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Abstract: Digital cameras generally use a single image sensor which surface is covered by a color filter array. The Color 
Filter Array (CFA) limits each sensor pixel by sampling one of the three primary color values (red, green or blue), whereas the 
other two missing color values would be acquired by the post-processing procedure called demosaicking. From the noisy CFA 
data, the full color images are reconstructed through an imaging pipeline of demosaicking and denoising. However, image 
denoising in the RGB space has expensive computation cost. In this paper, to increase the efficiency and the color fidelity, we 
propose a novel joint denoising and demosaicking strategy to reconstruct the noiseless full color image from the input noisy 
CFA data. The low-rank approximation technique is first used to remove the noise from CFA data. Then, image demosaicking 
using both color difference space and signal correlation are applied to the denoised CFA data to obtain the noise-less full 
color image. The experimental results show that the proposed algorithm not only improves the quality of full color image but 
also outperforms the existing state-of-the-art methods both subjectively and objectively. 
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1. Introduction 

The digital cameras are important imaging equipment 
for image processing and computer vision. The full 
color digital images are usually composed of three 
different spectral components, i.e., red, green and blue. 
It is desirable of having three Complementary Metal 
Oxide Semiconductor (CMOS)/Charge Coupled 
Device (CCD) image sensors to capture full color 
digital images. However, in order to decrease the 
production cost, most digital color cameras only use a 
single sensor with only one Color Filter Array (CFA) 
instead of three. Therefore, the color interpolation or 
demosaicking is applied to the CFA data to reconstruct 
the full color images. Generally speaking, image 
denoising is carried out after image demosaicking in 
many applications. In the real world, the noise of 
digital cameras mainly comes from electrical 
components. The pixel sensor of the CMOS devices 
typically consists of a photodiode and three transistors, 
which are the major sources of noise. Consequently, 
image denoising is an essential preprocessing step to 
reconstruct the full color image. In recent decades, 
many image denoising methods have appeared and 
received considerable attention, such as wavelet-based 
methods [8], the bilateral filtering [9], the non-local 
means [2], the low rank technique [15] and the others 
[1, 10, 14]. However, these methods did not consider 

that image demosaicking has the amplification effects 
of noise in CFA data, which caused the blurred edges 
and smoothed textures of the output images. 

Image demosaicking plays a very important role to 
generate full color images. So far, great progress has 
been made in theoretical research of image 
demosaicking and many methods have been introduced 
into the studies. They can be mainly divided into two 
categories. One is directly to interpolate each color 
channel separately, which produces good results when 
applied to gray-scale images. Unfortunately, when 
applied to color images, they often lead to visible color 
artifacts in the reconstructed images. The other is to 
interpolate through the signal correlation among the 
color channels [4, 6, 11], which has better performance 
in color fidelity. Recently, many demosaicking 
methods have been proposed. Gunturk et al. [4] 
exploited the inter-channel correlation in an alternating 
projection scheme, which outperforms the 
nearest-neighbor replication, bilinear interpolation and 
cubic spline interpolation. Yuk et al. [11] developed 
another demosaicking method that selects direction 
adaptively for interpolation using the direction 
similarity in different color spaces. However, these 
demosaicking methods often lead to color artifacts in 
reconstructed images. In fact, the acquired CFA data is 
generally noisy, which causes the interpolation error 
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and color distortion. However, most demosaicking 
methods are used to reconstruct the full color images 
on the assumption that the CFA data is noise-free.  

In order to make the assumption more realistic, 
some researchers have put forward novel methods that 
generate the full color image from the noisy CFA 
signal [3, 5, 7, 12, 13, 16]. Hirakawa and Parks [5] 
proposed a joint of demosaicking and denoising 
algorithm. They treated both demosaicking and 
denoising as estimation problems, and proposed an 
optimal image filter based on the Total Least Square 
(TLS) technique. Zhang et al. [13] exploited both 
spectral and spatial correlations to suppress sensor 
noise and interpolation error simultaneously by using 
the Linear Minimum Mean Square-Error (LMMSE) 
technique. Menon and Calvagno [7] adopted the 
space-varying filters and the evaluation of noise 
autocorrelation to reconstruct the full resolution color 
image. Zhang et al. [12] developed a spatially adaptive 
method based on Principle Component Analysis 
(PCA), which worked on the noisy CFA data by 
supporting window to analyze the local image 
statistics. Condat and Mosaddegh [3] presented a joint 
demosaicking and denoising framework by total 
variation minimization to construct the full color 
image.  

