
 41 A Quantitative Evaluation of Change Impact Reachability and Complexity Across Versions ….

A Quantitative Evaluation of Change Impact
Reachability and Complexity Across Versions of

Aspect Oriented Software
Senthil Suganantham, Chitra Babu, and Madhumitha Raju

Department of Computer Science and Engineering, SSN College of Engineering, India

Abstract: Software developed using a proven methodology exhibits an inherent capability to readily accept the changes in its
evolution. This constant phenomenon of change is managed through maintenance of software. By modelling software using
Aspect Oriented Software Development (AOSD) methodology, the designer can build highly modularized software that allows
changes with lesser impact compared with a non-AOSD approach. Software metrics play a vital role to indicate the degree of
system inter-dependencies among the functional components and provide valuable feedback about the impact of changes on
reusability, maintainability and reliability. During maintenance, software adapts to the changes in requirements and hence it
is important to assess the impact of these changes across different versions of the software. This paper focuses on analysing
the impact of changes towards maintenance for a set of Aspect Oriented (AO) applications taken as case study. Existing
versions of three AO benchmark applications have been chosen and a set of metrics are defined to analyze the impact of
changes made across different versions. An AO Software Change Impact Analyzer (AOSCIA) tool was also developed to study
the impact of the changes across the selected versions. It was found that the impact of changes and the related ripple effect is
less for AO modules compared to the Object Oriented (OO) modules. Hence, we deduce that the maintainability is improved
by adopting the AO methodology.

Keywords: AOSD, change propagation reachability, cognitive complexity, software metrics, software maintenance.

Received September 29, 2013; accepted May 9, 2014.

1. Introduction
Aspect Oriented Programming (AOP) paradigm [9, 14,
19] had proposed a set of constructs with focus on
improving the modularity of a software. Modular
decomposition is achieved by allowing the separation
of concerns that cut across the core functionalities
modelled in a software system by encapsulating them
into individual units. In order to design a high quality
Aspect Oriented (AO) software [16, 24], the software
developers need to continuously identify the rationale
behind modularizing the functionalities of the system.
By doing so, the AO software can evolve into better
versions over a period of time. With the emergence of
Aspect Oriented Software Development (AOSD), there
is an increase in awareness about the observable
criteria behind the evolution [20, 21] of concerns. This
criterion is a key factor and plays a vital role in the
deterioration of software maintainability. A probable
cause for these negative characteristics is the increase
of scattering and tangling functionalities during the
evolution.

Any software system is designed by the software
architect to meet a set of clearly defined requirements.
These requirements need to be mapped onto the design
elements using a specific methodology. It is very often
found that requirements are not static and keeps
changing due to various factors. In order to effectively
deal with the ever changing set of requirements, any

software requires necessary features to accommodate
the upcoming desired changes over versions.

Maintainability is a key software quality attribute
that measures the relative impact of changes made
across different versions of software. It can be said that
the first rule of maintainability is the ability of
software to change or to accommodate changes
reflected as versions of the particular software. The
second rule of maintenance is the depth of cascading
effect due to the changes made to software. In fact, in
the context of Object Oriented Software Development
(OOSD), many researchers have contributed by
studying the ripple effect [3, 12, 13, 17] of changes.
Many software have successfully evolved over
different versions, because, the designers have
provided mechanisms in the design stage that enable
the easier inclusion of modular elements. Hence, it can
be inferred that all software systems which are able to
evolve over multiple versions, have built-in
characteristics with positive effect on the ease of
maintainability.

Aspects of AOP are modular elements that abstract
features which cut across the core and non-core
functionalities of a well designed software. AOSD
methodology neatly encapsulates concerns that might
be tangled and scattered in a software developed using
other methodologies. By adopting the AOSD
methodology, a software designer is expected to have

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 42

higher degree of reusability, improved evolution and
easier maintenance. The focus of this paper will be the
ease of maintenance for software developed using AO
methodology. Towards measuring the ease of
maintenance, the impact of changes in AO software is
analyzed by quantifying them on both AO and non-AO
entities over multiple versions.

Software metrics indicate the degree of system
interdependence among the components and provide
valuable feedback for better reusability, maintainability
and reliability. It is important to minimize the ripple
effects because of the changes made to the software. In
the case of AOP, the identified functionalities are
separately modelled as core and cross-cutting
concerns. Hence, any change made to the software
might have ripple effect in one or both of the concerns.
This necessitates the study of the changes made and
their impact towards the classes, aspects and their
internal constructs. The constructs considered over
here are methods of classes and join points, pointcuts
and advices of aspects. The impacts of the changes
made to these constructs are measured using a new set
of metrics. Additionally, two more metrics have been
defined which focus on the complexity of weaving an
aspect to the base code and complexity of control flow
in the base code over the versions. The metrics related
to complexity are derived from the weighted class
complexity measure [2, 22, 26] defined for measuring
the complexity of Object Oriented (OO) applications.

Our work focuses on quantitatively assessing the
reachability of changes made to a software during its
evolution. The uniqueness of measuring the
reachability is by considering both the effect of
changes and one level of ripple effect caused by the
changes. The following are the major contributions of
this quantitative assessment:

• Measurement of the affected constructs namely
classes, methods, aspects, pointcuts, join points and
advices caused by changes in three AspectJ
benchmark applications during its evolution.

• Considering the impact on both direct and one level
of indirect constructs over versions of the AspectJ
benchmark applications. In the literature, we have
not found any work similar to the work done by us
for the measurement of the impact of changes in
AspectJ programs.

• Additionally, a new set of metrics to capture the
complexity of weaving and control flow are defined
and applied for the benchmark applications. These
metrics are used to quantify the complexity change
in association with change impact during evolution.

The remainder of the paper is organized as follows:
Section 2 provides the motivation for this work.
Section 3 provides a brief explanation on the research
objective and scope. Section 4 explains the
mathematical concepts and terminologies behind the
metrics and also provides a rigorous definition for the

proposed metrics. An example that provides
motivation behind the study of changes is given in
section 5. The case study applications are introduced
and elaborated in section 6. The proposed set of
metrics has been explained in section 7. Section 8 lists
the values obtained for the metrics for the different
versions of the AO applications taken as case study.
Section 9 provides a detailed analysis and discussion
on the metric values for the case studies. Section 10
elaborates on related work in the area of change impact
assessment and section 11 concludes and provides
future directions.

