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Abstract: The quadratic assignment problem aims to find an optimal assignment of a set of facilities to a set of locations that 
minimizes an objective function depending on the flow between facilities and the distance between locations. In this paper we 
investigate Genetic Algorithm (GA) using new crossover operators to guide the search towards unexplored regions of the 
search space. First, we define a frequency model which keeps in memory a frequency value for each pair of facility and 
location. Then, relying on the frequency model we propose three new crossover operators to enhance genetic algorithm for the 
quadratic assignment problem. The first and second ones, called Highest Frequency crossover (HFX) and Greedy HFX 
(GHFX), are based only on the frequency values, while the third one, called Highest Frequency Minimum Cost crossover 
(HFMCX), combines the frequency values with the cost induced by assigning facilities to locations. The experimental results 
comparing the proposed crossover operators to three efficient crossover operators, namely, One Point crossover (OPX), Swap 
Path crossover (SPX) and Sequential Constructive crossover (SCX), show effectiveness of our proposed operators both in 
terms of solution quality and computational time. 
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1. Introduction 
The Quadratic Assignment Problem (QAP) is central 
and one of the hardest problems in computer science 
and operations research. QAP model is involved in a 
variety of applications such as hospital design [11], 
computer backboard design [28], scheduling problems 
[6, 12], course location problems [4], and economic 
problems [17], etc. The problem can be defined as 
follow: There are a set of n facilities and a set of n 
locations. For each pair of locations, a distance is 
specified and for each pair of facilities a weight or flow 
is specified (e.g., the amount of supplies transported 
between the two facilities). The problem is to assign all 
facilities to different locations with the goal of 
minimizing the sum of the distances multiplied by the 
corresponding flows. The methods to solve the problem 
are classified into two categories-exact and heuristics. 
Exact methods give exact optimal solution to the 
problem, whereas, heuristics do not guarantee the 
optimality of the solution, but give near exact optimal 
solution in reasonable time. Many exact methods and 
meta-heuristic approaches have been developed to 
solve the QAP [16, 26]. 

Genetic Algorithms (GAs) have proved their 
effectiveness to solve a wide range of optimization 
problems raised in numerous domains. They first 
developed by Holland [15], are based on natural 
biology [14]. A Simple GA (SGA) starts with a 
randomly generated initial population of chromosomes 

(strings) that is referred as gene pool and then applies 
three operators to create new, and hopefully, better 
populations as successive generations. Selection is the 
first operator where strings are copied to the next 
generation with some probability based on their 
objective function values. Crossover is the second 
operator where randomly selected pairs of 
chromosomes are mated to create new chromosomes. 
The third operator, mutation, is the occasional random 
alteration of the value at a chromosome position. The 
crossover operator is the most powerful process and it 
plays a very important role in the GA search. Mutation 
diversifies the search space and protects from loss of 
genetic material that can be caused by selection and 
crossover. 

In this paper, we investigate a GA based-approach 
enhanced with new crossover operators to guide the 
search towards unexplored regions of the search space. 
We defined a frequency model that keeps, in memory 
during the entire search, a frequency value for each 
pair of facility i and location j. The frequency value 
cumulates the total number of times where the location 
j is assigned to the facility i in different populations of 
the searching process. We believe that more a facility 
is assigned to a location in fitter individuals more it 
has a chance to be assigned to the same location in the 
optimal solution.  

The idea of the frequency model is not suitable only 
to the QAP problem since it can be adapted and used 
for any other combinatorial optimization problem. We 
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expect that this knowledge will help to guide the search 
towards promising regions. 