In this paper, we present a united denoising and 
demosaicking framework based on both the low rank 
approximation and color difference model. The 
proposed algorithm employs a low rank approximation 
strategy for the local patches to achieve resolution 
enhancement and noise removal. The low rank 
approximation adopts the refined parallel analysis with 
Monte Carlo simulation to select signal subspace 
dimensionality of the noisy patches. In order to obtain 
the full color image, the adaptive edge-preserving and 
edge-directed interpolation method is proposed for 
color reproduction from the denoised CFA data. 
Finally, according to the image observation model, the 
simulation results of the synthetic images with variant 
noise levels demonstrate that the proposed algorithm 
outperforms the state-of-the-art methods both 
quantitatively and qualitatively.  

The remainder of this paper is organized as follows. 
In section 2, we briefly review the image observation 
model, and then describe the proposed algorithm in 
detail. Section 3 gives the experimental evaluations 
and comparisons. At last, section 4 draws the 
conclusions. 

2. Proposed Algorithm 
To produce high quality images acquired by digital 
cameras, many methods have been proposed to 
reconstruct the full color images. There are mainly 
three schemes to reconstruct the full color image from 
the noisy CFA data. One is demosaicking first and 
followed denoising, the second is joint demosaicking 

and denoising together, and the third is denoising first 
and demosaicking later. For the first scheme, it is still a 
challenging problem in image processing. The noise in 
CFA data will affect the demosaicked results and 
caused color artifacts, which is difficult to be removed 
in the following denoising processing. The first scheme 
also has the drawbacks of high computational cost. 
Consequently, the second and third schemes are 
generally used to derive the full color images. In this 
paper, we will only study the third scheme to build the 
full color images. 

2.1. Image Observation Model 
The mathematical model of the observed noisy images 
[5] is given as follows: 

         ( ) ( ) ( )( ) ( )0 1, , , ,Y i j = X i j + k + k X i jδ i j  

Where x(i, j) and y(i, j) are separately the ideal and 
measured sensor values at pixel location (i, j), δ ̴  N(0,1) 
is the noise, k0 and k1 are sensor dependent parameters. 
Specifically, the noisy color images can be described 
in another formula [13]:  

   rr = r +v , gg = g +v , bb = b +v   

Where vr, vg and vb are the noise in the red, green and 
blue channel, r, g and b are the ideal values, r , g  
and b  are the noisy signals. In fact, the acquired 
images from the CCD/CMOS sensors often contain the 
additive and/or multiplicative noises. However, only 
noisy CFA image data is available in practice. In order 
to reconstruct the noiseless full color image, we 
propose the joint denoising and demosaicking 
algorithm that employs the low rank approximation 
and color difference model for the noisy CFA data. 
The proposed blind algorithm mainly consists of two 
steps: The CFA denoising and image demosaicking.  

2.2. CFA Denoising Step 
Different from the existing patch-based denoising 
methods, the proposed algorithm utilizes the 
projections of local patch stacks onto signal subspace. 
For each patch of the CFA data, the signal 
dimensionality was determined by the refined parallel 
analysis with Monte Carlo simulation. After the 
projection of each patch onto its signal subspace, the 
denoised CFA data is acquired by patch alignment and 
the averaging method. 

First of all, the denoising step is implemented to 
remove noise of the noisy CFA data. Assume that x(i, 
j) is the true pixel value at the spatial location (i, j) of 
the observed image XRM×N and Y is a patch-based 

representation of X. Those P × P  pixels around the 
center pixel x(i, j) in the image X constitute a reshaped 
column vector from Y. That is to say, Y is a matrix of 

(1) 

(2) 
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size M×N×P, which consists of the pixels in the image 
X.  

Suppose that, the image patch centered at x(i, j) is in 
a L × L sliding search window. The image 
matrix X will be divided into MD×ND image blocks of 
the same size D × D . To ensure that the search 
window covers all the related image blocks, we 
define ³L D + P -1. For each image block, its similar 
patches are found by block matching method. Then 
these similar patches are reorganized as the matrix Zm, n 
with the size of L×P, where m=1, …, MD and n=1, …, 
ND. 

