
680 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

Intelligent Risk Analysis Model for Mining

Adaptable Reusable Component

Iyapparaja Meenakshisundaram1 and Sureshkumar Sreedharan2

1School of Information Technology and Engineering, VIT University, India
2Vivekanandha College of Engineering for Women, Anna University, India

Abstract: Every elucidation for today’s quandary has been achieved in an easier prospect, with due respect to the experience
gained by a normal man. The engineers too look out for the better way in the development cycle of software apart from its

traditional approach. Software being implemented in almost every machine, is in the urge of being developed with many

improvisation techniques but obeying the time and cost constrains. Adding to the available simplifications methodologies in

the development phases, the proposed Intelligent Risk Analysis Model (IRAM) would abridge the limitations of an Object

Oriented Program (OOP) developed for a new software product showing betterments in time and budget needed. An OOP

would comprise of individual and exclusive objects with indicated functionalities. Recognizing the usage of the objects in the

existing programs would eliminate the necessity of a new coding, thus the component could be reused if it cannot be

designated any better. This methodology does a primary verification whether there are any components which match with the

stated requirements in the database of programs (e.g., C++, Java, Perl and Python). Based on the analysis of the matched

component, it is categorized into Exact Match (EM), Partial Match (PM) or the Rejected Match (RM) which denotes its

chances of applicability into the new product. This analysis of the correspondence in the reused object depends on the defined

four parameters tuple namely Expected Language (EL), Module Description (MD), Argument Description (AD) and the Usage

Threshold (UT). The component that matches exactly EM can be directly incorporated into the new software product whereas

if the component falls into the other category PM then it is subjected to additional tests, Rank (R) is allotted, Intelligent Report

(IR) is prepared and measures for its updating as an EM are taken. The RM component is eliminated from the list of possible

outcomes at once.

Keywords: Software engineering, software reusability, OOP, IR, cohesion and coupling, regression test.

Received February 3, 2013; accepted September 9, 2014; published online August 16, 2015

1. Introduction

The software has been devised with the intention of
reducing the workload, time and cost metrics. But the
manpower and the resources required for the software
development itself had to involve the mightier and
expertise, obey the strict principles and the top of all to
satisfy the end user. Despite many simplifications, the
development phases need proper follow-up and
alternative plans for maintaining the product on the
right track. Any minor change/mistake in the proposed
plan would cost the developer his entire effort to a
waste [14].

The software development phases (analysis, design,
coding, testing and implementation) include dedicated
functionalities of each phase, organized at the last
would yield the desired software product. The Analysis
phase observes the requirements of the user/customer
and the design phase is for the developer’s team to
design the best plan to carry out. The coding phase is
for the switching into machine level code [14]. The
testing is to obtain the conditions in which the product
works and fails (under predicted conditions) [12].
Testing is secondly to ensure the reliability of the
software in feasible extremes. Implementation is to
establish the developed product in the original
environment it is supposed to be [1].

2. Testing Object Oriented Programs

The Object Oriented Programming (OOP) has
introduced new innovative and much easier attitudes to
design the software product, diverse from that of the
traditional programming disciplines. Adding to the
advantages, reduced time to be designed and ease of
structure, promotes its practice among the recent
programmers [6, 12]. The OOP introduces out of the
ordinary concepts such as encapsulation, inheritance,
polymorphism and data abstraction. Inheritance helps to
promote the reusability factor, in turn helping for the
development of the software more rapidly [4, 8].

Reusability factor includes along with its merits, the
risk of unstable conditions in the new environment
[17]. The existing environment may be the best
platform and the new platform requires some
reformation to the coding in order to make it adapt
with the new environment [1, 8]. Hence, a risk analysis
model is obliged to eradicate the limitations and
promise the compatibility of the reusable component
[3, 4].

3. Proposed: Intelligent Risk Analysis

Model (IRAM)

The urge of a suitable Risk analysis model among the
numerous models [2, 10, 11], motivates the design of

Intelligent Risk Analysis Model for Mining Adaptable Reusable Component 681

the proposed IRAM. Not all risk analysis models
judges the risks of a component/module to be reused
[13, 17]. This model IRAM ascertains the act of
mitigating the risks associated with reusability.

The succeeding Figure 1. Illustrates the IRAM
models which identify the reusable module from the
warehouse, based upon the progression of phases are
listed below.

