
The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 18

A Novel Hybrid Chemical Reaction Optimization
Algorithm with Adaptive Differential Evolution
Mutation Strategies for Higher Order Neural

Network Training
Sibarama Panigrahi

 School of Computer Science, National Institute of Science and Technology, India

Abstract: In this paper, an application of a hybrid Chemical Reaction Optimization (CRO) algorithm with adaptive
Differential Evolution (DE) mutation strategies for training Higher Order Neural Networks (HONNs), especially the Pi-Sigma
Network (PSN) is presented. Contrasting to traditional CRO algorithms, the reactant size (population size) remains fixed
throughout all iterations, which makes it easier to implement. In addition, four DE mutation strategies (DE/rand/1, DE/best/1,
DE/rand/2 and DE/best/2) with adaptive selection of control parameters as inter-molecular reactions and one intra-molecular
reaction have been used. The proposed algorithm combines the diversification property of inter-molecular reactions following
DE/rand mutation strategies and intensification property of intra-molecular reaction as well as inter-molecular reactions
following DE/best mutation strategies, thereby glorifying the chances of reaching the global optima in less iteration. The
performance of the proposed algorithm for HONN training is evaluated through a well-known neural network training
benchmark i.e., to classify the parity-p problems. The results obtained from the proposed algorithm to train HONN have been
compared with results from the following algorithms: Basic CRO algorithm, CRO-HONN Training (HONNT) and the most
popular variants of DE algorithm (DE/rand/1/bin, DE/best/1/bin). It is observed that the application of the proposed
hybridized algorithm to (DE-CRO-HONNT) performs statistically better than that of other algorithms considering both
classification accuracy and number of generation taken to attain the solutions.

Keywords: CRO, DE, HONN, training algorithm, PSN.

Received August 18, 2013; accepted September 21, 2014

1. Introduction
Over the past few decades, Artificial Neural Network
(ANN) models have been widely used for pattern
reorganization, pattern classification and mathematical
function approximation. However, now-a-days instead
of traditional neural networks, Higher Order Neural
Networks (HONNs) have found in increasing
consideration in forecasting, classification and
regression problems due to several unique
characteristics, including: Stronger approximation with
faster convergence property; greater storage capacity;
and higher fault tolerance capability. On the other hand,
the major drawback of most of the HONN models is
that the number of weights of the network grows
exponentially with the increase in dimensionality of
input patterns. But, Pi-Sigma Networks (PSNs) are a
special class of HONN which are not only
computationally much more efficient than other HONN
models but also manages to incorporate the capability
of first order HONN indirectly. The PSNs were
introduced by Shin and Ghosh [24] and have addressed
several difficult tasks such as zeroing polynomials [9]
and polynomial factorization [18] more effectively than
traditional Feed-forward Neural Networks (FNNs).

Shin and Ghosh [26] have formulated Ridge
Polynomial Neural Networks (RPNN) by adding
gradually more complex PSNs. RPNNs have shown
competitive performance in various tasks such as
pattern recognition [29], image prediction [17], time
series prediction [10], data classification [26], and
intelligent control [12]. Since, the RPNNs are a
generalization of PSNs, its effectiveness directly
depends on the effectiveness of PSNs. Therefore, a
better learning algorithm for PSNs will also improve
the efficiency of RPNN. Despite of better performance
of PSN and RPNN across various application
domains, a few papers were devoted to develop an
efficient training algorithm for PSNs [5, 23, 24]. This
motivates towards the development of an efficient
training algorithm for training PSNs.

The PSNs are supervised networks and efficiency
of any supervised neural network depends on the
algorithm used for its training. The objective of any
supervised training algorithm is to minimize the
approximation error by obtaining the optimal weight
set. The optimal weight set of PSNs can be obtained
by using either gradient or evolutionary learning
algorithm. Since the training of PSN is a multimodal
search problem, the gradient based training algorithms

 19 A Novel Hybrid Chemical Reaction Optimization Algorithm with Adaptive Differential Evolution

often suffer from several shortcomings, including:
Easily getting trapped to local minima; have slow
convergence properties; and training performance is
sensitive to initial values of its parameters. Due to these
disadvantages, research on different optimization
techniques that are dedicated to PSN training is still
needed. There are many optimization techniques such
as Differential Evolution (DE) [2, 3, 4, 11, 20, 21, 28],
Genetic Algorithm (GA) [7], Particle Swarm
Optimization (PSO) [13], Ant Colony Optimization
(ACO) [27], a Bee Colony Optimization (BCO) [19],
an Evolutionary Strategy (ES) [1], Quantum Inspired
Algorithms (QEA) [8], Chemical Reaction
Optimization (CRO) [14, 15, 16] etc., which can be
used to train PSN. In this paper an attempt has been
made to hybridize the self adaptive DE mutation
operators with a CRO algorithm to obtain an efficient
training algorithm for PSN.