According to Singular Value Decomposition (SVD) 
of the similar patch group, the most energy of the 
image signal concentrates on the first few principal 
components, while the energy of noise will evenly 
spread over the whole components. Hence, the optimal 
dimensionality of PCA can be used for noise removal. 
By removing the mean value from each column 
vectors, the zero-centered image matrix is given as: 

          , , ,
1

1
(l, ) (l, )

L

m n m n m n
l =

Z = Z p - Z p
L
∑  

Where l=1, ..., L, p=1, ..., P, m=1, ..., MD, n=1, …, ND. 
To reduce the calculation time on the condition of 
L>P, we replace ,m nZ  with the covariance matrix 

, , m n m n
T

Z Z . Thus, we have:  

              , ,
2

m n m  n
T TZ Z = UΣ U  

Where U = [u1, u2, ..., up] is the P×P unitary matrix 

consisted of eigenvectors derived from , ,

T

m n m nZ Z . 
Define Σ=diag{λ1, λ2, …, λp} as the P×P diagonal 
matrix, λ1≥…≥ λr ≥ 0, , , ( )m n m n

T
r = rank Z Z , where λ1, …, 

λr are the singular values of , ,
T
m n m nZ Z . By this 

projection,   

T

m, n m, nZ Z can be decorrelated, and m, nZ is 
projected onto the basis U, the reformed uncorrelated 
matrix  m, nZ is given as:  

                  , ,m  n m  nZ = Z ×U  

According to principle component analysis, we find 
that the images can be reconstructed only by several 
important components. The output images would not 
lose much information if the small singular values are 
ignored and the image patch size is large enough. 
Therefore, we can only use the first K eigenvectors to 
reconstruct the noiseless CFA data, which not only 
removes the noise but also preserves the most image 
information. In our algorithm, we adopt the refined 
parallel analysis with Monte Carlo simulation to select 
the signal components. 

Let the singular values of the image patch  m, nZ be 
denoted by λp sorted in the descending order, where 

p=1, ..., P. Assume αp as the singular values of the 
artificial data. So, the parallel analysis can estimate the 
signal dimensionality of noisy image data as follows: 

            ³{ 1, , }p pK = max p = L Pλ α  

Where αp is a threshold and the singular value λp less 
than αp is discarded to remove noise. 

In order to estimate the signal subspace 
dimensionality from noisy image data, we generate the 
artificial data with the same size of the image patches. 
Let C L PR ×∈ denote the artificial matrix. Similarly, we 
use CTC instead of C for the projection of the artificial 
data. The SVD of this artificial data matrix is given as: 

                 2TC C = VS V  

Where V is the unitary matrix of eigenvectors derived 
from the artificial data matrix, and S=diag{β1, β2, …, 
βp} is a diagonal matrix with its singular value in  the 
descending order. Let βp for p=1, ..., P denote the 
singular values of the artificial data matrix. Then we 
compare λp with βp to determinate the signal subspace 
dimensionality:  

           ³{ 1, , }p pK = max p = L Pλ β  

Through the refined parallel analysis, the signal 
subspace dimensionality is determined so that we can 
reconstruct the noiseless image. For each image block, 
the straight forward way to reconstruct a noiseless 
image block is to project the noisy column vectors 
directly onto the subspace of the first K eigenvectors in 
a low rank representation. Hence, each projected 
weight matrix of signal subspace is: 

         

,, ( , ) (l, ) (l, )m  n m,nm nW k p = Z k Z p  

Where k=1, 2, …, K and p=1, 2, ..., P. Then, the 
noiseless image patch stack Rm, n is acquired by the 
weighted subspace as follows:  

      

, , , ,

1
(l, ) ( , ) (l, )m nm  n m n m  nR = Z k W k p + Z p

L
 

Finally, we can reconstruct the noiseless image F by 
patch alignment technique and overlap averaging 
scheme for the whole image. Each pixel value at the 
position (i, j) would be described by this formula:  

          
, ,

,
, , 

1
( , ) (l, )

M N PD D

m  n
m  n p

x

F i j = R p
n

∑  

Where nx is the number of pixels used in the image 
patch stacks for the whole image. 

Our proposed denoising algorithm is used to reduce 
the noise of the CFA data in the blind condition. In 
order to reconstruct a full color image, the proposed 
interpolation step called demosaicking is performed on 
the denoised CFA data. 

 

(7) 

(3) 

(4) 

(5) 

(6) 

(8) 

(9) 

(10) 

(11) 
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2.3. Image Demosaicking Step 
Most consumer cameras capture images by a Bayer 
CFA pattern that only one color value is sampled at the 
location of each pixel. The Bayer pattern is shown in 
Figure 1, which provides an array of red (r), green (g) 
and blue (b) color components. Since, only a single 
color component is available at each spatial location, 
the demosaicking is used to interpolate the other two 
missing color components. 