The proposed approach exploits the frequency model 
to generate new individuals through the crossover 
operations. Relying on the frequency model we 
developed three greedy crossover operators. The first 
and second ones called Highest Frequency crossover 
(HFX) and Greedy HFX (GHFX) are based only on the 
frequency values, while the third one called Highest 
Frequency Minimum Cost crossover (HFMCX) 
combines with the frequency values the cost induced by 
assigning facilities to locations. In all of these crossover 
operators we privilege the pairs of facility and location 
having highest frequency values to generate new 
individuals. The comparative study of HFX, GHFX and 
HFMCX and three efficient crossover operators of the 
literature-One Point crossover (OPX), Swap Path 
crossover (SPX) and Sequential Constructive crossover 
(SCX) show that our proposed crossovers are 
competitive both in terms of solution quality and 
computational time. In term of solution quality all 
crossover operators manage to find near-optimal 
solutions on the tested benchmarks. For instance the 
average gap between HFMCX and SCX is less than 
1%. While in term of computation time, SCX consumes 
twice as much time compared to HFX and 1.5 times 
compared to GHFX. 

The rest of this paper is organized as follows: In 
section 2, the main related works are presented. Section 
3 introduces the frequency model. Section 4 describes 
the proposed crossover operators with detailed 
algorithms and illustrative examples. Section 5 
conducts a comparative study to show the performance 
and merit of the proposed crossover operators. Section 
6 presents conclusions and discussions.  

2. Related Works 
GA search of the solution space is done by creating 
new chromosomes from old ones. As mentioned above, 
crossover is the most important operator in GAs. In 
crossover operator, a pair of chromosomes is selected 
randomly from the mating pool. Then, a point, called 
crossover site, along their common length is randomly 
selected, and the information after the crossover site of 
the two parent chromosomes are swapped, thus creates 
(possibly) two new children. However, this basic 
crossover method does not support for the QAP. 

Migkikh et al. [20] proposed a modification of 
Partially Mapped crossover (PMX) of Goldberg and 
Lingle [14] based on using a number of random 
mapping points-instead of one mapping segment for the 
QAP. This crossover was referred to as a Uniform 
PMX (UPMX). The ordered crossover of Davis [7] has 
been applied to the QAP by Vázquez and Whitley [28]. 
Lim et al. [18] proposed a variation of the OPX 

operator [13] for the QAP. Another crossover 
operator, named Cycle crossover (CX) operator was 
proposed for the Travelling Salesman Problem (TSP) 
by Oliver et al. [25], where offspring are built in such 
a way that each node (and its position) comes from 
one of the parents. Merz and Freisleben [19] applied 
CX operator of Oliver et al. [25] for the GA to the 
QAP. The Uniform Like crossover (ULX) was 
proposed by Tate and Smith [27]. Misevicius [21] 
slightly improved this crossover operator, renamed as 
optimized crossover and used in the improved hybrid 
GA. Misevičius and Kilda [22] proposed many 
modification of this crossover and called them as 
Randomized ULX (RULX), modified ULX (or Block 
crossover (BX)), and extended ULX (or Repair 
crossover (RX)). Ahuja et al. [2] developed a SPX for 
the QAP. It was proposed to perform the swap for 
which the corresponding solution has lower cost than 
the original one. Drezner [8] proposed another 
crossover operator, named Cohesive crossover 
(COHX), for the QAP. Misevičius and Rubliauskas 
[23] proposed a Multiple Parent crossover (MPX) 
operator that creates an offspring by choosing 
information from multiple numbers of parents. 
Misevičius and Kilda [22] made a comparative study 
among ten different crossover operators for the QAP 
and found that MPX is better than SPX which is better 
than OPX which is then better than COHX. Ahmed 
[1] proposed SCX for the QAP and presented a 
comparative study among SPX, OPX and SCX. From 
the comparative study, it is found that SCX is the best. 
SPX, OPX and SCX are used as reference crossovers 
in our comparative study. Now-a-days, hybrid GA 
implementing these crossover operators with local 
search is widely used [3, 9, 10, 20, 24]. However, we 
are not developing hybrid algorithm. Our aim is to 
show the effectiveness of our proposed crossover 
methods by comparing with other existing crossover 
methods. 