The remainder of this paper is organized as follows:
Section 2 briefly describes the mathematical model of
PSN, differential evolution algorithm and chemical
reaction optimization algorithm. The proposed training
algorithm for PSN has been explained in section 3. In
section 4 experimental results are presented. And
finally, conclusions are drawn in section 5.

2. Related Work
2.1. Pi-Sigma Neural Network
PSN is a special type higher order feed forward neural
network that calculates the product of the sum of the
input components and passes it to a nonlinear function.
The network architecture of PSN as shown in Figure 1
consists of a single hidden layer of summing units and
an output layer of product units. The weights
connecting the input neurons to the hidden neurons are
trainable whereas those connecting the hidden neurons
to the output neurons are fixed to one. Such a network
topology with only one layer of trainable weights
drastically reduces the training time [6, 24, 25].
Moreover, the product units provide the higher order
capabilities of HONN models.

Figure 1. Architecture of a typical PSN.

Consider a PSN with n inputs, k hidden neurons and
m output neurons. The number of hidden neurons in the
hidden layer defines the order of a PSN. For a kth order

PSN the number of trainable weights is n×k
considering each summing unit is associated with n
weights (bias components are not considered). The
output of the PSN is computed by making product of
the output of k hidden units and handing it to a
nonlinear function, which is defined as:

1

()
k

j
j =

Y =σ h∏

Where σ is a nonlinear transfer function and hj is the
output of the jth hidden unit which is computed by
making the sum of the products of each input (Ii) with
the corresponding weight (wij) between ith input and jth
hidden unit. The output of hidden unit is computed as:

1
()

n

j ij i
i =

h = w I∑

2.2. Differential Evolution
The DE algorithm was introduced by Storn and Price
[28]. It is a simple yet efficient stochastic direct search
method for global optimization of multimodal
function. Compared to most other evolutionary
algorithms, DE is much simpler and straightforward to
implement. Although, PSO is also very easy to code,
the performance of DE and its variants outperforms
the PSO variants over a wide variety of problems [3,
22] and the Congress on Evolutionary Computation
(CEC) competition series. Since, the inception DE, it
has been upgraded intensively in recent years [2]. The
variants of DE algorithm differ from each other by the
type of mutation and crossover scheme being used.
The crossover may be binary or exponential. For both
the crossover different mutation schemes, suggested
by Price et al. [20, 21] are summarized as follows:

• DE/rand/1: MV= Cr1 +F*(Cr2-Cr3).
• DE/best/1: MV= Cbest +F*(Cr1-Cr2).
• DE/rand/2: MV= Cr1+F*(Cr2-Cr3)+ F*(Cr4-Cr5).
• DE/best/2: MV= Cbest +F*(Cr1-Cr2)+F*(Cr3-Cr4).
• DE/target-to-best/1: MV = Ci + F* (Cbest-Cr1) + F*

(Cbest-Cr2).

The conventions used above are DE/a/b, where DE
stands for differential evolution, a represents the base
vector to be perturbed (it may be best vector or target
vector or a randomly chosen vector), b represents the
number of difference vectors used for perturbation of
a; MV stands for mutant vector; Cbest for the best
vector of a population and Cr for a randomly chosen
vector from the population. Note that, all the vectors
chosen for any mutation strategy must be from the
same generation and should be distinct to each other.

2.3. Chemical Reaction Optimization
CRO algorithm was proposed recently by Lam and Li
[15], is a metaheuristic optimization technique. It is

(1)

(2)

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 20

inspired by the nature of chemical reactions which
loosely couple chemical reactions with optimization. A
chemical reactant system consists of a set of chemical
substances (reactants/molecules) and its surrounding.
Each molecule consists of some atoms and is associated
with enthalpy (minimization problem) or entropy
(maximization problem). A chemical change of a
molecule is triggered by a collision and the
corresponding subtle change is called ineffective
elementary reaction. There are two types of collision:
Uni-molecular/intra-molecular/monomolecular collision
(occurs when a molecule hits on some external
substance like wall of a container) and inter-molecular
collision (occurs when molecules collide with each
other). Basing on the number of molecules take part in
a reaction, the reaction may be: Uni-molecular or bi-
molecular or tri-molecular and so on.

Most of the reactions are reversible in nature i.e.,
they can go in forward or backward direction. Chemical
reactions transform one set of chemical substances to
another in order to make the system stable. The CRO
can be thought of as a new evolutionary technique with
molecules as chromosomes; atoms as genes;
enthalpy/entropy as fitness function; reactions as
crossover and mutation strategies; and reversible
reaction as a selection process. However, unlike other
evolutionary algorithms in CRO, the reactant size
(similar to population size) may vary from one
generation to the other. Few authors also have proposed
fixed population sized CRO algorithms and shown that
fixed population sized CRO not only performs better
but also easier to implement [23]. To have an
elaborated description regarding CRO algorithm,
interested readers may go through the tutorial of CRO
[14].