Figure 1. IRAM.

Where Closed Source (CS), Open Source (OS), OOP,
Expecting Language (EL), Module Description (MD),
Argument Description (AD), Usage Threshold (UT),
Number of Possibilities (N).

• Phase 1:

1. Search for the most similar module with affirmed
parameters in the warehouse.

2. The probability of the match categorizes the
analyzed modules into defined groups (Exact
Match (EM), Partial Match (PM), Rejected
Match (RM))

• Phase 2:

3. The Intelligent Report (IR) estimates the
alterations required in a PM to convert into an
EM module.

• Phase 3:

4. The dependency metrics of each module with
neighboring modules has to be determined by
coupling and cohesion tests.

5. The level of applicability in the new platform is
evaluated by the regression test.

6. After validation of a module in all these tests, the
reusable component is proved to be risk free and
can be implemented.

4. Module Description

4.1. Phase 1: OOP Reusable Modules

Assortment

The reusable component requires some serious
modifications in its coding for adaptability. Not all the
components extracted from its original environment
can be directly implemented in the new environment.
Even the OOPs and their modules face difficulties in
their applicability level.

To conquer these precincts, IRAM would extend its
support beyond measuring the reusability related risks.
IRAM would advise the revisions needed after a
compilation of tests. For convenience, two CS OOP
languages (C++ and Java) and two OS OOP languages
(PERL and PYTHON) are used. The list of
assessments and results are discussed as follows.

4.2. Phase 1: Scrutiny of Reusable Modules

There is an immense volume of modules to be
compared with the listed parameters. This comparison
otherwise, analysis is done by the four tuples as
illustrated in Figure 2. This analysis checks the
required parameters with the available parameters and
forwards the result to the IRAM.

Figure 2. Four parameters tuple with Priority Level (PL).

The EL for the new software product is being

developed (C++, Java, PERL, and Python); MD for
further divided into Function Name (FN) and Return
Type (RT) for the completion of a particular task and
the variables used. The AD for which further divided
into Number of Arguments (NA) used and TA for type
of Arguments describing, the data type of the
processed variables in the extracted module. UT for of

PL2 PL1 PL4 PL3

 EL MD AD UT

FN RT NA TA

R

682 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

the function, denoting the importance of a reusable
function based upon the frequent repetition of the same
called by the module itself. In this Model, the threshold
value is assigned by the developer who intends to reuse
a matching component. In general, the UT value is
assigned by the size/Line of Code (LOC) present in the
reusable module, like:

1. LOC (Reusable module)≤ 200 then set UT value is
UT=2.

2. LOC (Reusable module)> 200 then set UT value is
2≤ UT≤ 5.

With the requirements of a new software product,
every module is analyzed for similarity constraints
with the parameters tuple as configured with .xml
coding as follows:

Source code of Parameter_config.xml:

“”

<?xml version=“1.0” encoding="utf-8" ?>

<configuration>

<configSections>

<sectionGroup name= “parameters”, type=“

System.Configuration.UserSettingsGroup”>

<sectionname=“EL&&MD&&AD&&UT”

type=“System.Configuration.ClientSettings Section/>

 </sectionGroup>

</configSections>

 <connectionStrings>

 <addname=“EL&&MD&&AD&&UT.Settings.DBConnection

String”, connection String=“DataSource=mix1;

InitialCatalog=DB;IntegratedSecurity=True”

 providerName=“System.Data.SqlClient”/>

 </connectionStrings>

 <userSettings>

 <EL&&MD&&AD&&UT/>

 </userSettings>

</configuration>

In this model, the fixation of PL to each parameter as
MD-> PL1, EL-> PL2, UT-> PL3 and AD-> PL4 is
needed, based upon its importance metric during the
search of reusable module.

As per Set Theory, Property: If a set S has n-
elements, then its power set has 2n elements, viz., [16].

 If |S| = n, then |P(S)|=2n (1)

According to this property, form the set which contains
mixture of parameters with distinct PL as illustrates in
following Table 1.

Table 1. Distinct set combinations.