2. Motivation
The underpinning of a scientific process is the
measurement of the effects of applying a methodology
to the commonly followed development approach. The
pervasive OOSD has been able to provide mechanisms
to effectively encapsulate properties and attributes of
real world objects. Inspite of this capability, the
methodology lacks constructs and mechanisms to
encapsulate cross-cutting functionalities into
independent units. Inorder to address this deficiency,
AOSD has provided new structures to modularize
these functionalities. The effect of such modularization
needs to be quantitatively assessed using well defined
metrics.

Fenton and Pfleeger [10] has clearly asserted the
need for measurement to study the impact of using any
specific development methodology. Chidamber and
Kemerer [6] have proposed design level metrics to
measure the impact of using OOSD and it has been
extended by several researchers in the literature. One
such extension is done by Ceccato et al. [5, 29] by
proposing extended metrics to measure AOP. Recently,
Piveta et al. [25] has performed an empirical study
with a subset of metrics proposed by Ceccato and
Tonella [5] by measuring them for ten projects written
in Java and AspectJ programming language. An
elaborative explanation indicating the improvements
and shortcomings in the quality of AO software has
been provided for the case studies.

After a careful investigation of the above-mentioned
research works, it becomes evident that researchers
have not made an attempt to measure both the direct
and indirect impact of making changes to versions of
AspectJ benchmark applications. Infact, a work done
by Sharafat and Tahvildari [27] measures the
probabilities for the direct and indirect impact of
changes during the evolution of an OO application.
Our work attempts to adapt this approach for
measuring the change impact analysis for AspectJ
applications. This paper proposes metrics for
measuring the direct and one level indirect impact of
changes made to AspectJ benchmark applications over
their versions. Case study based empirical
investigation technique was chosen to study the impact

43 A Quantitative Evaluation of Change Impact Reachability and Complexity Across Versions ….

of changes resulting over versions of AspectJ
benchmark applications.

3. Problem and Scope
The focus of this research is to quantitatively assess the
impact of changes and their ripple effect in AO
software. In the open source community, the number of
AO based applications is limited. Nevertheless, three
open source AO software have been chosen as case
study applications. In order to measure the change
impact across versions of the chosen case study
applications, an exhaustive set of metrics are proposed
and evaluated. In addition, a couple of metrics have
been defined to understand the complexity of weaving
aspects to the base code and the complexity of the flow
of control in the base code. A suitable tool called as
AO Software Change Impact Analyzer (AOSCIA) is
designed and developed to measure using metrics over
the available versions. Once the tool obtains the values
of the proposed metrics, an inference on the impact on
AO maintenance is deduced.

4. Terminologies
Any proposition of metrics requires an in-depth
mathematical explanation supporting the validity and
reasons behind the need for its existence. The proposed
set of metrics is explained using mathematical
fundamentals and formalisms. Firstly, the basic
terminologies of the AO software are defined using the
set notations as given below:

• System: A version of AO software is defined as a
system, S. Considering one version of a AO
software, the set of classes contained in it can be
defined as {C} and the set of aspects as {A}. It is
understood that an AO software system S, is a
collection of classes and aspects. Hence, it can be
mathematically defined as S={C⋃A}.

• Class: In an AO software S, a class C is a collective
set of methods and properties. The set of methods
can be defined as {M} and the set of properties are
defined as {P}. Thus, for a version of AO software
system, a class is a set defined as C={M⋃P}.

• Aspects: For an AO software S, an aspect A is a
collection of set of pointcuts defined as {PC}, set of
advices defined as {Ad} and a set of introductions
defined as {I}. Hence, for a version of AO software
system, an aspect is a collective set and defined as
A={PC⋃Ad⋃I}. It is possible to have an empty set
of pointcuts, advices and introductions in an aspect
ie., PC = {Ø}, Ad = {Ø} and I = {Ø}.

• Directly Affected Units: During the evolution of an
AO software S, consider Sn as the nth version and
Sn+1 as n+1th version. In the later version the directly
affected units are the classes, methods, aspects,

pointcuts and advices that are directly affected by a
change c. As an example, if a method is added to a
class because of a change in the requirement, then
all or some methods will be directly affected within
that class. A motivating example of a directly
affected aspect with practical explanation is given in
section 5.

• Indirectly Affected Units: Consider the evolution
given in the definition of directly affected units. The
indirectly affected units are the classes, methods,
aspects, pointcuts and advices that are affected due
to the effect of changes in the directly affected units.
If a method is added to a class A, then other classes
which have access to this method will be indirectly
affected and are considered as indirectly affected
classes.

Secondly, the foundation for the proposed metrics are
explained and illustrated as given below:

• Change Propagation Reachability (CPR): In a multi-
version AO software, consider all the changes that
occur over its versions. The CPR of a unit (method,
pointcut, joinpoint and advice) for a change c can be
defined as the inverse of the count of elements in a
set, whose elements are the union of the set of
directly Ud and set of indirectly Ui affected units. m
and n are the number of directly and indirectly
affected units, respectively. The mathematical
expression for the same is shown in Equation 1.

1 1

1()
{ } { }

m n

d i
d = i =

CPR c =
U + U∑ ∑

Two additional set of metrics are also proposed to
capture the complexity of the process of weaving and
control flow. The generalized form of the proposed
metrics is defined mathematically as given below:

• Complexity of Process (CP): The two parts of code
in AOP are: Base code-code implementing core
concerns (Classes of Java) and, cross-cutting code-
code implementing cross-cutting concerns (Aspects
of AspectJ). The control flow in the base code
happens through the method invocations and
method return type is considered while calculating
the complexity of control flow. Similarly, while
considering the cross-cutting code, the join point
designators and their respective number of
occurrences need to be considered to compute the
complexity of weaving. Both the processes can be
generalized and expressed using Equation 2. In the
formula, n is the number of categories of method
return types or join points, CVi is the assigned
complexity value and Ti is the number of methods or
join points of a type i.