 
Figure 1. Bayer CFA pattern. 

Yuk et al. [11] proposed a simple demosaicking 
method which interpolates in color difference space. In 
order to avoid interpolation across the edge and reduce 
color artifacts, it interpolates color images using the 
direction similarity. However, this method ignores that 
the adjacent pixels have different correlation along the 
different directions. To reduce color artifacts, another 
demosaicking method [16] exploits the adaptive spatial 
correlation to interpolate the pixels in the color 
difference space for the full color image 
reconstruction. In our algorithm, we employ the color 
difference model for image demosaicking due to its 
low contrast. 

Assume that R, G and B are the desired image color 
values obtained by a digital camera, and R', G' and B' 
are interpolated values. Their normalized values are 
between 0 and 1. We separately compute the 
differences between color channels, i.e., KR (green 
minus red) and KB (green minus blue), and then 
interpolated them. Thus, the full color image is 
reconstructed by the interpolation method.   

Firstly, we describe how to compute KR/KB at the 
red/blue pixels. According to the structural similarity, 
the interpolation direction should be determined before 
the interpolation operation. Let L, R, U and D is the 
index of R, G and B. H and V denote the image’s 
horizontal and vertical interpolation direction, 
respectively. 

As is shown in Figure 2, we interpolate the pixel at 
the location R, the similarity between horizontal and 
vertical directions can be calculated as: 

         2 2

2 2

R R R RU D

R R R RL R

V = K - K + K - K

H = K - K + K - K





   

 
Figure 2. Interpolated KR at the red pixel. 

After computing the similarity between horizontal 
and vertical directions, we select the dominant 
direction for the interpolation. That is, if their values 
are comparatively different, the direction of 
interpolation is selected according to smoother 
direction. Otherwise, we should select a bigger 
window to determine the direction of interpolation. In 
our algorithm, if |H-V| < c |H+V|, then we will choose 
the bigger window and calculate H and V again as 
follows: 

    2 2 2 4

4 2 2 4

R R R R R RU U D D

R R R R R RL L R R

V = K - K + K - K + K - K

H = K - K + K - K + K - K





 

If H>V, KR=0.5 (GUI+GDI)-0.25(RU2+2R+RD2), 
otherwise, KR=0.5 (GLI+GRI)-0.25(RL2+2R+RR2). 

The estimation of KB at B pixels is performed in the 
similar way. Next we compute KR/KB at the blue/red 
pixels. Here, we take the estimation of KR for example. 
According to Figure 3, we compute KR at R pixels with 
diagonal neighboring locations in the following form: 

        1 2 3 40.25( )R R R R RK = K + K + K + K  

       
Figure 3. Interpolated KR at the blue pixel.                           

Next, we compute KR/KB at the green pixels. 
Referring to Figure 4, since the interpolated KR/KB 
values at the blue/red pixels are available by the 
previous procedures, we calculate KR/KB at green 
pixels as the weighted sum of vertical and horizontal 
direction similarity. The process is approximately 
similar with the computation of KR/KB at red/blue 
pixels. 

      1 3 1 3

1 3 1 3

0.5 0.5

0.5 0.5

R R R RD U U D

R R R RR L L R

V = K - K + K - K

H = K - K + K - K






 

(12) 

(13) 

(14) 

(15) 
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Figure 4. Interpolated KR at the green pixel. 

If |H-V|<c |H+V|, we choose a larger window and 
compute H and V again. Then, we have: 

         1 1

1 1

0.5( ),

0.5( ),
R RD U

R

R RL R

K + K H >V
K =

K + K others.





 

The same process is performed to compute KB values at 
green pixels. 

After all KR/KB are obtained at each pixel, we 
calculate the missing pixel values to generate the full 
color image. Finally, at R channel, the pixel value is: 

        'R = R , '
RG = R + K , ' '

BB = G - K  

At G channel, the pixel value is: 

      'G = G , '
RR = G - K , '

BB = G - K  

At B channel, the pixel value is: 

        'B = B , '
BG = G + K , ' '

RR = G - K  

3. Simulation Results 
To evaluate the performance of the proposed algorithm 
comprehensively, the experiments were carried out. A 
set of test images is selected from the well-known 
Kodak dataset. In our experiments, we compare our 
proposed algorithm with the PCA-based spatially 
adaptive denoising [12] and the joint demosaicing and 
denoising [5]. The performances of these different 
methods were evaluated on the test images by Peak 
Signal-To-Noise Ratio (PSNR) and Structural 
Similarity (SSIM).  

