANTLR 4. The increase in
runtime of filtering process in JHotDraw 7.0.6 is
might be influenced by the amount of irrelevant
clones in JHotDraw 7.0.6. Since, filtering is a
process of filtering of the similarity group in
removing irrelevant code clone candidates, it takes
more time for applications that has a lot of irrelevant
code clones to be removed. Therefore, there might
have been a lot of irrelevant code clones in
JHotDraw 7.0.6 thus makes the runtime to increase.
As for ANTLR 4, the unchanged runtime might be
influenced by the very minimal occurrence of
irrelevant code clones.

6. Overall Runtime Process: Figure 9 shows the

runtime of the filtering process using both generic

pipeline and enhanced generic pipeline model.

T
im
e
(i
n
 M
il
li
se
co
n
d
)

 JHotDraw 7.0.6 SableCC 3.2 ANTLR 4

 Sample Data

 � Generic Pipline Model � Enhanced Generic Pipline Model

 Figure 9. Overall runtime performance.

The overall runtime performance in JHotDraw 7.0.6
using the generic pipeline model is 2720.19
millisecond but the runtime decreased 10.1% to
2446.03 millisecond by using the enhanced generic
pipeline model. As for SableCC 3.2, overall runtime
performance is 2406.15 millisecond by using the
generic pipeline model but the overall runtime
decreased 49.9% to 1203.8 millisecond using the
enhanced generic pipeline model. The overall runtime
detected in ANTLR 4 by using the generic pipeline
model is 3902.57 millisecond but decreased 62.9% to
1444.66 millisecond by using the enhanced generic
pipeline model.
Based on the comparison done, it shows that the

overall runtime decreased for all the sample data.
Therefore, this shows that the enhanced generic
pipeline model was able to reduce the overall runtime
as compared to the generic pipeline model.

6. Discussion

As shown from the results, overall process time for

JHotDraw 7.0.6, SableCC 3.2 and ANTLR 4 using the

516 The International Arab Journal of Information Technology, Vol. 12, No. 5, September 2015

enhanced generic pipeline model is lesser compared to

the generic pipeline model. This shows that the

proposed enhancement using divide and conquer

approach in concatenation process managed to increase

the performance of the previous model by reducing the

process time of the model. In addition, the enhanced

generic pipeline model was also able to detect the code

clones for the singular and nested type of functions.

Although, the results show improvement, yet there are

issues that might cause threats to the validity of the

results. The issues are sample selection, sample size,

code structures, and hardware specification.

1. Sample Selection: Sample data used for the testing

are open source applications since there is no

standard sample data available for code clone

detection. Furthermore, the amount of code clone

and function existence are unknown in the open

source applications causing the difficulty in

knowing the total of code clones and functions that

exist in the applications.

2. Sample Size: Sample size refers to the amount of

applications used as sample data. The sample size

used for the evaluation is three open source

applications with different amount of Line Of Codes

(LOC) and source files. The results might vary with

more sample data with a bigger amount of LOC and

source files.

3. Code Structures: The code structure varies for each

open source application due to various reasons such

as coding convention, system architecture and

coding styles used by the programmers. Therefore,

the code clone structure is also affected due to the

variant in code structures.

4. Hardware Specification: The current workstation

specification used for experiment enables the

process that is limited to 400 source files or 60000

LOC. A higher memory and CPU workstation may

give a better overall runtime performance.

7. Conclusions

Many techniques and tools for detecting and removing
clone detection have been described in the literature.
Generic pipeline model which is implemented in JCCD
is an approach that contains the combination of five
processes to detect code clones. However, the
dependency of the processes in a single pipeline causes
bottleneck problem in the generic pipeline model.
In this paper, a divide and conquer approach that

includes concatenation process is proposed as an
enhancement to the existing generic pipeline model in
order to improve the load processing of the generic
pipeline model. The output of the proposed
enhancement that is the concatenated sub source file
serves as a better input as compared to a normal source
file. The experiment shows that the enhancement of the
generic pipeline model for code clone detection is able
to detect similar parts of code clones and also increase
the performance of code clone detection as a whole.

References

[1] ANTLR Parser Generator., available at:

http://www.antlr.org/, last visited 2012.

[2] Bellon S., Koschke R., Antoniol G., Krinke J.,

and Merlo E., “Comparison and Evaluation of

Clone Detection Tools,” IEEE Transactions on

Software Engineering, vol. 33, no. 9, pp. 577-

591, 2007.

[3] Biegel B. and Diehl S., “Highly Configurable and

Extensible Code Clone Detection,” in

Proceedings of the 17
th
 Working Conference on

Reverse Engineering, Massachusetts, USA, pp.