3. DE-CRO-HONNT Method
Algorithm 1 presents the pseudo-code of the proposed
method. In this proposed method an attempt has been
made to use adaptive DE mutation strategies as inter-
molecular reactions of a CRO algorithm and use it for
training PSN. Like other evolutionary algorithms, the
proposed DE-CRO-HONNT operates in three phases:
Initialization phase, iteration phase and final phase. The
initial phase assigns the value to initial parameters like
termination criteria, total number of
reactants/molecules in a generation represented by
ReacNum and generates initial set of reactants. The
iteration phase simulates the reaction processes. Five
different reactions are considered comprising of one
intra-molecular (uni-molecular) and four inter-
molecular reactions. Every elementary reaction is
followed by a greedy reversible reaction to update the
reactants.
Algorithm 1: DE-CRO-HONNT.

Set the iteration-counter i=0

/*Randomly Initialize the ReacNum of Reactants from a
uniform distribution[U(upper bound); L(lower bound)]:
Pi={R1

i, R2
i, R3

i, ..., RReacNum
i}, with Rj

i={Wj, 1
i, ..., Wj, D

i} for
j=1, 2, 3, ..., ReacNum, D=length of each reactant
(NOIN×NOHN), Wj, k

i=kth atom of jth reactant in ith iteration
representing a weight of PSN.
for j=1 to ReacNum
 Calculate the enthalpy e(Rj)
end of for
While (termination criteria is not satisfied) do begin
 for j=1 to ReacNum
 // Perform reactions over all the reactants of Pi
 Generate rand1 randomly in an interval [0, 1]
 if rand1 ≤ 0.2
 Decomposition (Rj

i); //Uni-molecular Reaction
 else if rand1>0.2 && rand1≤0.6
 Perform tri-molecular reactions
 Generate rand2 randomly in an interval [0, 1]
 if rand2 ≤ 0.5
 //Use DE/rand/1 mutation strategy
 Select three random numbers R1

i, R2
i, R3

i ∈
 ReacNum such that Rj

i≠R1
i≠R2

i≠R3
i

 DErand1(R1
i, R2

i, R3
i)

 else
 // Use DE/best/1 mutation strategy
 Select the best reactant Rbest

i and two random
 numbers R1

i, R2
i∈ReacNum such that

 Rj
i≠Rbest

i≠ R1
i≠R2

i

 DEbest1(R1
i, R2

i, Rbest
i)

 end of if
 else
 Perform penta-molecular reactions
 Generate rand3 randomly in an interval [0, 1]
 if rand3 ≤ 0.5
 // Use DE/rand/2 mutation strategy
 Select five random numbers
 R1

i, R2
i, R3

i, R4
i, R5

i∈ReacNum
 such that Rj

i≠R1
i≠R2

i ≠ R3
i ≠ R4

i ≠R5
i

 DErand2(R1
i, R2

i, R3
i, R4

i, R5
i)

 else
 // Use DE/best/2 mutation strategy
 Select the best reactant Rbest

i and four
 random numbers R1

i, R2
i, R3

i, R4
i∈ReacNum

 such that Rj
i≠Rbest

i≠ R1
i≠R2

i≠R3
i≠R4

i

 DEbest2(R1
i, R2

i, R3
i, R4

i, Rbest
i)

 end of if
 end of if
 Apply greedy Reversible Reaction for increased
 enthalpy to update reactants
 end of for
 Set the iteration counter i=i+1
end of while

Use the reactant having best enthalpy as the optimal
weight set of PSN.

All the reactions are elaborated in the following
subsequent subsections. In the final phase the reactant
having best enthalpy is used as the optimal solution
(i.e., optimal weight set of a PSN).

3.1. Reactant Encoding
A set of real numbers is used to represent one reactant,
with each real number corresponding to a weight of
the PSN. Thus, a reactant represents a weight set of
the PSN. The length of a reactant depends on the

 21 A Novel Hybrid Chemical Reaction Optimization Algorithm with Adaptive Differential Evolution

number of inputs (n) and hidden neurons (k) of the PSN
and which is equal to n×k (not considering bias units).

3.2. Enthalpy of Reactant
Each reactant is associated with some enthalpy (fitness
value). As each reactant represents a weight set of the
PSN, the Mean Square Error (MSE) on the train set is
considered to be its enthalpy. The lower the value of
enthalpy represents better the reactant. The MSE is
defined as follows:

2
1 ()NOP

i = i iY -TMSE =
NOP

∑

Where Yi and Ti are the output of PSN and target for ith
train pattern.