(1)

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 44

1

{ }
n

i i
i =

CP = CV × T∑

All the proposed metrics satisfy Briand’s et al. [4, 7]
mathematical properties for measurement. An
explanation of the four properties and their validation
of the change propagation reachability metric are given
below:

1. Non-Negativity: The change propagation
reachability, CPR of the calculated units will never
be negative. Since, the number of affected units can
possibly be ≥ 0, the sum of the same will always
lead to a positive number. Hence, it can be inferred
that respective values of CPR will always be ≥ 0.

 CPR(c) ≥ 0

2. Null Value: The value of the change propagation
reachability will be 0, if the number of affected units
is empty. ie., if no units are affected by the change
c, then the respective value of CPR will be 0.

 if { }Affected Units = { }∅
3. Monotonicity: If the number of units, namely,

pointcuts, advices and methods are increased over
versions, then the respective value of CPR (for
classes, aspects, pointcuts, advices and methods)
will increase or remain the same. ie., if S2 is the
second version of the AO software S1 then the CPR
of a unit in the second version will be more or equal
to the CPR of the same unit in the first version.

 then CPR(c) = 0

CPR(c) for a unit in S2 ≥ CPR(c) for a unit in S1

4. Non-Decreasing Monotonicity: Consider m1 and m2
as two different classes or aspects with no common
relationship, then by merging them together will not
reduce the CPR values across two versions of the
AO software.

CPR(c) of m1+CPR(c) of m2 is ≥ CPR(c) of m1+m2

A similar explanation is possible for the complexity of
process metric CP to show that it also obeys all the
four mathematical properties suggested by Briand et al.
[4].

5. Motivating Example
In order to understand the impact of changes on the
different versions of AspectJ benchmark applications,
a simple example is shown in Figures 1 and 2.

public class savingsAccount extends Account {
double balance = 0;

savingsAccount(double initialDeposit) {
 setBalance(initialDeposit); }
private setBalance(double deposit) {
 balance = balance + deposit; }
public withdraw(double amount) {
 setBalance(-amount); }
public deposit(double amount) {
 setBalance(amount); } }
public aspect taxCalculator {
pointcut accessTax(SavingsAccount t, double amt) : call(*
.withdraw()) ||
 call(* *.deposit(*)) &&
 args(amt) &&
 target(t);
after() : accessTax(amount) {

 t.setBalance(-10.00); } }
public aspect logger {
pointcut log() : call(* *.withdraw(*) ||
 call(*.*.deposit(*);
after() : log() {
// routine for logging the changes } }

Figure 1. Example of computing tax (version 1) and logging.

public aspect taxCalculator {
pointcut accessTax(SavingsAccount t, double amt) : call(*
.withdraw()) ||
 call(* *.deposit(*)) &&
 args(amt) &&
 target(t);
pointcut serviceTax(SavingsAccount t, double amt) : call(*
.withdraw()) ||
 args(amt) &&
 target(t);
after() : accessTax(amount) {
 t.setBalance(-1.00); }

after() : serviceTax(amount) {
 if(amount > 10000)
 t.setBalance(-1.00); } }

Figure 2. Example of computing tax (version 2).

The code given in Figure 1 is the first version of
taxCalculator aspect with a single accessTax pointcut
and an aspect that encapsulates the non-functional
requirement namely, logging. The accessTax pointcut
weaves an after() advice which deducts US$ 1 after the
execution of withdraw() and deposit() methods in the
base code and the log pointcut weaves another after()
advice to record the changes for the historical purpose.

The second version of the code is given in Figure 2
with one more pointcut serviceTax added to the
taxCalculator aspect. The advice of this pointcut
additionally deducts US$ 1 as service tax after the
execution of withdraw() only if the withdrawn amount
is more than US$ 1000.

Hence, based on the metrics proposed in this paper,
while considering these new pointcuts from one
version to another version it is counted as direct impact
on the joinpoint where these advices are weaved in the
base code. If another aspect defines a pointcut at the
same joinpoint then it will be calculated as indirectly
affected construct for the metrics evaluation. The log()
pointcut and its after() advice are counted as units that
are indirectly affected by the addition of serviceTax()
pointcut. A similar type of calculation is done while
looking at the classes in the benchmark applications.

6. Case Study Applications
Quantitative evaluation of metrics requires case study
applications. Three different AO applications namely
spacewar, tracing and bean which are part of the
AspectJ development toolkit [8] have been identified
as case study applications to evaluate the impact of
changes across versions.

6.1. Spacewar
Spacewar is a classic video game that is intended to
provide a modest-sized example of a program that uses
aspects. The code for this example is still evolving
with the addition of new features to AspectJ and also
with a better understanding of how to use the features.

(2)

45 A Quantitative Evaluation of Change Impact Reachability and Complexity Across Versions ….

When the game starts, there will be two different
displays. These are two built-in display aspects of the
game. In each display, there will be a single white ship
and two red ships. The white ship is for the user to
control; the red ships are enemy robots. The white ship
is controlled with the four arrow keys to turn, thrust
and stop and the spacebar is used as a firing weapon.
As the user continues to play, the game will be
displayed in both windows. The user can quit the game
by pressing the Ctrl-Q key in the keyboard. The
numbers of aspect and class elements are given in
Table 1.

Table 1. Case studies-count of classes, aspects and their numbers.

Version Classes Methods Aspects Pointcuts Advices
Spacewar

1 12 123 - - -
2 17 159 7 6 22

Tracing
1 5 36 1 3 4
2 5 42 3 7 8
3 5 42 4 10 10

Bean
1 2 11 - - -
2 2 17 1 1 3

6.2. Tracing
Tracing is an example that is shipped with the standard
AspectJ Development Tools (AJDT) plug-in and is
used to create graphical objects like circle and square.
In software engineering, tracing is specially used for
logging or recording information about a program’s
execution. This information is typically used by
programmers for debugging purposes. Additionally,
depending on the type and detail of information
contained in a trace log, the experienced system
administrators or technical support personnel use
software monitoring tools to diagnose common
problems with the software. Tracing functionality is
modelled using aspects as it is a cross-cutting concern
in the application. Table 1 shows the number elements
in the different available versions.

6.3. Bean
Bean is a simple example that shows the method of
converting a class into a Java Bean. Adding bound
properties and serialization to point objects are
modelled as aspects. The count of the aspect and base
entities are specified in Table 1.

