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Abstract: In this paper, an application of a hybrid Chemical Reaction Optimization (CRO) algorithm with adaptive 
Differential Evolution (DE) mutation strategies for training Higher Order Neural Networks (HONNs), especially the Pi-Sigma 
Network (PSN) is presented. Contrasting to traditional CRO algorithms, the reactant size (population size) remains fixed 
throughout all iterations, which makes it easier to implement. In addition, four DE mutation strategies (DE/rand/1, DE/best/1, 
DE/rand/2 and DE/best/2) with adaptive selection of control parameters as inter-molecular reactions and one intra-molecular 
reaction have been used. The proposed algorithm combines the diversification property of inter-molecular reactions following 
DE/rand mutation strategies and intensification property of intra-molecular reaction as well as inter-molecular reactions 
following DE/best mutation strategies, thereby glorifying the chances of reaching the global optima in less iteration. The 
performance of the proposed algorithm for HONN training is evaluated through a well-known neural network training 
benchmark i.e., to classify the parity-p problems. The results obtained from the proposed algorithm to train HONN have been 
compared with results from the following algorithms: Basic CRO algorithm, CRO-HONN Training (HONNT) and the most 
popular variants of DE algorithm (DE/rand/1/bin, DE/best/1/bin). It is observed that the application of the proposed 
hybridized algorithm to (DE-CRO-HONNT) performs statistically better than that of other algorithms considering both 
classification accuracy and number of generation taken to attain the solutions. 
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1. Introduction 
Over the past few decades, Artificial Neural Network 
(ANN) models have been widely used for pattern 
reorganization, pattern classification and mathematical 
function approximation. However, now-a-days instead 
of traditional neural networks, Higher Order Neural 
Networks (HONNs) have found in increasing 
consideration in forecasting, classification and 
regression problems due to several unique 
characteristics, including: Stronger approximation with 
faster convergence property; greater storage capacity; 
and higher fault tolerance capability. On the other hand, 
the major drawback of most of the HONN models is 
that the number of weights of the network grows 
exponentially with the increase in dimensionality of 
input patterns. But, Pi-Sigma Networks (PSNs) are a 
special class of HONN which are not only 
computationally much more efficient than other HONN 
models but also manages to incorporate the capability 
of first order HONN indirectly. The PSNs were 
introduced by Shin and Ghosh [24] and have addressed 
several difficult tasks such as zeroing polynomials [9] 
and polynomial factorization [18] more effectively than 
traditional Feed-forward Neural Networks (FNNs). 

Shin and Ghosh [26] have formulated Ridge 
Polynomial Neural Networks (RPNN) by adding 
gradually more complex PSNs. RPNNs have shown 
competitive performance in various tasks such as 
pattern recognition [29], image prediction [17], time 
series prediction [10], data classification [26], and 
intelligent control [12]. Since, the RPNNs are a 
generalization of PSNs, its effectiveness directly 
depends on the effectiveness of PSNs. Therefore, a 
better learning algorithm for PSNs will also improve 
the efficiency of RPNN. Despite of better performance 
of PSN and RPNN across various application 
domains, a few papers were devoted to develop an 
efficient training algorithm for PSNs [5, 23, 24]. This 
motivates towards the development of an efficient 
training algorithm for training PSNs. 

The PSNs are supervised networks and efficiency 
of any supervised neural network depends on the 
algorithm used for its training. The objective of any 
supervised training algorithm is to minimize the 
approximation error by obtaining the optimal weight 
set. The optimal weight set of PSNs can be obtained 
by using either gradient or evolutionary learning 
algorithm. Since the training of PSN is a multimodal 
search problem, the gradient based training algorithms 
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often suffer from several shortcomings, including: 
Easily getting trapped to local minima; have slow 
convergence properties; and training performance is 
sensitive to initial values of its parameters. Due to these 
disadvantages, research on different optimization 
techniques that are dedicated to PSN training is still 
needed. There are many optimization techniques such 
as Differential Evolution (DE) [2, 3, 4, 11, 20, 21, 28], 
Genetic Algorithm (GA) [7], Particle Swarm 
Optimization (PSO) [13], Ant Colony Optimization 
(ACO) [27], a Bee Colony Optimization (BCO) [19], 
an Evolutionary Strategy (ES) [1], Quantum Inspired 
Algorithms (QEA) [8], Chemical Reaction 
Optimization (CRO) [14, 15, 16] etc., which can be 
used to train PSN. In this paper an attempt has been 
made to hybridize the self adaptive DE mutation 
operators with a CRO algorithm to obtain an efficient 
training algorithm for PSN. 