3. Frequency Model 
The frequency model keeps, in memory as a matrix F, 
a frequency value for each pair of facility and location. 
F is a square matrix of order n which is defined as 
follows. Each row of F corresponds to a facility and 
each column represents a location. Fij is the number of 
times that facility i is assigned to location j. The 
frequency value Fij of each pair (facility i, location j) 
cumulates the total number of times where the location 
j is assigned to the facility i in different populations of 
the GA search. The following pseudo-code shows how 
the frequency-matrix F evolves incrementally at each 
generation (iteration) of the GA. 

Let P be the population of individuals selected for 
the crossover operation at a given generation of GA: 
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Algorithm 1: Updating frequency matrix. 

Update (F, P) // F is the current frequency-matrix and P is the 
current population 
 for each individual p in P do 
Search p; 
          if (facility i is assigned to location j in p) then Fij=Fij+1. 
EndFor 

Initially F=0 (all entries Fij are initialized to 0). And at 
each generation of the GA, the procedure Update (F, P) 
is invoked to update the frequency-matrix F. Notice 
that, the frequency-matrix is updated based on the 
individuals of P of each generation. It means that 
highest frequencies correspond to facilities assigned to 
locations which occurred many times in the fittest 
individuals of different populations.  

4. Crossover Operators based-on the 
Frequency-Matrix 

The frequency-matrix is exploited as a short-term 
memory to define new crossover operators. The first 
and second ones, called HFX and GHFX, are based 
only on the frequency values of the matrix; while the 
third one called HFMCX combines the frequency 
values with the cost of assigning facilities to locations. 
For this purpose we use the natural encoding of a 
solution as a permutation of integers; each integer value 
indicates the location assigned to the facility. For 
instance in the following individual of length 6, 
facilities 1, 2, 3, 4, 5 and 6 are assigned locations 3, 5, 
4, 6, 2 and 1 respectively. 

Table 1. Example of an individual. 

Facilities 1 2 3 4 5 6 

Locations 3 5 4 6 2 1 

4.1. Highest Frequency Crossover   
Let P1 and P2 be a pair of parents selected for the 
crossover operation. The principle of HFX is simple 
that searches for each facility i the location j in P1 and 
P2 having highest frequency. When one or both of the 
two locations of the facility i in P1 and P2 are already 
present in the offspring then HFX considers the first 
locations of the parents not present in the offspring to 
determine the highest frequency location for the facility 
i. The following pseudo-code outlines the principle of 
the HFX crossover. 
Algorithm 2: HFX. 

HFX(P1, P2, O) // O is the resultant offspring 
 for each facility i :  i=1, ..., n do 

j1= P1[i]   //j1=location of i in P1. 
j2= P2[i]   //j2=location of i in P2. 
If( locations j1 and j2 are not present in O) then 
O[i]= assign(i, j1, j2); 
Else If (location j1 and j2 both are present in O) then 

j1 = the first location of P1 not present in O; 
j2 = the first location of P2 not present in O;  

O[i]= assign(i, j1, j2); 
Else If (location j1 is present in O) then 

j1= the first location of P1 not present in O; 
else j2= the first location of P2 not present in O; 

 O[i]= assign (i, j1, j2);  
EndIf 
EndIf 
EndIf 

EndFor 

The heuristic function assign (i, j1, j2) returns the 
location k to be assigned to the facility i given the 
frequency values of locations j1 and j2 for the facility i. 
When the frequency values Fij1 and Fij2 are equal the 
facility i will be assigned the location of the fittest 
parent, otherwise the location with the highest 
frequency value will be assigned to the facility i. 
 
Function assign (i, j1, j2) //returns j1 or j2 according to the 
frequency values Fij1 and Fij2. 
{  
    if Fij1=Fij2 then if P1 is fitter than P2 return j1 else return j2; 
    Else return k=ArgMax{Fij1, Fij2} // ( Fij1>Fij2, k=j1, k=j2); 
} 

 

The following example illustrates about generating an 
offspring using HFX. Let F=(Fij) i=1, ..., 6 and j=1, ..., 
6 be the frequency-matrix built from 20 individuals. 
For instance, the facility 2 (row 2 of the matrix) is 
assigned 1 time to location 1, 2 times to location 2, 9 
times to location 3, 4 times to location 4 and 2 times to 
locations 5 and 6 in the 20 individuals. And for 
instance, the location 1 (column 1 of the matrix) is 
assigned 3 times to facility1, 1 time to facility 2, 7 
times to facility 3, 3 times to facility 4, 2 times to 
facility 5 and 4 times to facility 6 in the 20 
individuals. 