3.3. Elementary Chemical Reactions
One uni-molecular, two tri-molecular and two penta-
molecular elementary reactions are considered. The tri-
molecular and penta-molecular reactions use different
DE mutation strategies. The scale parameter (F) used
by the DE mutation strategies are dynamically and self
adaptively determined depending on the problem. Note
that the parameter adaption is somewhat inspired by
MDE_pBX algorithm [11] but the former one is distinct
due to its own characteristics. The five reactions are
chosen considering both intensification and
diversification. All the five reactions considered have
equal chance to occur. Therefore, uni-molecular
reactions occur with 20%, tri-molecular with 40% and
penta-molecular with 40% probability.

3.3.1. Uni-Molecular Reactions

In uni-molecular reactions only one reactant takes part
in the reaction and one product is produced by
modifying one atom of the reactant. These reactions
assist in intensification of the solution by making local
search. One uni-molecular reaction is considered called
as decomposition reaction which is explained below.

3.3.1.1. Decomposition Reaction

In this reaction a randomly selected atom of the
reactant undergoes sudden change to bring a new
reactant.

Consider a reactant Rj= {Wj,1, Wj, 2, ..., Wj, D} with Wj,

x (x∈[1, n]) be an atom of the reactant-j. The pseudo-
code of the decomposition reaction is described in
Algorithm 2.
Algorithm 2: Decomposition(Rj).

Input: A reactant Rj.
Duplicate Rj to produce Rnew.
Select an atom x (x∈ [1, D]) randomly.
Wnew, x=L+λ×(U-L).
Where the rate of reaction (λ) is a random number generated
randomly from a uniform distribution between [0, 1].

Output: A new reactant Rnew.

3.3.2. Tri-Molecular Reactions

In tri-molecular reactions three reactants take part in
the reaction to produce one product. Two tri-molecular
reactions are considered using two different DE
mutation strategies DE/rand/1 and DE/best/1 with the
intension to combine the diversification property of
the former one and intensification property of later
one. Each of the reactions as a whole has a probability
of 20% to occur.

3.3.2.1. DErand1 Reaction

Here, DE/rand/1 mutation strategy is used to generate
new reactants. In addition, the scale factor (F) used in
DE mutation strategy (equivalent to reactant rate λ) is
dynamically and self adaptively determined based on
the problem. The rate of reaction (λ) is generated
randomly from a Cauchy distribution with location
parameter M and scale parameter 0.1. The value of M
is initially set to 0.6 and self adaptively determined in
the following manner:

Sf=0.8+0.2×rand (0, 1)
 Mt+1=Sf×Mt+(1-Sf)×mean (λsuccess)

Where t= Number of times the reaction occurs, λsuccess
stores the successful rate of reactions that generates
better reactants, thereby improving the chances of
generating better reaction rates consequently better
reactants as more and more this reaction occurs. Here,
instead of traditional normal or uniform distribution
Cauchy distribution is used because it diversifies the
solution more. The pseudo-code of the DErand1
reaction is described in Algorithm 3.
Algorithm 3: DErand1 (R1, R2, R3).

Input: Three reactants R1, R2, R3.
Rnew=R1+λ×(R2-R3).
Where λ=Cauchyrnd(Mt, 0.1), is a random number generated
from a Cauchy distribution with location parameter Mt and
scale parameter 0.1. It is regenerated if the random number
falls out of the range [0, 2].
Output: A new reactant Rnew.

3.3.2.2. DEbest1 Reaction

This reaction is almost similar to that of DErand1 but,
here DE/best/1 mutation strategy is used to generate
new reactants. The reaction rate is self adaptively
determined similar to that of previous reaction. The
pseudo-code of the DEbest1 reaction is described in
Algorithm 4.
Algorithm 4: DEbest1 (R1, R2, Rbest).

Input: Three reactants R1, R2, R3.
Rnew=Rbest+λ×(R1-R2).
Where λ=Cauchyrnd (Mt, 0.1), is a random number generated
from a Cauchy distribution with location parameter Mt and

(3)

(4)

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 22

scale parameter 0.1. It is regenerated if the random number
falls out of the range [0, 2].
Output: A new reactant Rnew.

3.3.3. Penta-Molecular Reactions

In penta-molecular reactions five reactants take part in
the reaction to produce one product. Two penta-
molecular reactions are considered using two other DE
mutation strategies DE/rand/2 and DE/best/2 to
combine the diversification property of the former one
and intensification property of later one.

3.3.3.1. DErand2 Reaction

Here, DE/rand/2 mutation strategy is used to generate
new reactants. In addition, the scale factor (F) used in
DE mutation strategy (equivalent to reactant rate λ) is
dynamically and self adaptively determined based on
the problem. The rate of reaction (λ) is generated
randomly from a Gaussian distribution with mean M
and standard deviation 0.1. The value of M is initially
set to 0.5 and self adaptively determined in the
following manner.