The remainder of this paper is organized as follows: 
Section 2 briefly describes the mathematical model of 
PSN, differential evolution algorithm and chemical 
reaction optimization algorithm. The proposed training 
algorithm for PSN has been explained in section 3. In 
section 4 experimental results are presented. And 
finally, conclusions are drawn in section 5. 

2. Related Work 
2.1. Pi-Sigma Neural Network 
PSN is a special type higher order feed forward neural 
network that calculates the product of the sum of the 
input components and passes it to a nonlinear function. 
The network architecture of PSN as shown in Figure 1 
consists of a single hidden layer of summing units and 
an output layer of product units. The weights 
connecting the input neurons to the hidden neurons are 
trainable whereas those connecting the hidden neurons 
to the output neurons are fixed to one. Such a network 
topology with only one layer of trainable weights 
drastically reduces the training time [6, 24, 25]. 
Moreover, the product units provide the higher order 
capabilities of HONN models. 

 
Figure 1. Architecture of a typical PSN. 

Consider a PSN with n inputs, k hidden neurons and 
m output neurons. The number of hidden neurons in the 
hidden layer defines the order of a PSN. For a kth order 

PSN the number of trainable weights is n×k 
considering each summing unit is associated with n 
weights (bias components are not considered). The 
output of the PSN is computed by making product of 
the output of k hidden units and handing it to a 
nonlinear function, which is defined as: 
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Where σ is a nonlinear transfer function and hj is the 
output of the jth hidden unit which is computed by 
making the sum of the products of each input (Ii) with 
the corresponding weight (wij) between ith input and jth 
hidden unit. The output of hidden unit is computed as: 
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2.2. Differential Evolution 
The DE algorithm was introduced by Storn and Price 
[28]. It is a simple yet efficient stochastic direct search 
method for global optimization of multimodal 
function. Compared to most other evolutionary 
algorithms, DE is much simpler and straightforward to 
implement. Although, PSO is also very easy to code, 
the performance of DE and its variants outperforms 
the PSO variants over a wide variety of problems [3, 
22] and the Congress on Evolutionary Computation 
(CEC) competition series. Since, the inception DE, it 
has been upgraded intensively in recent years [2]. The 
variants of DE algorithm differ from each other by the 
type of mutation and crossover scheme being used. 
The crossover may be binary or exponential. For both 
the crossover different mutation schemes, suggested 
by Price et al. [20, 21] are summarized as follows: 

• DE/rand/1: MV= Cr1 +F*(Cr2-Cr3). 
• DE/best/1: MV= Cbest +F*(Cr1-Cr2). 
• DE/rand/2: MV= Cr1+F*(Cr2-Cr3)+ F*( Cr4-Cr5). 
• DE/best/2: MV= Cbest +F*(Cr1-Cr2)+F*( Cr3-Cr4). 
• DE/target-to-best/1: MV = Ci + F* (Cbest-Cr1) + F* 

(Cbest-Cr2). 

The conventions used above are DE/a/b, where DE 
stands for differential evolution, a represents the base 
vector to be perturbed (it may be best vector or target 
vector or a randomly chosen vector), b represents the 
number of difference vectors used for perturbation of 
a; MV stands for mutant vector; Cbest for the best 
vector of a population and Cr for a randomly chosen 
vector from the population. Note that, all the vectors 
chosen for any mutation strategy must be from the 
same generation and should be distinct to each other. 