Table 2. The frequency matrix F. 
            Locations 
 Facilities 1 2 3 4 5 6 

1 3 1 1 6 1 8 
2 1 2 9 4 2 2 
3 7 3 2 2 3 3 
4 3 6 5 2 4 0 
5 2 2 3 3 8 2 
6 4 6 0 3 2 5 

The HFX applied to parents P1 and P2 produces the 
offspring O: 

Table 3. HFX crossover applied to parents P1 and P2. 
Facilities 1 2 3 4 5 6 

P1 Locations 1 2 3 4 5 6 

P2 Locations 3 5 1 6 4 2 

O Locations 1 5 2 4 3 6 

• Step 1: Assign Facility 1. Since, max {F11, 
F13}=F11, location 1 is assigned to facility 1. 

• Step 2: Assign Fcility 2. Since, F22=F25=2, either 
location 2 or 5 can be assigned to the facility 2. 
Assume that P2 is fitter than P1 then location 5 is 
assigned to facility 2 (this choice is based on the 
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fitness values of P1 and P2; we select the location in 
the fittest parent).  

• Step 3: Assign Facility 3. As max {F33, F31}=F31 and 
location 1 is already present in the offspring, we 
select the first location of P1 not present in O which 
is location 2. Since max {F33, F32} = F32, the location 
2 is assigned to facility 3.  

• Step 4: Assign Facility 4. Since, max {F46, F44} = 
F44, the facility 4 is assigned location 4.  

• Step 5: Assign Facilities 5. Since, both locations 4 
and 5 are already present in the offspring and 
location 3 is the first location of P1 and P2 which is 
not present in O, the facility 5 is assigned location 3. 
The remaining facility 6 is then assigned location 6. 

4.2. Greedy Highest Frequency Crossover   
The operator GHFX builds sequentially the offspring 
from the two parents P1 and P2. Starting from facility 1, 
GHFX selects the location l1 from P1 and P2 having the 
highest frequency. Thereafter, it assigns to facility 2 the 
location following l1 in P1 and P2 having the highest 
frequency. Let li be the location assigned to the facility i 
in O, then in the next step, GHFX assigns the location 
following li in P1 and P2 having the highest frequency. 
Particular cases when the selected location is already in 
the offspring are detailed in the pseudo-code and 
explained in the illustration example. The following 
pseudo-code outlines the principle of the GHFX. 

Algorithm 3: GHFX. 

GHFX (P1, P2, O)       //O is the resultant offspring 
   j1= P1 [1]   // j1=location of facility 1 in P1; 
  j2= P2[1]   // j2=location of facility 1 in P2; 
 O[1] =assign(1, j1, j2); //assign the location  j1 or  j2 to facility 1 
 For each facility i:i=2, ..., n do  //assign facilities i:i=2, ..., n. 
   Let j1 and j2 be the locations next to location O[i-1] in P1 and 
P2 respectively. 
  If(location O[i-1] is not assigned to the last facility n in both 
parents P1 and P2) then 
    If( locations j1 and j2 are not present in O) then 
    O[i]= assign(i, j1, j2); 
  Else If(location j1 and j2 both are present in O) then 
    j1 = the first location of P1 not present in O; 
    j2 = the first location of P2 not present in O;  
   O[i]=assign(i, j1, j2);  
  Else If (location j1 is present in O) then 
      j1 = the first location of P1 not present in O 
   else j2 = the first location of P2 not present in O; 
     O[i]=assign(i, j1, j2);  
   EndIf 
  EndIf 
EndIf 
Else // location O[i-1] is assigned to the last facility n in 
parentsP1 or P2 or both. 
If(location O[i-1]is assigned to the last facility n in both parents 
P1 and P2) then 
   j1 = the first location of P1 not present in O; 
   j2 = the first location of P2 not present in O;  
  O[i]=assign(i, j1, j2);   