Set No. Distinct Set Combinations

S1 {}

S2 { UT -> PL3 }

S3 { AD -> PL4 }

S4 { AD -> PL4, UT -> PL3 }

S5 { MD -> PL1 }

S6 { MD -> PL1, UT -> PL3 }

S7 { MD -> PL1, AD -> PL4 }

S8 { MD -> PL1, AD -> PL4, UT -> PL3 }

S9 { EL -> PL2 }

S10 { EL -> PL2,UT -> PL3 }

S11 { EL -> PL2, AD -> PL4 }

S12 { EL -> PL2, AD -> PL4, UT -> PL3 }

S13 { EL -> PL2, MD -> PL1 }

S14 { EL -> PL2, MD -> PL1, UT -> PL3 }

S15 { EL -> PL2, MD -> PL1, AD -> PL4 }

S16 { EL -> PL2, MD -> PL1, AD -> PL4, UT -> PL3 }

4.2.1. Analysis of Acceptable Risk levels of

Reusable Modules

Searching the expected module from the reusable
modules warehouse using Get() method with
Parameter_config.xml file as follows,

// Get the module of the request parameters;

String name = “Parameter_config.xml”;

String value = req. getParameter(name);
 if (value == null)
 {
// The request parameter "EL && MD && AD && UT" was not

present in the module set

 }

 else if (“ ”.equals(value))
 {
// The request parameter “EL && MD && AD && UT” was

present in the module set but has no value

 }
// Get the module of all request parameters match

Enumeration enum=req.getParameterNames

(Parameter_config.xml);
for (; enum.hasMoreModules();)
 {
 // Get the name of the request parameter

 name = (Object)enum.nextModule();
// Since object type casting supports all datatypes.

 out.println(name);
 // Get the module of the request parametermodule

=req.getParameter(name);
// If the request parameter can appear more than once in the

modules set, get all modules

Object [] modules = req.getParameterValues(name);

for (int i=0; i< modules. length; i++)
 {out.println(" "+module[i]);}}

The results of the evaluations of mentioned four
parameters (|S|=4) would produce |P(S)|=24=16
possible outcomes as per Equation 1 and they are
described as follows in Table 2.

Table 2. Acceptable risk possibilities of reusable module.

Set No. EL MD AD UT
Acceptable

Possibilities

S1 0 0 0 0 RM

S2 0 0 0 1 RM

S3 0 0 1 0 RM

S4 0 0 1 1 RM

S5 0 1 0 0 PM

S6 0 1 0 1 PM

S7 0 1 1 0 PM

S8 0 1 1 1 PM

S9 1 0 0 0 RM

S10 1 0 0 1 RM

S11 1 0 1 0 RM

S12 1 0 1 1 RM

S13 1 1 0 0 PM

S14 1 1 0 1 PM

S15 1 1 1 0 PM

S16 1 1 1 1 EM

Here, 1 represents parameter match and 0 represents
parameter not match.

These outcomes would help to order them into three
groups based on their level of adaptability. There is
always one distinct expected match module among the
16 possibilities. The EM is the best fitted reusable
module satisfying all the needs of the new product. Yet
it is subjected to some tests for evaluating the
adaptability level. There are seven possibilities for a

Intelligent Risk Analysis Model for Mining Adaptable Reusable Component 683

PM and the remainder eight possibilities RM can be
never taken into count that is they are simply
discarded. Let consider:

• n1=Number of EM -reusable modules in a database.

• n2=Number of PM -reusable modules in a database.

• n3=Number of RM- reusable modules in a database.

• N=Total number of reusable modules in a database.

i.e., N=n1+n2+n3

According to Combinatorial Probability [7]:

()

Number of favorable case
 P A =

 Number of exhaustive cases

Where A: An event occurs.

When applying an event “Suitable Module Drawn”
in above Equation 2. We will get:

1. Probability of getting a EM module from N number
of possible cases is:

()

()

()

1! / 1 -1 !1
 = =

! / -1 !

1

1

n nn C
P EM

NC N N

2. Probability of getting a PM module from N: number
of possible cases is:

()

()

()
1

1

2! / 2 1 !2

! / 1 !

n nn C
 P PM

NC N N

−
= =

−

3. Probability of getting a RM module from N: number
of possible cases is:

()

()

()
1

1

3! / 3 1 !3

! / 1 !

n nn C
 P RM

NC N N

−
= =

−

This test of the IRAM determines merely the possible
outcomes and the categorizing of those outcomes into
three groups (EM, PM, and RM). There are
supplementary actions and tests to verify and produce
the final reusable module.