2.3. Chemical Reaction Optimization 
CRO algorithm was proposed recently by Lam and Li 
[15], is a metaheuristic optimization technique. It is 

(1) 

(2) 
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inspired by the nature of chemical reactions which 
loosely couple chemical reactions with optimization. A 
chemical reactant system consists of a set of chemical 
substances (reactants/molecules) and its surrounding. 
Each molecule consists of some atoms and is associated 
with enthalpy (minimization problem) or entropy 
(maximization problem). A chemical change of a 
molecule is triggered by a collision and the 
corresponding subtle change is called ineffective 
elementary reaction. There are two types of collision: 
Uni-molecular/intra-molecular/monomolecular collision 
(occurs when a molecule hits on some external 
substance like wall of a container) and inter-molecular 
collision (occurs when molecules collide with each 
other). Basing on the number of molecules take part in 
a reaction, the reaction may be: Uni-molecular or bi-
molecular or tri-molecular and so on.   

Most of the reactions are reversible in nature i.e., 
they can go in forward or backward direction. Chemical 
reactions transform one set of chemical substances to 
another in order to make the system stable. The CRO 
can be thought of as a new evolutionary technique with 
molecules as chromosomes; atoms as genes; 
enthalpy/entropy as fitness function; reactions as 
crossover and mutation strategies; and reversible 
reaction as a selection process. However, unlike other 
evolutionary algorithms in CRO, the reactant size 
(similar to population size) may vary from one 
generation to the other. Few authors also have proposed 
fixed population sized CRO algorithms and shown that 
fixed population sized CRO not only performs better 
but also easier to implement [23]. To have an 
elaborated description regarding CRO algorithm, 
interested readers may go through the tutorial of CRO 
[14].  

3. DE-CRO-HONNT Method 
Algorithm 1 presents the pseudo-code of the proposed 
method. In this proposed method an attempt has been 
made to use adaptive DE mutation strategies as inter-
molecular reactions of a CRO algorithm and use it for 
training PSN. Like other evolutionary algorithms, the 
proposed DE-CRO-HONNT operates in three phases: 
Initialization phase, iteration phase and final phase. The 
initial phase assigns the value to initial parameters like 
termination criteria, total number of 
reactants/molecules in a generation represented by 
ReacNum and generates initial set of reactants. The 
iteration phase simulates the reaction processes. Five 
different reactions are considered comprising of one 
intra-molecular (uni-molecular) and four inter-
molecular reactions. Every elementary reaction is 
followed by a greedy reversible reaction to update the 
reactants. 
Algorithm 1: DE-CRO-HONNT. 

Set the iteration-counter i=0 

/*Randomly Initialize the ReacNum of Reactants from a 
uniform distribution[U(upper bound); L(lower bound)]: 
Pi={R1

i, R2
i, R3

i, ..., RReacNum
i}, with Rj

i={Wj, 1
i, ..., Wj, D

i} for 
j=1, 2, 3, ..., ReacNum, D=length of each reactant 
(NOIN×NOHN), Wj, k

i=kth atom of jth reactant in ith iteration 
representing a weight of PSN.   
for j=1 to ReacNum 
     Calculate the enthalpy e(Rj)  
end of for 
While (termination criteria is not satisfied) do begin 
   for j=1 to ReacNum 
   // Perform reactions over all the reactants of Pi 
      Generate rand1 randomly in an interval [0, 1] 
      if rand1 ≤ 0.2  
         Decomposition (Rj

i); //Uni-molecular Reaction       
      else if rand1>0.2 && rand1≤0.6 
          Perform tri-molecular reactions             
          Generate rand2 randomly in an interval [0, 1] 
           if rand2 ≤ 0.5 
           //Use DE/rand/1 mutation strategy 
               Select three random numbers R1

i, R2
i, R3

i ∈    
              ReacNum such that Rj

i≠R1
i≠R2

i≠R3
i
 

              DErand1(R1
i, R2

i, R3
i) 