Else If (location O[i-1] is assigned to the last facility n in P1) 
then 
   j1 = the first location of P1 not present in O 
else j2 = the first location of P2 not present in O 
  O[i]= assign(i, j1, j2); EndIf 
  EndIf 
EndIf 
EndFor  
 

The GHFX applied to parents P1 and P2 produces the 
offspring O: 

Table 4. GHFX crossover applied to parents P1 and P2. 
Facilities 1 2 3 4 5 6 

P1 Locations 1 2 3 4 5 6 

P2 Locations 3 5 1 6 4 2 

O Locations 1 6 2 3 5 4 

• Step 1: Assign Facility 1. Since, the facility 1 is 
assigned to location 1 in P1 and location 3 in P2, we 
select the location from {1, 3} having a max 
frequency value. Since, max {F11, F13}=F11, the 
facility 1 is assigned location 1 in the offspring.  

• Step 2: Assign Facility 2. The location of facility 2 
is selected from locations {2, 6} since the locations 
next to location 1 are 2 in P1 and 6 in P2. As F22 
=F26, either location 2 or location 6 can be assigned 
to facility 2. Assume that P2 is fitter than P1, then 
the location 6 is assigned to facility 2 (this choice is 
based on the fitness values of P1 and P2; we select 
the location in the fittest parent). 

• Step 3: Assign Facility 3. As location 6 is the last 
one in P1, we consider the first free location 2 
rather than 6, which is the first location of P1 which 
is not present in O. Since 4 is the location following 
location 6 in P2, and as max {F32, F34}=F32, then 
the facility 3 is assigned location 2. 

• Step 4: Assign Facility 4. As location 2 is the last 
one in P2 then we consider the first free location 3 
rather than 2, which is the first location of P2 which 
is not present in O. As 3 is also the location 
following location 2 in P1 then facility 4 is assigned 
location 3. 

• Step 5: Assign Facility 5. 4 and 5 are the locations 
following location 3 in P1 and P2 respectively. And, 
as max {F54, F55}=F55 then the facility 5 is assigned 
to location 5. The remaining facility 6 is then 
assigned automatically to location 4. 

4.3. Highest Frequency Minimum Cost 
Crossover  

The HFMCX operator is based on the induced cost of 
assigning a facility to a location and the frequency-
matrix value of this assignment. It is almost similar to 
GHFX, the main difference is that the criterion of 
assigning a location to a facility in the offspring is 
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based on the highest frequency as in GHFX, and in 
addition it takes into account the induced cost of that 
assignment. Namely, the criterion is the maximum of 
the frequency value divided by the induced cost. The 
pseudo-code of HFMCX is similar to that of GHFX in 
which the heuristic criterion “maximum frequency 
value divided by induced cost” is integrated. Assume 
that k locations j1, j2, ..., jk have been assigned to 
facilities 1, 2, ..., k in the offspring O, then the induced 
cost IC(k+1, jk+1) of assigning a location jk+1 to a facility 
k+1 is computed as follows: 

       
1 1

1
( 1 ) ( , 1) ( , )

n

k + i k +
i =

IC k + , j = Flow i k + * Dist j j∑
 

Where Flow (i, k+1) is the flow between facilities i and 
k+1 and Dist (ji, jk+1) is the distance between locations 
ji and jk+1. Then, the heuristic function assign for 
HFMCX can be rewritten as follows: 
Function assign (i, j1, j2) //returns j1 or j2 according to the 
frequency values Fij1 and Fij2. 
{ 
    if Fij1/ IC(i, j1)= Fij2 / IC(i, j2) then if P1 is fitter than P2 return 
j1 else return j2; 
    else return k=ArgMax{Fij1/ IC(i, j1), Fij2 / IC(ii j2)}; 
} 

The intuition behind the heuristic function assign 
consists to favor locations with highest frequency and 
lowest induced cost. Reconsider the previous 
illustration example to show the steps for generating the 
offspring O from parents P1 and P2: 

• Step 1: Assign Facility 1. We start by selecting the 
location having highest frequency for facility 1.  
Since max {F11, F13}=F11, the facility 1 is assigned to 
location 1. 