In the experiment, the test color images were 
mosaicked with the Bayer CFA and corrupted by the 
speckle noise model with different deviations 0.0100, 
0.0225 and 0.0400, respectively. The parameters of our 
proposed algorithm is set with the variable search 
window of 25×25 pixels, the image block of 17×17 
pixels and the neighborhood patch of 7×7 pixels for 
noise removal. Moreover, the color demosaicking with 
adaptive window size is used to reconstruct the full 
color images from the CFA data. According to the 
similarity between horizontal and vertical directions, 
the demosaicking step adaptively selects one of three 

different windows of size 9×9, 13×13 and 17×17. 
Figure 5 shows the simulated noisy color images 
generated from ‘kodim21’ corrupted by the speckle 
noise with different deviations 0.0100, 0.0225 and 
0.0400, respectively. The visual comparison of these 
different methods for the test image ‘kodim21’ is given 
in Figure 6. For a set of test Kodak color images, the 
PSNR(dB)/SSIM results are presented in Table 1. As 
can be seen from the results, the proposed algorithm 
has less color artifacts and sharper edges. The 
experimental results demonstrate that our proposed 
algorithm can suppress the noise and preserve the 
image details efficiently, and outperforms the 
state-of-the-art methods both objectively and 
subjectivel. 

  

 
Figure 5. The test color image ‘kodim21’ corrupted by speckle 
noise with different deviations 0.0100, 0.0225 and 0.0400, 
respectively. 

   
a) PCA [12]. 

   
b) TLS [5]. 

   
c) Our proposed algorithm. 

Figure 6. The visual comparisons of the results obtained by [5, 13] 
and our proposed algorithm for the test image ‘kodim21’ corrupted 
by speckle noise with deviations 0.0100, 0.0225 and 0.0400, 
respectively. From left to right: the first row (a), the second row (b) 
and the last row (c) are separately the results obtained by [5, 13] 
and our proposed algorithm for the simulated noisy images in 
Figure 5. 

 
 

 

(16) 

(17) 

(18) 

(19) 
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Table 1. The comparison of PSNR(dB)/SSIM results obtained by these different methods. 

PSNR/SSIM TLS [5] PCA [13] Proposed 
0.0100 0.0225 0.0400 0.0100 0.0225 0.0400 0.0100 0.0225 0.0400 

kodim03 
R 27.22/0.5754 24.21/0.4161 21.95/0.3106 29.73/0.6138 26.66/0.4602 25.09/0.3766 30.31/0.8467 29.22/0.7989 28.10/0.7349 
G 27.74/0.5859 24.61/0.4254 22.28/0.3190 29.78/0.6369 26.46/0.4862 24.69/0.4017 31.13/0.8544 30.05/0.8094 28.88/0.7484 
B 26.93/0.5688 24.69/0.4110 22.44/0.3058 28.60/0.6213 25.68/0.4748 23.85/0.3913 30.27/0.8373 29.10/0.7910 28.39/0.7295 

kodim07 
R 26.38/0.5780 23.46/0.4429 21.23/0.3535 29.02/0.6277 26.17/0.5015 24.26/0.4276 30.22/0.8682 29.27/0.8247 28.18/0.7701 
G 26.86/0.5971 23.84/0.4630 21.55/0.3733 29.19/0.6491 25.97/0.5226 24.04/0.4477 30.92/0.8798 30.18/0.8390 28.690.7847 
B 26.12/0.5737 23.23/0.4388 21.09/0.3503 27.80/0.6411 24.93/0.5162 23.06/0.4437 29.22/0.8698 28.40/0.8285 27.60/0.7770 

kodim09 
R 25.35/0.4686 22.24/0.3282 19.93/0.2454 27.80/0.5252 24.63/0.3888 22.80/0.3143 31.09/0.8590 29.51/0.7680 27.93/0.6805 
G 25.71/0.4822 22.50/0.3411 20.12/0.2565 27.95/0.5371 24.76/0.3996 22.90/0.3240 31.67/0.8619 29.90/0.7699 28.28/0.6815 
B 25.54/0.4636 22.35/0.3234 20.01/0.2398 26.80/0.5175 23.71/0.3800 21.95/0.3040 30.90/0.8543 29.41/0.7630 28.04/0.6762 