           else 
           // Use DE/best/1 mutation strategy 
               Select the best reactant Rbest

i and two random  
              numbers R1

i, R2
i∈ReacNum such that  

              Rj
i≠Rbest

i≠ R1
i≠R2

i
 

               DEbest1(R1
i, R2

i, Rbest
i) 

           end of if 
      else 
 Perform penta-molecular reactions 
 Generate rand3 randomly in an interval [0, 1] 
 if rand3 ≤ 0.5 
 // Use DE/rand/2 mutation strategy 
               Select five random numbers  
               R1

i, R2
i, R3

i, R4
i, R5

i∈ReacNum  
               such that Rj

i≠R1
i≠R2

i ≠ R3
i ≠ R4

i ≠R5
i 

    DErand2(R1
i, R2

i, R3
i, R4

i, R5
i) 

 else 
 // Use DE/best/2 mutation strategy 
               Select the best reactant Rbest

i and four  
               random numbers R1

i, R2
i, R3

i, R4
i∈ReacNum  

               such that Rj
i≠Rbest

i≠ R1
i≠R2

i≠R3
i≠R4

i
 

    DEbest2(R1
i, R2

i, R3
i, R4

i, Rbest
i) 

            end of if 
      end of if 
     Apply greedy Reversible Reaction for increased  
           enthalpy to update reactants 
  end of for 
  Set the iteration counter i=i+1  
end of while 

Use the reactant having best enthalpy as the optimal 
weight set of PSN. 

All the reactions are elaborated in the following 
subsequent subsections. In the final phase the reactant 
having best enthalpy is used as the optimal solution 
(i.e., optimal weight set of a PSN). 

3.1. Reactant Encoding 
A set of real numbers is used to represent one reactant, 
with each real number corresponding to a weight of 
the PSN. Thus, a reactant represents a weight set of 
the PSN. The length of a reactant depends on the 
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number of inputs (n) and hidden neurons (k) of the PSN 
and which is equal to n×k (not considering bias units). 

3.2. Enthalpy of Reactant 
Each reactant is associated with some enthalpy (fitness 
value). As each reactant represents a weight set of the 
PSN, the Mean Square Error (MSE) on the train set is 
considered to be its enthalpy. The lower the value of 
enthalpy represents better the reactant. The MSE is 
defined as follows: 

                            

2
1 ( )NOP

i = i iY -TMSE =
NOP

∑

        
 

Where Yi and Ti are the output of PSN and target for ith 
train pattern. 

3.3. Elementary Chemical Reactions 
One uni-molecular, two tri-molecular and two penta-
molecular elementary reactions are considered. The tri-
molecular and penta-molecular reactions use different 
DE mutation strategies. The scale parameter (F) used 
by the DE mutation strategies are dynamically and self 
adaptively determined depending on the problem. Note 
that the parameter adaption is somewhat inspired by 
MDE_pBX algorithm [11] but the former one is distinct 
due to its own characteristics. The five reactions are 
chosen considering both intensification and 
diversification. All the five reactions considered have 
equal chance to occur. Therefore, uni-molecular 
reactions occur with 20%, tri-molecular with 40% and 
penta-molecular with 40% probability. 

3.3.1. Uni-Molecular Reactions 

In uni-molecular reactions only one reactant takes part 
in the reaction and one product is produced by 
modifying one atom of the reactant. These reactions 
assist in intensification of the solution by making local 
search. One uni-molecular reaction is considered called 
as decomposition reaction which is explained below. 

3.3.1.1. Decomposition Reaction 

In this reaction a randomly selected atom of the 
reactant undergoes sudden change to bring a new 
reactant.  

Consider a reactant Rj= {Wj,1, Wj, 2, ..., Wj, D} with Wj, 

x (x∈[1, n]) be an atom of the reactant-j. The pseudo-
code of the decomposition reaction is described in 
Algorithm 2. 
Algorithm 2: Decomposition(Rj). 