237-241, 2010.

[4] Biegel B. and Diehl S., “JCCD: A Flexible and

Extensible API for Implementing Custom Code

Clone Detectors,” in Proceedings of IEEE/ACM

International Conference on Automated Software

Engineering, Antwerp, Belgium, pp. 167-168,

2010.

[5] Dasgupta S., Papadimitriou C., and Vazirani U.,

Algorithms, McGraw Hill, New York, USA,

2006.

[6] Deissenboeck F., Hummel B., Juergens E.,

Pfaehler M., and Schaetz B., “Model Clone

Detection in Practice,” in Proceedings of the 4
th

International Workshop on Software Clones,

Cape Town, South Africa, pp. 57-64, 2010.

[7] Duala-Ekoko E. and Robillard M., “Tracking

Code Clones in Evolving Software,” in

Proceedings of the 29
th
 International Conference

on Software Engineering, Minnesota, USA, pp.

158-167, 2007.

[8] Hou D., Jacob F., and Jablonski P., “Exploring

the Design Space of Proactive Tool Support for

Copy-and-Paste Programming,” in Proceedings

of the 2009 Conference of the Center for

Advanced Studies on Collaborative Research,

Ontario, Canada, pp. 188-202, 2009.

[9] Ibrahim S., Idris N., Munro M., and Deraman A.,

“Integrating Software Traceability for Change

Impact Analysis,” the International Arab Journal

of Information Technology, vol. 2, no. 4, pp. 301-

308, 2005.

[10] Ishio T., Date H., Miyake T., and Inoue K.,

“Mining Coding Patterns to Detect Crosscutting

Concerns in Java Programs,” in Proceedings of

the 15
th
 Working Conference on Reverse

Engineering, Antwerp, Belgium, pp. 123-132,

2008.

[11] Jarzabek S. and Xue Y., “Are Clones Harmful for

Maintenance?” in Proceedings of the 4
th

International Workshop on Software Clones,

Cape Town, South Africa, pp. 73-74, 2010.

[12] JHotDraw., available at: http://www.randelshofer

.ch/oop/jhotdraw/, last visited 2012.

[13] Jiang L., Misherghi G., Su Z., and Glondu S.,

“DECKARD: Scalable and Accurate Tree-based

Enhancing Generic Pipeline Model for Code Clone Detection Using Divide and Conquer Approach 517

Detection of Code Clones,” in Proceedings of the

29
th
 International Conference on Software

Engineering, Minnesota, USA, pp. 96-105, 2007.

[14] Kamiya T., Kusumoto S., and Inoue K.,

“CCFinder: A Multilinguistic Token-based Code

Clone Detection System for Large Scale Source

Code,” IEEE Transactions on Software

Engineering, vol. 28, no. 7, pp. 654-670, 2002.

[15] Koschke R., Falke R., and Frenzel P., “Clone

Detection using Abstract Syntax Suffix Trees,” in

Proceedings of the 13
th
 Working Conference in

Reverse Engineering, Benevento, Italy, pp. 253-

262, 2006.

[16] Mubarak-Ali A., Syed-Mohamed S., and

Sulaiman S., “An Enhanced Generic Pipeline

Model for Code Clone Detection,” in

Proceedings of the 5
th
 Malaysian Conference in

Software Engineering, Johor Bahru, Malaysia,

pp. 434-438, 2011.

[17] Roy C. and Cordy J., “A Survey on Software

Clone Detection Research,” Technical Report,

Queen’s University, 2007.

[18] SableCC., available at: http://sablecc.org/, last

visited 2012.

Al-Fahim Mubarak-Ali received

his BS degree of computer science

(software engineering) from

University Malaysia Pahang,

Malaysia in 2009 and MS degree of

science (computer science) from

University Sains Malaysia, Malaysia

in 2012. Currently, he is pursuing his PhD in the area

of software engineering in University Teknologi

Malaysia, Malaysia.

Sharifah Syed-Mohamad is a

senior lecturer of the School of

Computer Sciences, University Sains

Malaysia. She received her PhD

degree in software engineering from

the University of Technology,

Australia in 2012. Her research

interests include software reliability, software testing,

software maintenance and agile development.

Shahida Sulaiman is an associate

professor of the Faculty of

Computing, University Teknologi

Malaysia. She holds a PhD degree in

computer science and Ms degree in

computer science (software

engineering in real time systems).

Her expertise includes software design, software

maintenance, software visualisation and documentation

and knowledge management.

.