According to the different (0/1) combinations and
set combinations in the above Table 2 and Table1.
Assign the Rank (R) to each combination set according
to the highest PL-Parameters which contains. It
describes in following Table 3.

Table 3. Assigning R to each set combination.

Set No. PL- Parameters in each Set R

S1 - - - - 16

S2 - - - PL3 14

S3 - - PL4 - 15

S4 - - PL4 PL3 13

S5 - PL1 - - 8

S6 - PL1 - PL3 6

S7 - PL1 PL4 - 7

S8 - PL1 PL4 PL3 5

S9 PL2 - - - 12

S10 PL2 - - PL3 10

S11 PL2 - PL4 - 11

S12 PL2 - PL4 PL3 9

S13 PL2 PL1 - - 4

S14 PL2 PL1 - PL3 2

S15 PL2 PL1 PL4 - 3

S16 PL2 PL1 PL4 PL3 1

4.3. Phase 2: IR

The availability of only one outcome cannot prove this
Model to be a fruitful one. Hence, the possible
outcomes should be reasonable to withstand its
betterment. The IR endow with the increased number
of the possible outcomes with further analysis and
actions.

4.3.1. Analysis of Adaptable Risk Level Module

The IR testifies that the PM modules can be converted
into EM modules if performed with specific
transformations in the coding of the original
component. The PM module is divided into individual
literals and tokens and compared with the requisites of
the expected OOP language. This comparison
generates the IR, and the IR recommends the
amendments in order to produce the EM module.

A same process would have a unique way of
presentation in different OOP languages. Hence, the
transformation of the reusable component in one
language to the resultant OOP language would require
the changes in the Syntax and Semantics.

• Example 1:

Let consider, a bubble sort code in C++ Language. The
same code will look with different syntax and semantic
format in different OOP- Languages (Here, Java, Perl
and Python).

The following Table 4. Would make clear this
condition. Table 4 shows that, the supreme need of the
IR to mark the syntax which needs attention for
adaptability.

 [

Table 4. Sorting module program in different OOP language.

C++ Java PERL Python

Void sort (int a[], int len)
{
int temp;

for(int i=0;i< len;i++)
{
for(int j=0;j<len – i;j++)
{
if(a[i]<a[i+1])
{
temp = a[i];
a[i]=a[i+1];
a[i+1]=temp;
} } } }

Public static void sort (int a[], int
len)
{

int temp;
for(int i=0;i< len;i++)
{
for(int j=0;j<len – i;j++)
{
if(a[i]<a[i+1])
{
temp = a[i];
a[i]=a[i+1];
a[i+1]=temp;
} } } }

sub Sort (my @a = @_ ,
my $len)
{

my $temp;
for my $i(0 .. $len)
{
for my $j(0 .. $len - $i)
{
if ($a[$i] < $a[$i+1])
{
$temp = $a[$i];
$a[$i] = $a[$i+1];
$a[$i+1] = $temp;
} } } }

def Sort (a, len):

a = list(a)
for j in range(len(a)-1, 0, -1):

for i in range(j):

if a[i] < a[i + 1]:

a[i] = a[i + 1]
a[i + 1] = a[i]
return a

(2)

(3)

(4)

(5)

684 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

4.4. Phase 2: Recognize Transformation with

Mitigating Risk

Since, then the analysis to determine level of
applicability into the new product is shown. The
successive process is to determine the risk level and
conclude about its implementation stage.

The implementation of the reusable component is
considered to be a successful level or the breakdown
level. Initially the numbers of
errors are checked and it should possess a value equal
to zero. A value of the existing OOP module should be
equal to the Expected OOP module in order to be a
successful level. Otherwise, the implementation is at
the breakdown level.

4.5. Phase3: Dependency of the Module

Every module which is tested for reusability is
computed for its dependency with the other
components. An OOP may be designed with numerous
objects related to each other and a level of dependency
on the other objects for their function. An object may
or may not work independently. This factor also needs
considerations as incomplete programs (dependent on
other sub programs) or unwanted coding (independent
but provides results to other sub-programs) may affect
the performance of the system.

4.5.1. Cohesion and Coupling Tests

The successful identification of a reusable module is
nevertheless adequate for reusability. The coupling and
cohesion metrics have to be evaluated to promise its
intended function with or without the help of other
components.