Input: A reactant Rj. 
Duplicate Rj to produce Rnew. 
Select an atom x (x∈  [1, D]) randomly. 
Wnew, x=L+λ×(U-L). 
Where the rate of reaction (λ) is a random number generated 
randomly from a uniform distribution between [0, 1].    

Output: A new reactant Rnew. 

3.3.2. Tri-Molecular Reactions 

In tri-molecular reactions three reactants take part in 
the reaction to produce one product. Two tri-molecular 
reactions are considered using two different DE 
mutation strategies DE/rand/1 and DE/best/1 with the 
intension to combine the diversification property of 
the former one and intensification property of later 
one. Each of the reactions as a whole has a probability 
of 20% to occur. 

3.3.2.1. DErand1 Reaction 

Here, DE/rand/1 mutation strategy is used to generate 
new reactants. In addition, the scale factor (F) used in 
DE mutation strategy (equivalent to reactant rate λ) is 
dynamically and self adaptively determined based on 
the problem. The rate of reaction (λ) is generated 
randomly from a Cauchy distribution with location 
parameter M and scale parameter 0.1. The value of M 
is initially set to 0.6 and self adaptively determined in 
the following manner: 

Sf=0.8+0.2×rand (0, 1) 
              Mt+1=Sf×Mt+(1-Sf)×mean (λsuccess) 

Where t= Number of times the reaction occurs, λsuccess 
stores the successful rate of reactions that generates 
better reactants, thereby improving the chances of 
generating better reaction rates consequently better 
reactants as more and more this reaction occurs. Here, 
instead of traditional normal or uniform distribution 
Cauchy distribution is used because it diversifies the 
solution more. The pseudo-code of the DErand1 
reaction is described in Algorithm 3. 
Algorithm 3: DErand1 (R1, R2, R3). 

Input: Three reactants R1, R2, R3. 
Rnew=R1+λ×(R2-R3). 
Where λ=Cauchyrnd(Mt, 0.1), is a random number generated 
from a Cauchy distribution with location parameter Mt and 
scale parameter 0.1. It is regenerated if the random number 
falls out of the range [0, 2].    
Output: A new reactant Rnew. 

3.3.2.2. DEbest1 Reaction 

This reaction is almost similar to that of DErand1 but, 
here DE/best/1 mutation strategy is used to generate 
new reactants. The reaction rate is self adaptively 
determined similar to that of previous reaction. The 
pseudo-code of the DEbest1 reaction is described in 
Algorithm 4. 
Algorithm 4: DEbest1 (R1, R2, Rbest). 

Input: Three reactants R1, R2, R3. 
Rnew=Rbest+λ×(R1-R2). 
Where λ=Cauchyrnd (Mt, 0.1), is a random number generated 
from a Cauchy distribution with location parameter Mt and 

(3) 

(4) 
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scale parameter 0.1. It is regenerated if the random number 
falls out of the range [0, 2]. 
Output: A new reactant Rnew. 

3.3.3. Penta-Molecular Reactions 

In penta-molecular reactions five reactants take part in 
the reaction to produce one product. Two penta-
molecular reactions are considered using two other DE 
mutation strategies DE/rand/2 and DE/best/2 to 
combine the diversification property of the former one 
and intensification property of later one.  

3.3.3.1. DErand2 Reaction 

Here, DE/rand/2 mutation strategy is used to generate 
new reactants. In addition, the scale factor (F) used in 
DE mutation strategy (equivalent to reactant rate λ) is 
dynamically and self adaptively determined based on 
the problem. The rate of reaction (λ) is generated 
randomly from a Gaussian distribution with mean M 
and standard deviation 0.1. The value of M is initially 
set to 0.5 and self adaptively determined in the 
following manner. 