7. Proposed Metrics
The proposed set of metrics separately captures the
changes by identifying the impact of the changes made
to aspect elements as well as to the base elements
(class elements). While evaluating the respective
metric values for the first version of the selected case
study applications, all the classes and aspects are
considered as changed elements. In the subsequent

version, the additions from the previous version are
considered for the computation of metric values.

7.1. Metrics for Change in Aspects and its
Elements

The various changes that are possible in an aspect are
changes in aspects, advices and pointcuts, calculation
of ACPR(c):

• Step 1: Calculate total #of pointcuts and advices
directly affected by change c.

• Step 2: Calculate total #of pointcuts and advices
indirectly affected by change c.

• Step 3: Add all the calculated values and find the
reciprocal of this to obtain the value of ACPR(c) in
the range between 0 and 1.

Calculation for the other metrics can follow similar set
of steps by counting the respective directly and
indirectly affected entities for a particular change c.

7.1.1. Aspect Change Propagation Reachability

Aspect CPR (ACPR) of a change c is calculated using
formula 3.

[] []

1 1

1()
m n

d d i i
d = i =

ACPR c =
#P + #Ad + #P + #Ad∑ ∑

Where ACPR(c) stands for ACPR of a change c, m is
the number of aspects directly affected by c, #Pd is the
number of pointcuts within the dth directly affected
aspect, #Add is the number of advices within the dth
directly affected aspect, n is the number of aspects
indirectly affected by c, #Pi is the number of pointcuts
within the ith indirectly affected aspect, and #Adi is the
number of advices within the ith indirectly affected
aspect.

7.1.2. Pointcut Change Propagation Reachability

Pointcut CPR (PCPR) of a change c is evaluated as
specified in formula 4.

[] []

1 1

1()
#

c
m n

d d i i
d i

PCPR
J Ad J Ad

= =

=
+ + +∑ ∑

Where PCPR(c) stands for PCPR of a change c, m is
the number of pointcuts directly affected by c, #Jd is
the number of join points for the dth directly affected
pointcut, #Add is the number of advices for the dth
directly affected pointcut, n is the number of pointcuts
indirectly affected by c, #Ji is the number of join points
for the ith indirectly affected pointcut, and #Adi is the
number of advices for the ith indirectly affected
pointcut.

(3)

(4)

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 46

7.1.3. Advice Change Propagation Reachability

Advice CPR (ADCPR) of a change c is calculated
using formula 5.

[] []

1 1

1()
m n

d i
d = i =

ADCPR c =
#J + #J∑ ∑

Where ADCPR(c) stands for ADCPR of a change c, m
is the number of advices directly affected by c, #Jd is
the number of join points for the dth directly affected
advice, n is the number of advices indirectly affected
by c, and #Ji is the number of join points for the ith
indirectly affected advice.

7.2. Metrics for Change in the Class and its
Elements

The various changes that are possible in the base code
are changes to classes and methods measured using
class and method change propagation reachability
respectively.

7.2.1. Class Change Propagation Reachability

The Class CPR (CCPR) value of classes is calculated
using formula 6.

[] []

1 1

1()
m n

d i
d = i =

CCPR c
#M + #M∑ ∑

=

Where CCPR(c) stands for CCPR of a change c, m is
the number of classes directly affected by c, #Md is the
total number of methods in the dth directly affected
class, n is the number of classes indirectly affected by
c, and Mi is the total number of methods in the ith
indirectly affected class.

7.2.2. Method Change Propagation Reachability

Finally, the CPR value of Methods (MCPR) within
classes in AO software is calculated as specified by the
formula 7. This metric is different from CCPR and
considers only the affected methods of changes over
versions of AO software.

[] []

1 1

1()
m n

d i
d = i =

MCPR c =
#M + #M∑ ∑

Where MCPR(c) stands for MCPR of a change c, m is
the number of classes directly affected by c, #Md is the
number of directly affected methods in the dth directly
affected class, n is the number of classes indirectly
affected by c, and #Mi is the number of indirectly
affected methods in the ith indirectly affected class.

7.3. Complexity Estimation
Metrics such as ACPR, PCPR, ADCPR, MCPR and
CCPR have been proposed to measure the impact of

changes in the AO applications identified as case
study. Extending the impact of changes in order to
analyze the behavior of various aspect and base
elements (during the maintenance phase of a software),
two additional metrics have been proposed to evaluate
the cognitive complexity of weaving and control.
Complexity values have been assigned to the
designators specified in the aspects and method return
types used in the classes. While assigning the values,
the most complex designator used in the pointcuts of
the aspects and the most complex return type found in
the methods of classes are assigned the same
complexity value. Similarly, a complexity value of 1 is
assigned for the least complex designator and method
return type of the respective elements. This assignment
enables to compare the complexity of weaving to the
complexity of control flow of AO software.

7.3.1. Complexity of Weaving

Weaving of aspects is normally done by executing the
advices defined in the aspect at a resolved join point.
The complexity of this process Complexity of
Weaving (CW) can be evaluated by the equation
specified by Formula 8. The complexity value assigned
for the different designators in AOP is specified in
Table 2. The commonly occurring designators are
ordered based on the cognition required to resolve the
join points. Further, a value reflecting the cognitive
complexity has been assigned to the ordered
designators. The Join Point Complexity (JPC) value
assigned to the initialization designator is higher than
this designator. This is because the cognitive
complexity involved in the initialization of objects is
higher than simply identifying the current object. In
Table 4, the designator cflow has the maximum JPC
because the flow of control requires a very high
cognizance compared to the other designators.

Table 2. Complexity of join point types.

Type of Designator JPC
This 1

Initialization 1
Call 2

Execution 3
Handler 4
Target 5
Within 5
Cflow 6

 ()
1

n

i i
i =

CW = JPC × #JP∑

Where n is the total number of categories of join
points, JPCi is the cognitive complexity value assigned
for the ith designator type of the matching joinpoint,
#JPi is the number of join points of a listed type i.