Coupling denotes the dependency of one module on
any other module for its specified task. If the depended
process is not complete, then the module cannot work.

Cohesion is the measure of individual strength and
reliability of a particular module to perform its task
independently [5].

 In order to maintain the cohesion and coupling level
of the module, we have been using different metrics,
like, Lack of Cohesion of Methods (LCOM), Tight and
Loose Class Cohesion (TCC and LCC) method for
testing the cohesion level along with Afferent, Efferent
coupling, loose and tight coupling metrics used for
measuring the stability level of the module but all these
metrics are only focusing on the following
interdependency among the modules [5] as shown in
Figure 3.

Figure 3. Interdependency among the two modules.

 In addition to these, it is significant to test the
following interdependency among the multiple
numbers of modules as shown in Figure 4.

 Figure 4. Interdependency among the multiple modules.

 This relation shows that, when M1-> M2, M2-> M3
and M3->M4 then it is obvious to exist the dependency
relation between M1-> M3, M4 and M2->M4.

 Once the cohesion and coupling value of the
module is calculated, if we get high cohesion and low
coupling then it will be moved in to subsequent phase
otherwise, reject the module and start the searching
process a new [9].

4.6. Phase 3: Integration with Present Software

Domain

These analysis and test results would finally yield the
much awaited reusable module for integrating it into
the new software product. Successful implementation
would incorporate the module with the recent product
and functions as a whole system.

4.7. Phase 3: Regression Testing

The need of Regression testing arises to confirm
whether the new product is working normally as it
should [15]. The new product may lead to certain
errors which may not have been predicted by the
developer. The regression test would eliminate the
probability of errors before the product reaches the
customer.

If there is an occurrence of an error, the remedy is
taken at once or the whole process is restarted in case
of system failures. This test is further used to
determine the size of code, the performance time and
the outcomes of the test cases.

4.8. Appropriate OOP Reusable Module

Finally the reusable component is revised, reviewed
and thoroughly verified to perform its existing function
in the new environment with the least or no possibility
of errors, satisfying the customer and the end user. The
point where this model gains advantage is in a complex
program of thousands of lines of coding. Reusable
components would perform the predefined function in
respective platforms with fewer changes in their
discipline and conserving the time and resources
needed for creating anew.

5. Algorithm for IRAM

n:= Number of chances;

rcount:=reusable count;

ER:=Expecting reusable module;

ER:=Existing reusable module;

EOOP:=Existing Object oriented program;

POOP:= Present Object oriented program;

EL:=Expecting Language;

MD:=Module Description;

M1 M2

M1 M2 M1 M2

M1 M2 M3 M4

Intelligent Risk Analysis Model for Mining Adaptable Reusable Component 685

AD:=Argument Description;

UT:= Usage Threshold;

CCT :=Cohesion & Coupling Test;

RT:=Regression Test;

IR:=Intelligent Report;

Begin

rcount :=0;

Tot_space:= allocated_memory(EOOP.ER);

for (i:=0; i<=n; i++)

New: Search(er.(EL,MD,AD,UT)==Tot_space;

 if(er.EL==1&&er.MD==1&&er.AD==1&&er.UT==1) then

 Set ER := EM;

 Test: Direct ER -> CCT; /* Perform Cohesion&

Coupling test with ER*/

 if(er==1) then

 ER:=ER+POOP; /*Integrateer with Present */

 Direct er+OOP -> RT; /*Perform Regression test

with ER+POOP*/

 if((er+POOP)==1)then

rcount:= rcount+1; /*Fit into Present OOP &

increase reusable count value into to 1*/

 else

 goto New; /*Start new iteration*/

 break;

 else

 goto New; /* Start new iteration */

 break;

 else if (er.MD==1&&(er.EL==1||er.AD==1|| er.UT==1) then

 Set ER := PM;

 Direct ER -> Analyze module risk level phase;

 Compare(P.EOOP(er)==P.POOP(er)); /*Compare the

parameters of er in EOOP with er in POOP*/

 Generate IR; /* IR will be prepared based upon the syntax

and semantic analysis*/

 Make ER.PM:= ER.EM; /* Successful Level */

 goto Test; /* Start testing iteration */

 break;

 else if (ER.MD==0&&(ER.EL==1||ER.AD==1||

 ER.UT ==1) then

 Set ER:= RM; /* Breakdown Level */

 goto New; /* Start new iteration */

 break;

else

 Goto New; /* Start new iteration */

 break;

end if;

end for;

end

6. Result and Discussion

• Acknowledgements in the TROY Software [India]
Pvt., Ltd.,

The proposed IRAM model helps to identify the best
reusable module in OOP environment with repeated
tests and severe analyses.