Sf=0.9+0.1×rand(0, 1) 
Mt+1=Sf×Mt+(1-Sf)×mean (λsuccess) 

Where t= Number of times the reaction occurs, λsuccess 
stores the successful rate of reactions that generates 
better reactants, thereby glorifying the chances of 
generating better reaction rates consequently better 
reactants as more and more this reaction occurs. Here, 
instead of Cauchy distribution, Gaussian distribution is 
used because it generates most of the values within 
unity due to its short tail property [20]. The pseudo-
code of the DErand2 reaction is described in Algorithm 
5. 
Algorithm 5: DErand2 (R1, R2, R3, R4, R5). 

Input: Five reactants R1, R2, R3, R4, R5. 
Rnew=R1+λ×(R2-R3)+λ×(R4-R5). 
Where λ=Gaussianrnd(Mt, 0.1), is a random number generated 
from a Gaussian distribution with mean Mt and standard 
deviation 0.1. It is regenerated if the random number falls out of 
the range [0, 1].    
Output: A new reactant Rnew. 

3.3.3.2. DEbest2 Reaction 

Here, DE/best/2 mutation strategy is used to generate 
new reactants. In addition, the scale factor (F) used in 
DE mutation strategy (equivalent to reactant rate λ) is 
dynamically and self adaptively determined similar to 
that of in DErand2 reaction. The pseudo-code of the 
DEbest2 reaction is described in Algorithm 6. 
Algorithm 6: DEbest2 (R1, R2, R3, R4, Rbest). 

Input: Five reactants R1, R2, R3, R4, Rbest. 
Rnew=Rbest+λ×(R1-R2)+λ×(R3-R4). 
Where λ=Gaussianrnd (Mt, 0.1), is a random number generated 
from a Gaussian distribution with mean Mt and standard 

deviation 0.1. It is regenerated if the random number falls out 
of the range [0, 1].    
Output: A new reactant Rnew. 
 

3.3.4. Greedy Reversible Reaction 

In order to keep the number of reactants fixed 
throughout all iterations, a greedy reversible reaction 
between target reactant (Rj) and newly generated 
reactant (Rnew) is carried out to select the better 
reactant. By keeping the reactant size fixed it makes 
the algorithm easier to implement. The pseudo-code of 
the greedy reversible reaction is elaborated in 
Algorithm 7. 
Algorithm 7: Reversible (Rj, Rnew). 

Input: Two reactants Rj, Rnew. 
If enthalpy(Rnew)<enthalpy(Rj) 
       Set Rj= Rnew 
end of if    
Output: The reactant Rj. 

4. Experimental Results 
All simulations were carried out on a system with Intel 
® core (TM) 2Duo E7500 CPU, 2.93GHz  with 2GB 
RAM and  implemented using SCILAB. Parity-p 
problems (p∈[3; 7]) are considered for comparative 
performance analysis. These problems are widely used 
and regarded as benchmarks for testing the 
generalization capability of training algorithms. To 
classify parity-p (p∈[3; 7]) problem, PSNs having 
structure p-p-1, threshold activation function at output 
layer and linear transfer function at hidden layer are 
considered. The population size is fixed to 10 for all 
the problems and algorithms. The results obtained 
from proposed method are compared with 
DE/rand//1/bin, DE/best/1/bin, CRO algorithm used 
for ANN training [30] and CRO-HONNT [23]. For 
DE algorithms the crossover probability Cr and scale 
factor F are fixed to 0.7 and 0.5 respectively. 

The termination criterion applied to the training 
algorithms for parity-p (p∈[3; 4]) was the MSE on 
train set (0.025,0.0125 respectively); and for parity-
p(p∈[5; 7]) the networks were trained up to a 
maximum of 1000 generations or MSE not less than 
0.125. The upper and lower bound of initial weight 
sets for parity-p problem is set to 2p to -2p. By making 
above experimental set up 1000 independent 
simulations using each method for each parity-p 
problem were conducted. To have a better comparison 
among the methods, Post Hoc analyses were 
performed on the results obtained from 1000 
independent simulations for each problem using each 
method. Note that in each simulation the initial weight 
set for all the methods were kept same. 