(5)

(7)

(6)

(8)

47 A Quantitative Evaluation of Change Impact Reachability and Complexity Across Versions ….

7.3.2. Complexity Of Control Flow (Through
Method Return Types)

The Complexity of Control Flow (CCF) of the class
methods defined in the AO application can be
calculated by the return type of each defined method.
This metric can be calculated using formula 9. Similar
to the way of assigning complexity values to pointcut
designators, control complexity values are assigned for
methods in classes. The assigned complexity values are
ordered and listed in Table 3.

 Table 3. Complexity of method return types.

Method Return Type MRTC
void 4

primitive 5
class 6

()
1

n

i i
i =

CCF = MRTC × #M∑

Where n is the total number of method return types,
MRTCi is the cognitive complexity value assigned for
the ith return type of methods, and #Mi is the number of
methods of a listed type i. The system design that
captures the workflow of the AOSCIA tool is shown in
Figure 3. The tool takes the paths containing the three
case study applications as input through the interfaces
in the tool. It then sorts the files in the given folder into
Java and AspectJ files. The cross-references between
the aspects and classes are identified to find the impact
of changes in the current version. The respective
signatures are further extracted and the values of the
proposed metrics are computed. The computed values
are further compared across versions of the case study
applications. Finally, the impact of evolution over
versions of AO software towards maintainability is
inferred based on the metric values.

Figure 3. Workflow system design of AOSCIA tool.

8. Tool Results for Case Study Applications
The proposed metric values, both CPR and complexity
values are evaluated for the case study applications
using to the AOSCIA tool.

8.1. Tracing

8.1.1. Change Propagation Reachability Metrics

For the different versions of tracing application, the
values of the different CPRs are evaluated and the
average of the CPR values are calculated which are
tabulated in Table 4.

Table 4. Case study-average CPR values of versions.

8.1.2. Method/Joinpoint Analysis
The complexity values have been found for all the
three versions of tracing case study application and are
tabulated in Tables 5 and 6.

Table 5. Complexity of control flow (tracing).
Method Return Type MRTC Count CCF

Version 1
Void 4 23 92

Primitive 5 9 55
Class 6 4 36

Average CCF 183/36 = 5.03
Versions 2 and 3

Void 4 29 116
Primitive 5 9 55

Class 6 4 36
Average CCF 207/42 = 4.93

Table 6. Complexity of weaving (tracing).
Pointcut Designators JPC Count CW

Version 2
Execution 3 2 6

Within 5 2 10
Average CW 16/4 = 4.0

Version 3
Execution 3 2 6

Within 5 2 10
Average CW 16/4 = 4.0

8.2. Spacewar

8.2.1. Change Propagation Reachability Metrics

The code of the second case study application namely
Spacewar was given as input to the AOSCIA Tool and
the values of CPR metrics were measured and the
average is computed and tabulated in Table 4.

8.2.2. Method/Joinpoint Analysis
Similar to the previous case study, the complexity
values are also computed for the versions of spacewar
application and are tabulated in Tables 7 and 8.

Version Avg. CCPR Avg. MCPR Avg. ACPR Avg. PCPR Avg. ADCPR
Tracing

1 0.2932 0.3154 0.1428 0.8450 0.2851
2 0.3111 0.2836 0.1226 0.7500 0.2236
3 0.3111 0.2836 0.1277 0.6250 0.2136

Spacewar
1 0.1720 0.1641 - - -
2 0.2126 0.2632 0.2434 0.5029 0.7292

Bean
1 0.1964 0.0647 - - -
2 0.2135 0.0836 1.0000 1.0000 0.3242

(9)

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 48

Table 7. Complexity of control flow (spacewar).

Table 8. Complexity of weaving (spacewar-version 2).

8.3. Bean

8.3.1. Change Propagation Reachability Metrics

Similar to the spacewar and tracing applications, the
CPR values of the bean case study is computed using
the AOSCIA tool. The obtained values are tabulated in
Table 3.

8.3.2. Method/Joinpoint Analysis

Since, the Bean case study has two different versions,
the complexity values are evaluated for each version
and tabulated in Tables 9 and 10.

Table 9. Complexity of control flow (Bean).
Method Return Type MRTC Count CCF

Version 1
Void 4 7 28
Class 6 2 12

Primitive 5 2 10
Average CCF 50/11 = 4.54

Version 2
Void 4 13 52
Class 6 2 12

Primitive 5 2 10
Average CCF 74/17 = 4.35

Table 10. Complexity of weaving (bean-version 2).

9. Discussion on Measurements
Numerical values of the change propagation
reachability metrics were obtained using the AOSCIA
tool for the different versions of the case study
applications. Further, the tool computed values of the
proposed metrics were analysed to infer on the
reachability of the impact of changes in the chosen
versions. The complexity metrics for weaving and
control flow were also analyzed to understand the
impact of changes in the versions of the applications.
The observations of variation in metric values for the
versions are explained in the subsections given below.

9.1. Change Propagation Reachability: Tracing
Version 1 is programmed with 5 classes and 36
methods. The respective CPR values calculated for
average CCPR and average MCPR are 0.2932 and
0.3154. Versions 2 and 3 are modeled with the same 5
classes and extended methods to increase the count to
42. Consequently, the average CPR values are
calculated as 0.3111 and 0.2836. Even though the
number of classes is the same in versions 2 and 3, since
there is a change in the total number of methods, the
average CCPR values are different and found to be
increased. By adding methods to the existing classes,
the CCPR value has been increased and thereby
increasing the ripple effect. This reduces the
maintainability of tracing application with respect to its
modeled classes in latter versions.

Considering the AO constructs, version 1 consists of
a single first class cross-cutting entity (aspect) with 3
pointcuts and 4 advices. The corresponding CPR
values calculated are 0.1428, 0.845 and 0.2851
respectively. Version 2 has the inclusion of 2 aspects
which includes an abstract aspect. This is reflected by
the change in the average values of CPR for aspects
and their constructs. The respective values of average
CPRs for aspects, pointcuts and advices are 0.1226,
0.75 and 0.2236. The last version (version 3) of tracing
is programmed with 4 aspects, 10 pointcuts and 10
advices and the evaluated average CPR values are
0.1277, 0.625 and 0.2136 respectively. Considering the
elements modelling the cross-cutting concerns, there is
a steady increase in the number of aspects, pointcuts
and advices. Analyzing the decrease of the average
values of CPR, it is clearly evident that the values are
decreasing over versions. The average CPR values of
aspects and advices have also stabilized in version 2
and there are only minimal respective increases in the
last version. It can be inferred that the ripple effects
caused by the changes in the aspects are minimized in
the later version thereby improving the maintainability
of AO constructs.