The following tables reveal that the component “int
swap (int, double). py” with minimum UT value = 2.

Here, EL = “Python”; MD -> FN = “swap()”;

 MD -> RT = int ; AD -> NA = 2;
 AD -> TA = int, double;

 UT = 2, Since LOC < =200.

As this requirement, the IRAM model displays all
possible modules related to our search as follows in
Table 6.

Table 6. Possible reusable modules set.

Component

No.
Language

MD AD
UT

FN RT NA TA

C1 Python swap() int 1 float 0

C2 Java swap() int 2 int, double 0

C3 C++ swap() int 3
float, int,

double
1

C4 Perl swap() int 1 double 2

C5 Python swap() int 2 double, double 2

C6 Python swap() int 2 int, double 0

C7 Java swap() int 2 int, double 2

C8 C++ swap() int 2 int, int 5

C9 Java swap() int 4
int, double,

double, float
2

Depending on the results, available N from Table 6
is categorized into three groups (EM, PM, RM) as
shown in Table 7.

Table 7. Components group formation.

EM PM RM

Nil

C1

Nil

C2

C3

C4

C5

C6

C7

C8

C9

C10

According to this categorization, identify the
number of parameter matches that exist in each
component as shown in Table 2, assign the
corresponding PL level to each matched component.
And R it based upon the Table 3. This process is
clearly stated in following Table 8.

Table 8. Identifying suitable component among N-number of
possible components.

Component

Combinations (0/1)

PL

R EL MD AD UT

C1 1 1 0 0 PL2 PL1 - - 4

C2 0 1 1 0 - PL1 PL4 - 7

C3 0 1 0 0 - PL1 - - 8

C4 0 1 0 1 - PL1 - PL3 6

C5 1 1 0 1 PL2 PL1 - PL3 2

C6 1 1 1 0 PL2 PL1 PL4 - 3

C7 0 1 1 1 - PL1 PL4 PL3 5

C8 0 1 0 0 - PL1 - - 8

C9 0 1 0 1 - PL1 - PL3 6

C10 1 1 0 0 PL2 PL1 - - 4

 According to the outcome of the above Table 8, the
components are sorted upon their Rs and the
component possessing the highest R is selected for
generating IR as shown in Table 9.

Table 9. Component R order.

Component R R Order Component Order

C1 4 2 C5

C2 7 3 C6

C3 8 4 C1

C4 6 4 C10

C5 2 5 C7

C6 3 6 C4

C7 5 6 C9

C8 8 7 C2

C9 6 8 C3

C10 4 8 C8

Identifying Suitable Component

Component Highest R Status

C5 2 Suitable component for generating IR

686 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

This can be represented in the following Figure 5.

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Components

R
a

n
k

 (
R

)

Rank

Figure 5. Identifying suitable component.

Taking the results of Tables 6, 7, 8, 9 and Figure 5.
Into consideration, the numbers of possible modules
are organized into three groups (EM, PM, RM).
Ranking the component based upon its matched
parameters PL. Suitable module which is rated to be
the best among the N is selected. And an IR is
generated, by subjecting the opted component into
severe coupling, cohesion and regression tests to
reform the selected into the best fitted adaptable
reusable component.

7. Conclusions and Scope for Future Work

This paper presented an innovative model to handle the
challenging methodology of reusability in OOP
environment and proving that it would ensure the
performance boost by inheriting suitable component
from existing assortment. Testing technologies for the
selected module would tend to eliminate the risk
factors and errors leading to the support of the reusable
module.

This concept has to extend to be functional with all
OOP environments and this model would be capable of
performing in cloud computing.