 
 

(5) 
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4.1. Performance Measure 
To evaluate the effectiveness of the proposed training 
method with the other methods two performance 

measures have been considered such as: Number of 
generations/iterations to attain the termination criteria,

and percentage of correct classification. The correct 
classification percentage is computed as follows: 

                   
1

NOP
i = iCCorrectClassification(%) =

NOP
∑  

Where NOP is the number of testing patterns (was 
equal to the training set and each contain 2p patterns); 
Ci-the coefficient representing the correctness of the 
classification of the ith testing pattern which is 
determined as follows: 

1, 1 1
1, 1 1
0,

i i

i i i

  when Y =  and  T =
C =   when Y = -  and  T = -

  Otherwise






  

Where Yi is the output of PSN and Ti is the target for ith 
test pattern. 

4.2. Discussions 

One can see from Tables 1 and 2 that all the methods 
gave perfect generalization (100% correct 
classification) capability for parity 3 and 4 problems 
respectively. For both the problems the proposed 
method takes less number of generations (though 
statistically insignificant) to obtain the optimal 
solutions than CRO-HONNT, DE/rand/1/bin and 
DE/best/1/bin methods whereas takes statistically less 
number of generations than CRO method. 

Table 1. Simulation results on parity 3 problem (best results in 
bold). 

Algorithms Generations Correct Classification (%) 
Mean ± St.D. Min Max Mean ± St.D. Min Max 

DE-CRO-HONNT 1.72 ± 1.45a 1 12 100 ± 0 100 100 
CRO-HONNT 1.86 ± 1.64a 1 12 100 ± 0 100 100 

CRO 2.65 ± 4.03c 1 65 100 ± 0 100 100 
DE/rand/1 2.12 ± 1.52b 1 17 100 ± 0 100 100 
DE/best/1 2.11 ± 1.46b 1 9 100 ± 0 100 100 

Means within a column the same letter(s) are not statistically significant (p=0.05) 
according to duncan’s multiple range test (SPSS V.16.0.1). 

Table 2. Simulation results on parity 4 problem (best results in 
bold). 

Algorithms Generations Correct Classification (%) 
Mean ± St.D. Min Max Mean ± St.D. Min Max 

DE-CRO-HONNT 16.98 ± 15.92a 1 102 100 ± 0 100 100 
CRO-HONNT 17.41 ± 15.27a 1 187 100 ± 0 100 100 

CRO 23.04 ± 40.49b 1 920 100 ± 0 100 100 
DE/rand/1 18.21 ± 15.38a 1 193 100 ± 0 100 100 
DE/best/1 18.79 ± 15.74a 1 163 100 ± 0 100 100 

Means within a column the same letter(s) are not statistically significant (p=0.05) 
according to duncan’s multiple range test (SPSS V.16.0.1). 

Table 3 shows the simulation results obtain on 
parity-5 problem. It can be observed that all methods 
gave 100% generalization most of the time but none of 
the methods gave 100% correct classification for all the 
1000 independent simulations. The percentage of 
correct classification by proposed method is not 
statistical significant to that of DE/rand/1 and CRO-
HONNT whereas statistically significant to that of 

DE/best/1/bin and traditional CRO method. However, 
the proposed method takes statistically less number of 
generations than other methods (except CRO-
HONNT) to obtain the optimal solutions. 

Table 3. Simulation results on parity 5 problem (best results in 
bold). 

Algorithms Generations Correct Classification (%) 
Mean ± St.D. Min Max Mean ± St.D. Min Max 

DE-CRO-HONNT 165.83 ± 158.63a 5 1000 99.92 ± 0.71c 93.75 100 
CRO-HONNT 173.61 ± 160.95a 2 1000 99.87 ± 0.87bc 93.75 100 

CRO 194.45 ± 235.14b 6 1000 99.67 ± 1.43a 87.50 100 
DE/rand/1 245.30 ± 227.84c 10 1000 99.82 ± 1.03bc 93.75 100 
DE/best/1 248.62 ± 224.79c 5 1000 99.79 ± 1.15b 87.50 100 

Means within a column the same letter(s) are not statistically significant (p=0.05) 
according to duncan’s multiple range test (SPSS V.16.0.1). 