From the graph shown in Figure 4-b, it is clearly
evident that there is a clear fall in the respective
average CPR values of AO constructs, while the
average CPR values of OO constructs are slightly
increasing and stabilizing in latter versions.

9.2. Change Propagation Reachability:
Spacewar

In version 1 of the spacewar application, there are 12
classes and 123 methods and the calculated average
values of CPR are 0.1720 and 0.1641 respectively. The
number of classes and methods increases to 17 and 159
in version 2 and the respective average values of CPR
are calculated as 0.2126 and 0.2632. The average CPR
values of OO classes and methods in version 2, are
higher than that of version 1. This increase of values
will in turn increase the ripple effect and have a

Method Return Type MRTC Count CCF
Version 1

Void 4 78 312
Primitive 5 15 75

Class 6 30 180
Average CCF 567/123 = 4.6

Version 2
Void 4 97 388

Primitive 5 19 95
Class 6 43 258

Average CCF 741/159 = 4.66

Pointcut Designators JPC Count CW
Initialization 1 1 1

Call 2 15 30
Execution 3 2 6

Target 5 3 15
Average CW 52/21 = 2.47

Pointcut Designators JPC Count CW
Call 2 3 6

Average CW 6/3 = 2.0

49 A Quantitative Evaluation of Change Impact Reachability and Complexity Across Versions ….

negative impact on the maintainability of the
application considering the modelled OO elements.

Considering the AO specific entities, version 1 does
not contain any aspects whereas version 2 is modeled
with 7 aspects, 6 pointcuts and 22 advices. The
respective average values of CPR are computed as
0.2434, 0.5029 and 0.7292. As far as the AO elements
are concerned, since, only one version containing
aspects is available, not much about the change impact
can be inferred upon. However, version 2 contains
aspects that model both functional requirements like
coordination, display, objectpainting and non-
functional requirements like synchronization and
debug, we can conclude that a good number of
scattering and tangling concerns have been
encapsulated as aspects.

The graph in Figure 4-a clearly shows the increase

in the average values of CPR of the OO entities. Since,
version 2 models all the possible cross-cutting
functional and non-functional requirements as aspects,
the average CPR values of the AO elements are high.

9.3. Change Propagation Reachability: Bean
The numbers of OO elements in version 1 are 2 classes
and 11 methods and the computed average values of
CPR are 0.1964 and 0.0647. In version 2, the number
of classes remains the same as in version 1, whereas
the number of methods is increased to 17.
Correspondingly, the average values of CPR are
calculated as 0.2135 and 0.0836. The average CPR
values of classes and methods are clearly increasing
over the respective versions. This can be considered as
a negative characteristic considering the evolution of
the plug-in. The ripple effect will increase in the latter
versions and hence will reduce the maintainability of
OO elements.

There are no AO specific elements in version 1, but
considering version 2, there is only 1 aspect, 1 pointcut
and 3 advices. The corresponding average values of
CPR are calculated as 1.0, 1.0 and 0.3242 respectively.
Since only one aspect with a single pointcut has been
included in version 2, it is very difficult to clearly
study the impact of ripple effect. However, the single
aspect models a functional requirement BoundPoint of
the bean plug-in and there are only 2 classes in version
2. All the possible cross-cutting concerns have been
modelled as aspects.

The graph shown in Figure 4-c clearly identifies the
increase in OO element’s average CPR values.

9.4. Weaving and Control Flow Complexity:
Tracing

The values of CCF in three versions are 5.03, 4.93 and
4.93. There is no difference in the values obtained for
versions 2 and 3, because no OO elements are added to
the later version.

While considering the AO specific entities, the
aspects in version 1 are modelled as abstract entities
and hence do not contain any designators and
consequently the value for CW is 0. Version 3 contains
4 aspects, 10 pointcuts and 10 advices and version 2
contains 3 aspects, 7 pointcuts and 8 advices. The
increases in elements are modelled as abstract entities
and hence no designators are attached to the pointcuts.
Consequently, there is no increase in the value of CW
from version 2 to version 3.

Considering the respective values of CCF and CW
over versions, it is clearly evident that complexity of
control flow is higher than that of weaving. The change
in the values of CCF and CW is clearly depicted in the
graph shown in Figure 5-b.

9.5. Weaving and Control Flow Complexity:
Spacewar

The numbers of OO elements modelled in version 1
are 12 classes and 123 methods and the corresponding
CCF value is 4.6. Considering version 2, there is an
increase in the number of classes and methods and the
evaluated value CCF is 4.66. By carefully looking at
the number of classes and methods, it is clearly evident
that methods with different return types are
proportionately increased while comparing version 2
with version 1. Hence, based on the number of
functionalities that are modelled in the later version of
the application, we can infer that the complexity value
is reasonably stabilized.

There are no aspects in version 1, but version 2 is
modelled with 7 aspects, 6 pointcuts and 22 advices.
Hence, the value of CW in version 2 is 2.47.

Again, while comparing the values of CW and CCF
with respect to each version, the cognitive complexity
attached with weaving of aspects is always lower than
the cognitive complexity of control flow. The values of
CCF and CW over versions are plotted in the bar graph
shown in Figure 5-a and it clearly shows the difference
between CCF and CW over versions.

9.6. Weaving and Control Flow Complexity:
Bean

The number of classes and methods in version 1 is 2
and 11 and the value of CCF is 4.54. Version 2 is

a) Spacewar. b) Tracing. c) Bean.

Figure 4. Average CPR over versions.

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 50

modelled with 2 classes and 17 methods and the
calculated value of CCF is 4.35. There is a minor
decrease in the value of cognitive complexity of
control flow because of the increase in the number of
methods with void as return type.

Version 1 is not modelled with any aspect and
version 2 has a single aspect with a pointcut. The
evaluated value of CW is 2.0 for this version. Even
though the number of aspects is only one, while
looking at the fact that only 2 classes are part of the
version, the cognitive complexity of weaving is very
less compared to the cognitive complexity of control
flow. By modelling the cross-cutting functionality as
aspect, the cognitive complexity of the plug-in has
been reduced in version 2.