Sf=0.9+0.1×rand(0, 1)
Mt+1=Sf×Mt+(1-Sf)×mean (λsuccess)

Where t= Number of times the reaction occurs, λsuccess
stores the successful rate of reactions that generates
better reactants, thereby glorifying the chances of
generating better reaction rates consequently better
reactants as more and more this reaction occurs. Here,
instead of Cauchy distribution, Gaussian distribution is
used because it generates most of the values within
unity due to its short tail property [20]. The pseudo-
code of the DErand2 reaction is described in Algorithm
5.
Algorithm 5: DErand2 (R1, R2, R3, R4, R5).

Input: Five reactants R1, R2, R3, R4, R5.
Rnew=R1+λ×(R2-R3)+λ×(R4-R5).
Where λ=Gaussianrnd(Mt, 0.1), is a random number generated
from a Gaussian distribution with mean Mt and standard
deviation 0.1. It is regenerated if the random number falls out of
the range [0, 1].
Output: A new reactant Rnew.

3.3.3.2. DEbest2 Reaction

Here, DE/best/2 mutation strategy is used to generate
new reactants. In addition, the scale factor (F) used in
DE mutation strategy (equivalent to reactant rate λ) is
dynamically and self adaptively determined similar to
that of in DErand2 reaction. The pseudo-code of the
DEbest2 reaction is described in Algorithm 6.
Algorithm 6: DEbest2 (R1, R2, R3, R4, Rbest).

Input: Five reactants R1, R2, R3, R4, Rbest.
Rnew=Rbest+λ×(R1-R2)+λ×(R3-R4).
Where λ=Gaussianrnd (Mt, 0.1), is a random number generated
from a Gaussian distribution with mean Mt and standard

deviation 0.1. It is regenerated if the random number falls out
of the range [0, 1].
Output: A new reactant Rnew.

3.3.4. Greedy Reversible Reaction

In order to keep the number of reactants fixed
throughout all iterations, a greedy reversible reaction
between target reactant (Rj) and newly generated
reactant (Rnew) is carried out to select the better
reactant. By keeping the reactant size fixed it makes
the algorithm easier to implement. The pseudo-code of
the greedy reversible reaction is elaborated in
Algorithm 7.
Algorithm 7: Reversible (Rj, Rnew).

Input: Two reactants Rj, Rnew.
If enthalpy(Rnew)<enthalpy(Rj)
 Set Rj= Rnew
end of if
Output: The reactant Rj.

4. Experimental Results
All simulations were carried out on a system with Intel
® core (TM) 2Duo E7500 CPU, 2.93GHz with 2GB
RAM and implemented using SCILAB. Parity-p
problems (p∈[3; 7]) are considered for comparative
performance analysis. These problems are widely used
and regarded as benchmarks for testing the
generalization capability of training algorithms. To
classify parity-p (p∈[3; 7]) problem, PSNs having
structure p-p-1, threshold activation function at output
layer and linear transfer function at hidden layer are
considered. The population size is fixed to 10 for all
the problems and algorithms. The results obtained
from proposed method are compared with
DE/rand//1/bin, DE/best/1/bin, CRO algorithm used
for ANN training [30] and CRO-HONNT [23]. For
DE algorithms the crossover probability Cr and scale
factor F are fixed to 0.7 and 0.5 respectively.

The termination criterion applied to the training
algorithms for parity-p (p∈[3; 4]) was the MSE on
train set (0.025,0.0125 respectively); and for parity-
p(p∈[5; 7]) the networks were trained up to a
maximum of 1000 generations or MSE not less than
0.125. The upper and lower bound of initial weight
sets for parity-p problem is set to 2p to -2p. By making
above experimental set up 1000 independent
simulations using each method for each parity-p
problem were conducted. To have a better comparison
among the methods, Post Hoc analyses were
performed on the results obtained from 1000
independent simulations for each problem using each
method. Note that in each simulation the initial weight
set for all the methods were kept same.

(5)

 23 A Novel Hybrid Chemical Reaction Optimization Algorithm with Adaptive Differential Evolution

4.1. Performance Measure
To evaluate the effectiveness of the proposed training
method with the other methods two performance

measures have been considered such as: Number of
generations/iterations to attain the termination criteria,

and percentage of correct classification. The correct
classification percentage is computed as follows:

1

NOP
i = iCCorrectClassification(%) =

NOP
∑

Where NOP is the number of testing patterns (was
equal to the training set and each contain 2p patterns);
Ci-the coefficient representing the correctness of the
classification of the ith testing pattern which is
determined as follows:

1, 1 1
1, 1 1
0,

i i

i i i

 when Y = and T =
C = when Y = - and T = -

 Otherwise

Where Yi is the output of PSN and Ti is the target for ith
test pattern.

4.2. Discussions

One can see from Tables 1 and 2 that all the methods
gave perfect generalization (100% correct
classification) capability for parity 3 and 4 problems
respectively. For both the problems the proposed
method takes less number of generations (though
statistically insignificant) to obtain the optimal
solutions than CRO-HONNT, DE/rand/1/bin and
DE/best/1/bin methods whereas takes statistically less
number of generations than CRO method.