Tables 4 and 5 show the experimental results for 
parity 6 and 7 problems respectively. It is clearly 
observed that none of the methods gave perfect 
generalization capability for both problems throughout 
all 1000 simulations. The proposed method not only 
provides statistically better generalization capability 
(correct classification percentage) but also takes 
statistically significantly less number of generations to 
attain the solutions than the other methods considered. 

To have a better idea regarding the performance 
(Convergence) of the proposed training algorithm with 
respect to other four algorithms, a comparative 
performance was plotted as shown in Figure 2 for 
parity 7 problem showing MSE error on train set, 
which again evidenced the superiority of proposed 
training algorithm (DE-CRO-HONNT). 

Table 4. Simulation results on parity 6 problem (best results in 
bold). 

Algorithms Generations Correct Classification (%) 
Mean ± St.D. Min Max Mean ± St.D. Min Max 

DE-CRO-HONNT 360.24 ± 258.08a 15 1000 99.13 ± 3.56d 81.250 100 
CRO-HONNT 783.49 ± 275.93d 28 1000 97.58 ± 3.20c 81.250 100 

CRO 728.97 ± 340.57c 23 1000 94.02 ± 3.69a 78.125 100 
DE/rand/1 535.43 ± 332.98b 29 1000 95.12 ± 5.52b 78.125 100 
DE/best/1 547.46 ± 336.36b 30 1000 95.21 ± 5.30b 78.125 100 

Means within a column the same letter(s) are not statistically significant (p=0.05) 
according to duncan’s multiple range test (SPSS V.16.0.1). 

Table 5. Simulation results on parity 7 problem (best results in 
bold). 

Algorithms Generations Correct Classification (%) 
Mean ± St.D. Min Max Mean ± St.D. Min Max 

DE-CRO-HONNT 487.02 ± 281.45a 35 1000 97.23 ± 6.37d 75.00 100 
CRO-HONNT 991.48 ± 64.87c 203 1000 90.42 ± 3.41c 71.87 100 

CRO 995.42 ± 36.47c 620 1000 81.56 ± 4.79a 70.31 100 
DE/rand/1 714.35 ± 300.42b 150 1000 88.08 ± 11.61b 71.87 100 
DE/best/1 707.16± 357.50b 152 1000 86.46± 11.17b 71.87 100 

Means within a column the same letter(s) are not statistically significant (p=0.05) 
according to duncan’s multiple range test (SPSS V.16.0.1). 

(6) 

(7) 
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Figure 2. DE-CRO-HONNT, CRO-HONNT, CRO, DE/rand/1/bin 
and DE/best/1/bin algorithms MSE value on train set of parity 7 
problem up to termination criteria. 

5. Conclusions 
In this paper, a hybrid DE-CRO-HONNT training 
algorithm for PSN is developed. In this algorithm 
adaptive DE mutation strategies are hybridized as inter-
molecular reactions in CRO algorithm. The proposed 
algorithm enjoys both the intensification property of 
DE/best mutation strategies along with uni-molecular 
reaction and diversification property of DE/rand 
mutation strategies. Thus, a trade between 
intensification and diversification is implicitly 
maintained. In addition, control parameters for DE 
mutation strategies are dynamically and self adaptively 
determined based on the problem in hand. The 
simulation results demonstrate that the proposed 
training algorithm has superior performance in terms of 
correct classification percentage and generations taken 
to attain the solutions when compared with most 
popular DE variants, traditional CRO method and 
CRO-HONNT method. It is also observed that the 
performance of other methods drops off sharply with 
the increase in number of parity bits whereas the same 
is not the case for DE-CRO-HONNT. Therefore, it can 
be concluded that, the use of DE-CRO-HONNT 
method incorporates efficient and effective searching 
mechanisms, such that it has less chance to trap to local 
minima and thus enhance the higher order neural 
network training procedure. 
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