The CCF and CW values have been plotted in the
graph shown in Figure 5-c and it is clearly seen that
weaving complexity is less than the control flow
complexity in version 2.

a) Spacewar. b) Tracing. c) Bean.

Figure 5. Complexity of weaving and complexity of control flow.

10. Related Works
In order to understand the ripple effect of changes
made to a software, researchers have proposed
methodologies to infer the impact of changes on
maintenance of OO or AO software.

Zhang et al. [30] proposes a new change impact
analysis technique for AspectJ programs. This
technique captures the semantic difference between
versions of 8 AspectJ benchmarks. Call graphs are
used to identify the atomic changes and a catalogue of
atomic changes has been defined for the AspectJ
programs. It is an extension of Ryder’s method for
measuring the atomic changes in OO programs. The
indirect impacts of changes over versions have not
been captured and the focus was only on measuring the
atomic changes.

Shen et al. [28] has proposed a fine-grained
coupling metrics suite that captures the atomic changes
in the aspect and the base code. Further, these coupling
metrics are correlated with the maintainability of the
AO software and a correlation analysis has been
performed to understand the impact of software
changes.

Sharafat and Tahvildari [27] has developed a model
to predict the probability that a class will change in the
future based on the information collected through
successive generations of given OO software. This
probability is obtained by adding the probability of
internal changes in a class and external changes that
affect other related classes.

Munoz et al. [23] has defined group of metrics to
measure the usability and testability of AOP. Evolution
is considered and the metrics are applied for a sample
case study AJHealthWatcher. A theoretical framework
based on Briand’s formalism for analysing OO
programs has been developed for AO programs. Based
on the proposed framework, metrics have been defined
to capture the usage of Pointcut Designators (PCDs).
Even the proportion of invasive aspects in the sample
case study has been analysed to throw insight into the
effect of aspectization. It was found that the Response
For a Module (RFM) metric defined by Chidamber
and Kemerer [6] has improved the transitive closure of
RFM, identified by reduction of RFM’. This increase is
due to one more level of redirection that occurs
because of the introduction of aspects of AOP. This
increase negatively affects the testability and the
maintainability of AO software. Evolution of the AO
software is not considered while measuring the RFM
metric. During the evaluation of CPR, evolution over
versions is considered since it directly affects the
maintainability of software.

A method to identify the potential cross-cutting
functional and non-functional requirements in the early
stages of software development has been attempted by
Amirat et al. [1]. The benefit of adopting this approach
is achieve better traceability of broad set of
requirements thereby improving the maintainability of
AO software during its evolution.

An empirical study on four metrics defined by
Chidamber and Kemerer [6] and two metrics defined
by Ceccato and Tonello [5] were measured for ten
different Java and AspectJ projects by Piveta et al.
[25]. Lessons learnt for the six metrics have been
analysed in detail with discussion on AOP. Evolution
is not captured in the analysis since only one version
was considered for each project.

Kumar et al. [15] has measured the changeability of
AO software by looking at the consequence of changes
made to its modules. It has been inferred that this kind
of software is able to easily absorb changes by
computing the values for some of the design level
metrics defined to measure the AO software.

Li et al. [18] has performed change impact
simulation to assess the propagation of the changes by
measuring the atomic level changes related to the
modifications in the object oriented software. The
different types of dependency relationships that are
possible between classes are defined using a proposed
software change propagation model. This concept of
change propagation reachability can be extended to
AO software.

Figueiredo et al. [11] is towards analyzing the
design stability of two aspectual Software Product
Lines (SPLs) by focussing on modularity, change
propagation and the dependency between different
features in the test applications. This study measures
only the aspects, classes, operations, lines of code and

51 A Quantitative Evaluation of Change Impact Reachability and Complexity Across Versions ….

pointcuts across versions of SPLs and does not count
the number of advices and join points as well as the
indirect effect of the changes across versions.

11. Conclusions and Future Directions
The changes made across the versions of any software
significantly influences the effort involved in
maintaining that software. With this in mind, this paper
had proposed a group of metrics to measure the
reachability of changes made to an AO software over
the available versions. An additional set of metrics
were also proposed to identify and measure the
cognitive complexities of both the classes and aspects
that model the base and cross-cutting functionalities
respectively. Based on the measurement, AO
constructs exhibited better maintenance characteristics
over versions than the OO constructs.

Three different case study applications with
multiple versions were identified and the values of the
metrics for the respective versions were measured.
Based on the measured metric values, a set of
inferences were derived with logical explanations on
the impact of changes, considering the objects, aspects
and their internal elements.

This work can be further extended by investigating
more case study applications having higher number of
versions to analyze the impact of changes. Also, an
analysis can be done to independently relate the
changes made to functional and non-functional
requirements and their impact on aspects and classes in
the versions of an application. This will in turn provide
a software developer to have a better insight on the
change propagation reachability and subsequently on
the maintenance in the design stage of software
development.

References
[1] Amirat A., Laskri M., and Khammaci T,

“Modularization of Cross-cutting Concerns in
Requirements Enginering,” The International
Arab Journal of Information Technology, vol. 5,
no. 2, pp. 120-125, 2008.

[2] Arockiam L. and Aloysius A., “Attribute
Weighted Class Complexity: A New Metric for
Measuring of OO Systems,” World Academy of
Science, Engineering and Technology, vol. 5, no.
10, pp. 1151-1156, 2011.

[3] Black S., “Computing Ripple Effect for Software
Maintenance,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 13,
no. 4, pp. 263-279, 2001.

[4] Briand L., Morasca S., and Basili V., “Property-
based Software Engineering Measurement,”

IEEE Transactions on Software Engineering, vol.
22, no. 1, pp. 68-86, 1996.

[5] Ceccato M. and Tonella P., “Measuring the
Effects of Software Aspectization,” 1st Workshop
on Aspect Reverse Engineering (WARE), 2004.

[6] Chidamber S. and Kemerer C., “A Metrics Suite
for Object Oriented Design,” IEEE Transactions
on Software Engineering, vol. 20, no. 6, pp. 476-
493, 1994.