Table 1. Simulation results on parity 3 problem (best results in
bold).

Algorithms Generations Correct Classification (%)
Mean ± St.D. Min Max Mean ± St.D. Min Max

DE-CRO-HONNT 1.72 ± 1.45a 1 12 100 ± 0 100 100
CRO-HONNT 1.86 ± 1.64a 1 12 100 ± 0 100 100

CRO 2.65 ± 4.03c 1 65 100 ± 0 100 100
DE/rand/1 2.12 ± 1.52b 1 17 100 ± 0 100 100
DE/best/1 2.11 ± 1.46b 1 9 100 ± 0 100 100

Means within a column the same letter(s) are not statistically significant (p=0.05)
according to duncan’s multiple range test (SPSS V.16.0.1).

Table 2. Simulation results on parity 4 problem (best results in
bold).

Algorithms Generations Correct Classification (%)
Mean ± St.D. Min Max Mean ± St.D. Min Max

DE-CRO-HONNT 16.98 ± 15.92a 1 102 100 ± 0 100 100
CRO-HONNT 17.41 ± 15.27a 1 187 100 ± 0 100 100

CRO 23.04 ± 40.49b 1 920 100 ± 0 100 100
DE/rand/1 18.21 ± 15.38a 1 193 100 ± 0 100 100
DE/best/1 18.79 ± 15.74a 1 163 100 ± 0 100 100

Means within a column the same letter(s) are not statistically significant (p=0.05)
according to duncan’s multiple range test (SPSS V.16.0.1).

Table 3 shows the simulation results obtain on
parity-5 problem. It can be observed that all methods
gave 100% generalization most of the time but none of
the methods gave 100% correct classification for all the
1000 independent simulations. The percentage of
correct classification by proposed method is not
statistical significant to that of DE/rand/1 and CRO-
HONNT whereas statistically significant to that of

DE/best/1/bin and traditional CRO method. However,
the proposed method takes statistically less number of
generations than other methods (except CRO-
HONNT) to obtain the optimal solutions.

Table 3. Simulation results on parity 5 problem (best results in
bold).

Algorithms Generations Correct Classification (%)
Mean ± St.D. Min Max Mean ± St.D. Min Max

DE-CRO-HONNT 165.83 ± 158.63a 5 1000 99.92 ± 0.71c 93.75 100
CRO-HONNT 173.61 ± 160.95a 2 1000 99.87 ± 0.87bc 93.75 100

CRO 194.45 ± 235.14b 6 1000 99.67 ± 1.43a 87.50 100
DE/rand/1 245.30 ± 227.84c 10 1000 99.82 ± 1.03bc 93.75 100
DE/best/1 248.62 ± 224.79c 5 1000 99.79 ± 1.15b 87.50 100

Means within a column the same letter(s) are not statistically significant (p=0.05)
according to duncan’s multiple range test (SPSS V.16.0.1).

Tables 4 and 5 show the experimental results for
parity 6 and 7 problems respectively. It is clearly
observed that none of the methods gave perfect
generalization capability for both problems throughout
all 1000 simulations. The proposed method not only
provides statistically better generalization capability
(correct classification percentage) but also takes
statistically significantly less number of generations to
attain the solutions than the other methods considered.

To have a better idea regarding the performance
(Convergence) of the proposed training algorithm with
respect to other four algorithms, a comparative
performance was plotted as shown in Figure 2 for
parity 7 problem showing MSE error on train set,
which again evidenced the superiority of proposed
training algorithm (DE-CRO-HONNT).

Table 4. Simulation results on parity 6 problem (best results in
bold).

Algorithms Generations Correct Classification (%)
Mean ± St.D. Min Max Mean ± St.D. Min Max

DE-CRO-HONNT 360.24 ± 258.08a 15 1000 99.13 ± 3.56d 81.250 100
CRO-HONNT 783.49 ± 275.93d 28 1000 97.58 ± 3.20c 81.250 100

CRO 728.97 ± 340.57c 23 1000 94.02 ± 3.69a 78.125 100
DE/rand/1 535.43 ± 332.98b 29 1000 95.12 ± 5.52b 78.125 100
DE/best/1 547.46 ± 336.36b 30 1000 95.21 ± 5.30b 78.125 100

Means within a column the same letter(s) are not statistically significant (p=0.05)
according to duncan’s multiple range test (SPSS V.16.0.1).

Table 5. Simulation results on parity 7 problem (best results in
bold).