• Step 2: Assign Facility 2. The location of facility 2 
will be selected from locations {2, 6} since the 
locations next to location 1 are respectively 2 in P1 
and 6 in P2. Then, we compute max {F22 / IC (2, 2), 
F26 / IC (2, 6)} and select the location satisfying the 
maximum. Assume that the maximum holds for 
location 4, thus the current offspring will be O: 1 4 x 
x x x. 

• Step 3: Assign Facility 3. Since the locations next to 
location 4 are 5 in P1 and 2 in P2 respectively, we 
compute max {F35/IC (3, 5), F32/IC (3, 2)}. Assume 
that the maximum holds for location 5, thus the 
current offspring will be O: 1 4 5 x x x. 

The process is repeated until assigning a location to 
each facility. Particular cases are handled as for the 
GHFX crossover. 

5. The Algorithm 
In order to evaluate and to compare the performance of 
our proposed crossover operators, we developed a 
SGA. Its structure can be summarized by the following 
pseudo-code: 

Algorithm 4: The genetic algorithm. 

Generation=0; Generate random initial population; 
Evaluate the initial population 
While (the stopping condition is not satisfied) do 
//build the new generation 
       Generation=Generation+1; 

Repeat 
{     Select two parents P1 and P2; 

Perform the crossover operation on P1 and P2; 
Perform the mutation operation; 
Evaluate the new offspring; 

} until reaching the size of the population 
          EndWhile 

The two parents P1 and P2 are randomly selected using 
the roulette wheel selection technique. The crossover 
operation is performed using one of the proposed or 
existing efficient crossover operators. We keep in the 
new generation the fittest individual between the 
parent P1 and the offspring. The traditional mutation 
operator exchanging randomly two locations is used in 
our SGA. 

6. Computational Experiments 
The SGAs using five crossover operators-HFX, 
GHFX, HFMCX, OPX and SPX, have been encoded 
in Visual C++ and run on a PC with Intel(R) 
Core(TM) i7-3770 CPU @ 3.40GHz and 8.00GB 
RAM under MS Windows 7. In the experiments, we 
used some benchmark QAPLIB instances [5]. The 
experiments were performed 20 times for each 
instance. The solution quality is measured by the 
average excess of solutions obtained from the best 
known solution value reported in QAPLIB, as given 
by the formula: 
 

100Average SolutionValue - Best Known SolutionValueExcess(%) = x
Best Known SolutionValue

 

We report percentage of excess of average solution 
value over the best known solution value of 20 runs. 
We set parameters as follows: 75 as population size, 
1.00 as crossover probability, 0.05 as mutation 
probability and the same CPU time as termination 
criterion. Table 5 shows comparative study for 
eighteen QAPLIB instances of size from 20 to 100.  
For eight instances, namely, instance tai20a, tai20b, 
tai25b, tai30b, tai35b, tai40b, tai50b, and tai60b, 
HFMCX is found to be best; for four instances, 
namely, tai25a, tai30a, tai35a, and tai40a, OPX is the 
best; and for remaining six instances, SPX is found 
to be the best. HFMCX and SPX are competing. 
However, on the average, HFMCX is found to be the 
best and HFX is found to be the worst. Notice that 
the gap between the average excess of HFX and SPX 
is less than 1%, this means that the solutions 
obtained by the different crossover are near each 
other. Regarding the instance types, it is observed 
that the tai*b are found to be more difficult than the 
tai*a, and specially, tai25b, tai30b and tai35b are 

(1) 

(2) 
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very difficult instances. The solution quality showed 
in Table 5 is also depicted in Figure 1, from where it 
is very clear to understand the results. 