References

[1] Divya C. and Rajender Singh C., “Component
Based Software Engineering Systems: Process
and Metrics,” International Journal of Advanced
Research in Computer Science and Software

Engineering, vol. 3, no. 7, pp. 91-95, 2013.
[2] Foo S. and Muruganantham A., “Software Risk

Assessment Model,” in Proceeding of IEEE

International Conference on Management of

Innovation and Technology, pp. 536-544, 2000.
[3] Hosseingholizadeh A., “A Source-based Risk

Analysis Approach for Software Test
Optimization,” in Proceeding of the 2

nd

International Conference on Computer

Engineering and Technology (ICCET), Chengdu,
China, pp. 601-604. 2010.

[4] Ivar J., Object-Oriented software Engineering: A

Use Case Driven Approach, Addison-Wesley,
1996.

[5] Iyapparaja M. and Sureshkumar S., “Coupling
and Cohesion Metrics in Java for Adaptive
Reusability Risk Reduction,” in Proceeding of
IET Chennai 3

rd
International Conference on

Sustainable Energy and Intelligent Systems,
Tiruchengode, India, pp.1-6, 2012.

[6] Jalender B., Govardhan A., and Premchand P.,
“Designing Code Level Reusable Software
Components,” International Journal of Software
Engineering & Applications (IJSEA), vol. 3, no.
1, pp. 219- 229, 2012.

[7] Kandhasamy P., Probability Statistics and

Queueing Theory, S.Chand publication, First
Edition, 2004.

[8] Kirandeep K., Rekha R., and Jagdeep k., “Code
Reuse and Reusability of the Software,” The
International Journal of Engineering and Science

(IJES), vol. 2, no. 4, pp. 28-30, 2013.
[9] Kuljit K. and Hardeep S., “An Investigation of

Design Level Class Cohesion Metrics,” the

International Arab Journal of Information

Technology, vol. 9, no.1, pp. 66-73, 2012.
[10] Muhammad O., Ahmed M., and Ahsan S.,

“Optimal Performance Model Investigation in
Component-based Software Engineering
(CBSE),” American Journal of Software

Engineering and Applications, vol. 2, no. 6, pp.
141-149, 2013.

[11] Nida Y., Bushra J., and Javed F., “PDCML: A
Model for Enhancing Software Reusability,”
International Journal of Software Engineering

and Its Applications, vol. 7, no. 1, pp. 123-136,
2013.

[12] Paul C., Software Testing, A Craftsman’s

Approach, 3rd Edition, Auerbach Publications,
2011.

[13] Poonam k., “Software Effort Estimation and Risk
Analysis-A Survey,” International Journal of

Engineering and Innovative Technology, vol.1,
no. 1, pp. 18-22, 2012.

[14] Roger S., Software Engineering: A Practitioner’s
Approach, 7th Edition, McGraw-Hill International
Edition, 2010.

[15] Suhaimi I., Norbik B.I., Malcolm M., and Aziz
D., “Integrating Software Traceability for
Change Impact Analysis,” the International Arab
Journal of Information Technology, vol. 2, no. 4,
pp. 301-308, 2005.

[16] Tremblay J. and Manohar R., Discrete

Mathematical Structures with application to

Computer Science, McGraw Hill, Inc., 1989.
[17] Wang A., “Reuse Metrics and assessment in

Component-based Development,” in Proceedings
of Software Engineering and Application, pp.
693-707, 2002.

Suitable component

Intelligent Risk Analysis Model for Mining Adaptable Reusable Component 687

Iyapparaja Meenakshisundaram
He received the BE degree from
Anna University, Chennai and ME
degree from Anna University of
Technology, Coimbatore in 2006
and 2010 respectively. Presently, he
is a Senior Assistant Professor in

School of Information Technology and Engineering.
He has 7 years of experience in Teaching and software
Engineering field. He received University Rank holder
award for his ME degree. His research interests include
Software Testing, Software Engineering and Agile
Testing. He is life time member of ISTE.

Sureshkumar Sreedharan is
presently the Principal,
Vivekanandha College of
Technology for Women,
Tiruchengode. He received the BE
degree from National Engineering
College, MS, degree in Software

system from Birla Institute of Technology and Science,
MTech., degree from Indian Institute of Technology,
Kharagpur and PhD degree from Anna University,
Chennai in 1988, 1993, 2000 and 2009 respectively.
He has published 30 numbers of papers in refereed
international journals and conferences. His research
interests include Image processing, parallel processing
and Energy. He is a member of ISTE and IET.