Algorithms Generations Correct Classification (%)
Mean ± St.D. Min Max Mean ± St.D. Min Max

DE-CRO-HONNT 487.02 ± 281.45a 35 1000 97.23 ± 6.37d 75.00 100
CRO-HONNT 991.48 ± 64.87c 203 1000 90.42 ± 3.41c 71.87 100

CRO 995.42 ± 36.47c 620 1000 81.56 ± 4.79a 70.31 100
DE/rand/1 714.35 ± 300.42b 150 1000 88.08 ± 11.61b 71.87 100
DE/best/1 707.16± 357.50b 152 1000 86.46± 11.17b 71.87 100

Means within a column the same letter(s) are not statistically significant (p=0.05)
according to duncan’s multiple range test (SPSS V.16.0.1).

(6)

(7)

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 24

Figure 2. DE-CRO-HONNT, CRO-HONNT, CRO, DE/rand/1/bin
and DE/best/1/bin algorithms MSE value on train set of parity 7
problem up to termination criteria.

5. Conclusions
In this paper, a hybrid DE-CRO-HONNT training
algorithm for PSN is developed. In this algorithm
adaptive DE mutation strategies are hybridized as inter-
molecular reactions in CRO algorithm. The proposed
algorithm enjoys both the intensification property of
DE/best mutation strategies along with uni-molecular
reaction and diversification property of DE/rand
mutation strategies. Thus, a trade between
intensification and diversification is implicitly
maintained. In addition, control parameters for DE
mutation strategies are dynamically and self adaptively
determined based on the problem in hand. The
simulation results demonstrate that the proposed
training algorithm has superior performance in terms of
correct classification percentage and generations taken
to attain the solutions when compared with most
popular DE variants, traditional CRO method and
CRO-HONNT method. It is also observed that the
performance of other methods drops off sharply with
the increase in number of parity bits whereas the same
is not the case for DE-CRO-HONNT. Therefore, it can
be concluded that, the use of DE-CRO-HONNT
method incorporates efficient and effective searching
mechanisms, such that it has less chance to trap to local
minima and thus enhance the higher order neural
network training procedure.

References
[1] Beyer H. and Schwefel H., “Evolutionary

Strategies: A Comprehensive Introduction,”
Natural Computing, vol. 1, no. 1, pp. 3-52, 2002.

[2] Das S. and Suganthanam P., “Differential
Evolution: A Survey of the Sate-of-the-Art,”
IEEE Transaction on Evolutionary Computation,
vol. 15, no.1, pp. 4-31, 2011.

[3] Das S., Abraham A., Chakraborty U., and Konar
A., “Differential Evolution Using a
Neighbourhood Based Mutation Operator,” IEEE
Transaction on Evolutionary Computation, vol.
13, no. 3, pp. 526-553, 2009.

[4] Draa A., Meshoul S., Talbi H., and Batouche M.,
“A Quantum-Inspired Differential Evolution
Algorithm for Solving the N-Queens Problem,”

The International Arab Journal of Information
Technology, vol. 7, no. 1, pp. 21-27, 2010.

[5] Epitropakis M., Plagianakos V., and Vrahatis
M., “Hardware-friendly Higher-Order Neural
Network Training Using Distributed
Evolutionary Algorithms,” Applied Soft
Computing, vol. 10, no. 2, pp. 398-408, 2010.

[6] Ghosh J. and Shin Y., “Efficient Higher-Order
Neural Networks for Classification and Function
Approximation,” International Journal of
Neural Systems, vol. 3, no. 4, pp. 323-350, 1992.

[7] Goldberg D., Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley Publisher, 1989.

[8] Han K. and Kim J., “Quantum-Inspired
Evolutionary Algorithm for a Class of
Combinatorial Optimization,” IEEE
Transactions on Evolutionary Computation, vol.
6, no. 6, pp. 580-593, 2002.

[9] Huang D., Ip H., Law K., and Chi Z., “Zeroing
Polynomials Using Modified Constrained Neural
Network Approach,” IEEE Transactions on
Neural Networks, vol. 16, no. 3, pp. 721-732,
2005.

[10] Hussain A., Knowles A., Lisboa P., El-Deredy
W., and Al-Jumeily D., “Polynomial Pipelined
Neural Network and its Application to Financial
Time Series Prediction,” in Processing of AI
2006: Advances in Artifcial Intelligence, pp.
597-606, 2006.

[11] Islam S., Das S., Ghosh S., Roy S., and
Suganthan P., “an Adaptive Differential
Evolution Algorithm with Novel Mutation and
Crossover Strategy for Global Numerical
Optimization,” IEEE Transaction on System,
Man, and Cybernetics-PART B: Cybernetics,
vol. 42, no. 2, pp.482-500, 2012.

[12] Karnavas Y. and Papadopoulos D., “Excitation
Control of a Synchronous Machine using
Polynomial Neural Networks,” Journal of
Electrical Engineering, vol. 55, no. 7, pp. 169-
179, 2004.

[13] Kennedy J. and Eberhart R., Swarm Intelligence,
Morgan Kaufmann Publisher Inc., 2001.