 

Figure 1. Comparative study of the crossover operators HFX, 
GHFX, HFMCX, OPX and SPX using Excess on QALIB 
instances 

Table 5. Comparison of HFX, GHFX, HFMCX, OPX and SPX 
crossovers on QAPLIB instances using CPU time as termination 
criterion. 

Instance 

Best 
Reported 

Solution in 
QAPLIB 

Excess (%) 
Avg. 
CPU 
Time HFX GHFX HFMCX OPX SPX 

tai20a 703482 6.85 5.78 5.01 6.57 5.59 6 
tai20b 122455319 8.45 8.42 8.32 8.73 9.12 6 
tai25a 1167256 6.22 5.88 5.75 5.01 5.61 9 
tai25b 344355646 10.54 11.74 8.24 12.92 15.42 9 
tai30a 1818146 6.14 6.24 5.87 5.16 5.49 14 
tai30b 637117113 12.71 10.44 9.87 13.4 10.55 14 
tai35a 2422002 5.99 5.29 5.77 4.92 5.35 19 
tai35b 283315445 8.47 7.84 6.11 7.49 6.76 19 
tai40a 3139370 7.44 6.32 5.01 4.97 5.76 24 
tai40b 637250948 10.22 11.02 8.60 9.44 11.57 24 
tai50a 4938796 7.45 5.27 6.51 5.00 4.91 36 
tai50b 458821517 8.15 8.47 6.49 7.46 6.68 36 
tai60a 7205962 6.73 6.11 6.42 4.89 4.60 54 
tai60b 608215054 7.88 7.34 6.19 6.95 8.14 54 
tai80a 13499184 5.41 4.98 5.11 4.32 3.83 92 
tai80b 818415043 7.12 6.91 6.82 6.15 6.07 92 
tai100a 21052466 5.78 5.05 4.73 4.04 3.22 147 
tai100b 1185996137 8.34 7.65 6.31 9.33 5.39 147 

Average 7.77 7.26 6.51 7.04 6.89 44.56 

In terms of solution quality, Figure 2 compares 
anytime behavior of GAs using HFX, GHFX, HFMCX, 
OPX and SPX operators at maximum of 1000 
generations for tai25b in one run. The figure shows that 
HFMCX is the best crossover and HFX is the worst 
crossover in terms of solution quality. 

Ex
ce

es
%

 

 
Generation 

Figure 2. Convergence of GAs using different crossover operators 
for tai25b. 

Further computational comparisons are carried out to 
evaluate the performance of HFX, GHFX and HFMCX 
against the best SCX crossover. We set parameters as 
follows: 200 as population size, 1.00 as crossover 
probability, 0.05 as mutation probability and 10000 
generations as termination criterion. We report the 

average of computational time and the percentage of 
excess of average solution value over the best known 
solution value of 20 runs. Table 6 displays 
comparative study for the same eighteen QAPLIB 
instances of size from 20 to 100. The performances of 
these crossovers in terms of solution quality and 
computational time are separately depicted in Figures 
3 and 4 respectively. In term of solution quality 
HFMCX is found to be better than HFX and GHFX. 
Regarding the EXCESS metric, the average gap 
between HFMCX and SCX is less than 1%. SCX 
provides the best solutions for all instances, but in 
terms of computation time, SCX consumes twice as 
much time compared to HFX and 1.5 times compared 
to GHFX. In order to provide a global overview of the 
performance of these four crossovers, we defined 
bellow a metric involving both the computational time 
and the percentage of excess in same time.  

Table 6. Comparison of HFX, GHFX, HFMCX and SCX 
crossovers on QAPLIB instances using 10000 generations as 
termination criterion. 