kodim10 
R 25.96/0.5158 22.90/0.3644 20.60/0.2718 28.95/0.5765 25.53/0.4322 23.55/0.3491 31.07/0.8597 29.670.7978 27.99/0.7153 
G 26.32/0.5345 23.15/0.3823 20.81/0.2887 28.73/0.5906 25.43/0.4456 23.42/0.3607 31.75/0.8628 30.21/0.7997 28.47/0.7170 
B 26.07/0.5103 22.97/0.3589 20.67/0.2672 27.79/0.5669 24.72/0.4215 22.86/0.3374 31.09/0.8517 29.76/0.7888 28.24/0.7070 

kodim12 
R 24.22/0.3854 21.05/0.2536 18.72/0.1797 25.95/0.4278 23.13/0.2913 21.01/0.2233 30.13/0.7788 28.63/0.7148 27.04/0.6444 
G 24.43/0.4000 21.18/0.2656 18.84/0.1910 26.56/0.4475 23.40/0.3106 21.38/0.2406 30.55/0.7907 28.98/0.7295 27.30/0.6609 
B 24.38/0.3869 21.18/0.2557 18.85/0.1819 25.71/0.4424 22.76/0.3057 21.38/0.2367 30.48/0.7805 29.25/0.7188 27.79/0.6508 

kodim16 
R 26.99/0.6085 24.04/0.4743 21.82/0.3789 29.23/0.6644 26.62/0.5372 24.65/0.4561 31.50/0.8602 30.06/0.8073 28.56/0.7369 
G 27.54/0.6221 24.38/0.4860 22.07/0.3893 29.66/0.6714 26.72/0.5443 24.91/0.4636 32.15/0.8660 30.53/0.8128 29.13/0.7414 
B 26.91/0.6000 24.21/0.4667 21.94/0.3724 28.21/0.6490 25.26/0.5243 23.38/0.4473 30.27/0.8544 29.14/0.8002 27.97/0.7279 

kodim20 
R 24.29/0.5009 21.32/0.3819 19.07/0.3056 26.78/0.5293 23.57/0.4164 21.23/0.3502 26.96/0.8189 24.47/0.7489 22.39/0.6784 
G 24.61/0.5054 21.59/0.3878 19.32/0.3122 26.44/0.5403 23.50/0.4260 21.33/0.3594 27.52/0.8170 25.01/0.7490 22.93/0.6804 
B 24.84/0.4832 21.98/0.3714 19.76/0.2969 25.86/0.5172 23.28/0.4092 21.50/0.3466 28.46/0.7712 26.67/0.7101 24.89/0.6474 

kodim21 
R 25.62/0.5777 22.89/0.4619 20.70/0.3815 27.97/0.6358 25.42/0.5201 23.65/0.4489 28.01/0.8356 27.15/0.7863 26.20/0.7300 
G 26.26/0.5902 23.32/0.4737 21.00/0.3929 28.59/0.6373 25.50/0.5230 23.85/0.4534 28.46/0.8433 27.64/0.7950 26.72/0.7411 
B 25.94/0.5716 23.10/0.4552 20.86/0.3744 26.38/0.6137 24.06/0.5023 22.43/0.4347 27.93/0.8157 27.28/0.7671 26.47/0.7122 

kodim23 
R 26.19/0.5316 23.39/0.3746 21.25/0.2751 28.54/0.5583 25.83/0.4081 24.47/0.3275 30.58/0.8587 29.19/0.8148 27.64/0.7699 
G 26.80/0.5410 23.84/0.3797 21.61/0.2785 28.25/0.5828 25.47/0.4315 23.70/0.3491 32.27/0.8670 31.17/0.8262 29.97/0.7841 
B 26.91/0.5369 23.89/0.3774 21.74/0.2771 27.12/0.5934 25.04/0.4446 24.03/0.3600 31.25/0.8575 30.19/0.8181 29.05/0.7778 

 
4. Conclusions 
In this paper, we present a joint denoising and 
demosaicking algorithm to reconstruct the full color 
image from noisy CFA data in the blind condition. The 
proposed algorithm is based on the low rank 
approximation and color difference model. The 
experimental results show that our proposed algorithm 
can achieve higher resolution, less noise and sharper 
edges. For noisy CFA data, our proposed method not 
only can remove the noise and the color artifacts 
effectively, but also can recover rich textures and 
details. It is also superior to other state-of-the-art 
methods both quantitatively and qualitatively. 
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