[14] Lam A. and Li V., “Chemical Reaction
Optimization: a Tutorial,” Memetic Computing,
vol. 4, no. 1, pp. 3-17, 2012.

[15] Lam A. and Li V., “Chemical-Reaction-Inspired
Metaheuristic for Optimization,” IEEE
Transaction on Evolutionary Computation, vol.
14, no. 3, pp. 381-399, 2010.

[16] Lam A., Li V., and Yu J., “Real-Coded
Chemical Reaction Optimization,” IEEE
Transaction on Evolutionary Computation, vol.
16, no. 3, pp. 339-353, 2012.

[17] Liatsis P. and Hussain A., “Nonlinear One-
Dimensional DPCM Image Prediction Using
Polynomial Neural Networks,” in Proceeding of

 25 A Novel Hybrid Chemical Reaction Optimization Algorithm with Adaptive Differential Evolution

SPIE: Applications of Artificial Neural Networks
in Image Processing IV San Jose, CA, pp. 58-68,
1999.

[18] Perantonis S., Ampazis N., Varoufakis S., and
Antoniou G., “Constrained Learning in Neural
Networks: Application to Stable Factorization of
2-d Polynomials,” Neural Processing Letter, vol.
7, no. 1, pp. 5-14, 1998.

[19] Pham D., Ghanbarzadeh A., Koc E., Otri S.,
Rahim S., and Zaidi M., “The Bees Algorithm-A
Novel Tool for Complex Optimization Problems,”
in Processing of 2nd International Virtual
Conference on Intelligent Production Machines
and Systems, UK, pp.454-459, 2006.

[20] Price K., New Ideas in Optimization, McGraw-
Hill Ltd., pp. 79-108, 1999.

[21] Price K., Storn R., and Lampinen J., Differential
Evolution-A Practical Approach to Global
Optimization, Springer, 2005.

[22] Rahnamayan S., Tizhoosh H., and Salama M.,
“Opposition Based Differential Evolution,” IEEE
Transaction on Evolutionary Computation, vol.
12, no. 1, pp. 64-79, 2008.

[23] Sahu K., Panigrahi S., and Behera H., “A Novel
Chemical Reaction Optimization Algorithm for
Higher Order Neural Network Training,” Journal
of Theoretical and Applied Information
Technology, vol. 53, no. 3, pp. 402-409, 2013.

[24] Shin Y. and Ghosh J., “The Pi-Sigma Network:
An Efficient Higher-Order Neural Network for
Pattern Classification and Function
Approximation,” in Proceedings of Neural
Networks, IJCNN-91-Seattle International Joint
Conference on Neural Networks, Seattle, pp. 13-
18, 1991.

[25] Shin Y. and Ghosh J., “Realization of Boolean
Functions Using Binary Pi-Sigma Networks,” in
Proceedings of Conference on Artificial Neural
Networks in Engineering, pp. 205-210, 1991.

[26] Shin Y. and Ghosh J., “Ridge Polynomial
Networks,” IEEE Transactions on Neural
Networks, vol. 6, no. 3, pp. 610-622, 1995.

[27] Socha K. and Doringo M., “Ant Colony
Optimization for Continuous Domains,”
European Journal of Operation Research, vol.
185, no. 3, pp. 1155-1173, 2008.

[28] Storn R. and Price K., “Differential Evolution-A
Simple and Efficient Heuristic for Global
Optimization Over Continuous Spaces,” Journal
of Global Optimization, vol. 11, no. 4, pp. 341-
359, 1997.

[29] Voutriaridis C., Boutalis Y., and Mertzios G.,
“Ridge Polynomial Networks in Pattern
Recognition,” in Proceedings of 4th EURASIP
Conference Focused on Video/Image Processing
and Multimedia Communications, pp. 519-524,
2003.

[30] Yu J., Lam A., and Li V., “Evolutionary
Artificial Neural Network Based on Chemical
Reaction Optimization”, in Proceedings of IEEE
Congress on Evolutionary Computation (CEC),
LA, pp. 2083-2090, 2011.

Sibarama Panigrahi received the
B.Tech degree in Computer Science
and Engineering from Biju Patnaik
University of Technology, M.Tech
Degree in Computer Science and
Engineering from Veer Surendra Sai
University of Technology (VSSUT)

Burla respectively in 2009 and 2013. He is currently
an Assistant Professor in the School of Computer
Science in National Institute of Science and
Technology, Odisha, India. He has received
“University Silver Medal for Best Computer Science
and Engineering Post Graduate for the year 2013”
from VSSUT Burla. Author has published some
research papers in reputed Journals. His research
interests are focused on Time Series Forecasting,
Pattern Recognition, Machine Learning, Evolutionary
Computation and Neural Networks.

	A Novel Hybrid Chemical Reaction Optimization Algorithm with Adaptive Differential Evolution Mutation Strategies for Higher Order Neural Network Training