Instance Known 
Solution 

HFX GHFX HFMCX SCX 
Excess 

(%) Time Excess 
(%) Time Excess 

(%) Time Excess 
(%) Time 

tai20a 703482 6.81 7 5.59 8 4.82 13 4.39 13 
tai20b 122455319 8.45 7 8.31 8 7.67 14 6.15 13 
tai25a 1167256 6.18 12 5.82 15 5.33 20 4.21 20 
tai25b 344355646 10.05 12 10.73 15 7.45 21 5.04 20 
tai30a 1818146 6.11 17 6.12 22 5.66 31 3.67 30 
tai30b 637117113 11.32 17 10.04 22 9.05 31 8.10 30 
tai35a 2422002 5.78 24 5.21 29 5.71 41 3.52 40 
tai35b 283315445 8.45 24 7.11 29 6.02 41 4.90 40 
tai40a 3139370 7.44 32 6.23 39 4.23 57 3.74 55 
tai40b 637250948 9.22 32 10.52 39 8.11 57 6.32 55 
tai50a 4938796 7.13 46 5.47 55 5.46 82 3.81 80 
tai50b 458821517 7.15 46 8.43 55 5.28 83 4.43 80 
tai60a 7205962 6.05 71 6.00 83 5.74 123 4.00 120 
tai60b 608215054 7.83 71 7.11 83 5.11 123 5.02 120 
tai80a 13499184 5.34 118 4.55 138 4.02 215 4.13 210 
tai80b 818415043 7.05 118 6.41 138 5.39 216 5.12 210 
tai100a 21052466 5.49 160 5.04 241 3.65 387 3.65 380 
tai100b 1185996137 8.26 160 7.09 241 5.23 389 5.00 380 

Average 7.45 54.11 6.99 70.00 5.77 108.00 4.73 105.33 

 

Figure 3. Comparative study of HFX, GHFX, HFMCX and SCX 
crossover operators using the excess on QAPLIB instances. 

 

Figure 4. Comparative study of HFX, GHFX, HFMCX and SCX 
crossover operators using the computational time on QAPLIB Instances. 
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As mentioned above in order to measure the 
performances of the proposed crossover in terms of 
solution quality and computational time in same time, 
we defined the performance criterion PC(X1, X2) based 
on EXECSS and TIME using the following metric: 

PC(X1, X2) =EXCESS(X1)*TIME(X1)/EXCESS(X2)*TIME(X2) 

This metric includes both the solution quality and the 
computational time. More PC(X1, X2) is less than 1 
more it is better for crossover X1. From Figure 5, it is 
seen that HFX and GHFX provide better performance 
for most of the instances according to this metric 
compared to SCX, the worst crossover is HFMCX.  

 
Figure 5. Comparative study of HFX, GHFX, HFMCX and SCX 
crossover operators using the metric PC on QAPLIB Instances. 

7. Conclusions 
We have introduced a frequency model allowing the 
design of three new crossover operators for enhancing 
GAs to solve the QAP. We have implemented the 
frequency model in a simple GA with different 
crossover operators to solve the QAP. We presented a 
comparative study among SPX, OPX, SCX and the 
proposed crossover operators on some benchmarks 
QAPLIB instances. In terms of solution quality the 
results show that our proposed crossover operators are 
competitive. On the other hand, in terms of 
computational time the proposed crossovers HFX and 
GHFX are faster than SCX, namely, HFX and GHFX 
are 2 and 1.5 times faster than SCX respectively. As the 
computational time of our proposed crossover HFX is 
much reduced, this could be an interesting opportunity 
to combine it with a local search technique to improve 
the solution quality. Our current investigation aims to 
develop and implement a hybrid GAs using HFX. 

The frequency model keeps trace of the evolution of 
individuals from one generation to another. The 
knowledge kept in this model can be exploited to define 
new crossover operators or to enhance some existing 
ones. Another advantage of the frequency model is that 
it can also be used as a long-term memory in an 
immigration strategy to build new individuals based on 
the knowledge stocked in the frequency model. Finally, 
the idea of the frequency model is not proper to the 
QAP only, but, it can be adapted and used for any other 
combinatorial optimization problem. 
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