[7] Dubey S. and Rana A., “Assessment of
Maintainability Metrics for Object-oriented
Software System,” ACM SIGSOFT Software
Engineering Notes, vol. 36, no. 5, pp.1-7, 2011.

[8] Eclipse Foundation, http://www.eclipse.org/ajdt/,
Last visited 2013.

[9] Elrad T., Filman R., and Bader A., “Aspect-
oriented Programming: Introduction,”
Communications of the ACM, vol. 44, no. 10, pp.
29-32, 2001.

[10] Fenton N. and Pfleeger S., Software Metrics: A
Rigorous and Practical Approach, PWS
Publishing Co., 1997.

[11] Figueiredo E., Cacho N., Sant’Anna C., Monteiro
M., Kulesza U., Garcia A., Soares S., Ferrari F.,
Khan S., Filho F., and Dantas F., “Evolving
Software Product Lines with Aspects: An
Empirical Study on Design Stability,” in
Proceeding of 30th International Conference on
Software Engineering (ICSE), USA, pp. 261-270,
2008.

[12] Haider B. and Black S., “Ripple effect: A
Complexity Measure for Object Oriented
Software,” in Proceeding of European
Conference on Object Oriented Programming,
Germany, 2007.

[13] Haider B. and Black S., “Using the Ripple Effect
to Measure Software Quality,” in Proceeding of
International Conference Software Quality
Management, UK, pp. 183, 2005.

[14] Kiczales G., Lamping J., Mendhekar A., Maeda
C., Lopes C., Loingtier J., and Irwin J., “Aspect-
oriented Programming,” in Proceeding of
European Conference on Object Oriented
Programming, pp. 220-242, 1997.

[15] Kumar A., Kumar R., and Grover P., “An
Evaluation of Maintainability of Aspect-oriented
Systems: A Practical Approach,” International
Journal of Computer Science and Security, vol.
1, no. 2, pp. 1-9, 2007.

[16] Laddad R., “Aspect-Oriented Programming will
Improve Quality,” IEEE Software, vol. 20, no. 6,
pp. 90-91, 2003.

[17] Li B., Sun X., Leung H., and Zhang S., “A
Survey of Code‐based Change Impact Analysis
Techniques,” Software Testing, Verification and

http://www.eclipse.org/ajdt/�

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 52

Reliability, Wiley Online Library, vol. 23, no. 8,
pp. 613-646, 2013.

[18] Li L., Zhang L., Lu L., and Fan Z., “Assessing
Object-oriented Software Systems based on
Change Impact Simulation,” in Proceeding of
IEEE 10th International Conference on Computer
and Information Technology (CIT), pp. 1364-
1369, 2010.

[19] Mens K., Lopes C., Tekinerdogan B., and
Kiczales G., “Aspect-oriented Programming:
Workshop Report,” in Proceeding of European
Conference on Object Oriented Programming
Workshops, Finland, pp. 483-496, 1997.

[20] Mens T. and Demeyer S., “Introduction and
Roadmap : History and Challenges of Software
Evolution,” Springer Berlin Heidelberg, 2008.

[21] Mens T. and Wermelinger M., “Formal
foundations of Software Evolution : Workshop
Report,” ACM SIGSOFT Software Engineering
Notes, vol. 26, no. 4, pp. 27-29, 2001.

[22] Misra S. and Akman K., “Weighted Class
Complexity: A Measure of Complexity for
Object Oriented System,” Journal of Information
Science and Engineering, vol. 24, no. 6, pp.
1689-1708, 2008.

[23] Munoz F., Baudry B., Delamare R., and Le Y.,
“Usage and Testability of AOP: An Empirical
Study of AspectJ,” Information Software
Technology, vol. 55, no. 2, pp. 252-266, 2013.

[24] Murphy G., Walker R., Baniassad L., Robillard
M., Lai A., and Kersten M., “Does Aspect-
oriented Programming Work? Determining the
Best Method for Evaluating the Effectiveness of
a New Technology,” Communications of the
ACM, vol. 44, no. 10, pp. 75-77, 2001.

[25] Piveta E., Moreira A., Pimenta M., Arajo J.,
Guerreiro P., and Price R. , “An Empirical Study
of Aspect-oriented Metrics,” Science of
Computer Programming, vol. 78, no. 1, pp. 117-
144, 2012.

[26] Shao J. and Wang Y., “A New Measure of
Software Complexity based on Cognitive
Weights,” Canadian Journal of Electrical and
Computer Engineering, vol. 28, no. 2, pp. 69-74,
2003.

[27] Sharafat A. and Tahvildari L., “Change
Prediction in Object Oriented Software Systems:
A Probabilistic Approach,” Journal of Software
(JSW), vol. 3, no. 5, pp. 26-39, 2008.

[28] Shen H., Zhang S., and Zhao J., “An Empirical
Study of Maintainability in Aspect-oriented
System Evolution using Coupling Metrics,” in
Proceeding of 2nd IEEE International
Symposium on Theoretical Aspects of Software
Engineering (TASE), China, pp. 233-236, 2008.

[29] Yokomori R., Siy H., Yoshida N., Noro M., and
Inoue K., “Measuring the Effects of Aspect-
oriented Refactoring on Component

Relationships: Two Case Studies,” in Proceeding
of 10th International Conference on Aspect
Oriented Software Development, Brazil ,pp. 215-
226, 2011.

[30] Zhang S., Gu Z., Lin Y., and Zhao, J., “Change
Impact Analysis for AspectJ Programs,” in
Proceeding of 24th IEEE International
Conference on Software Maintenance (ICSM),
China, pp. 87-96, 2008.

Senthil Suganantham received his
M.S. in Computer Science from
Wichita State University, USA and
B.E. in Electronics and
Communication Engineering from
MK University, India. He is
currently working as Associate

Professor in SSN College of Engineering, India, and
pursuing PhD in Anna University, India. He has
published 10 papers in International Journals and
Conferences. His research areas include AOSD and
empirical software engineering.

Chitra Babu Professor and Head,
Department of Computer Science
and Engineering, SSN College of
Engineering, India, received her
Ph.D. from the Indian Institute of
Technology, Madras (IITM), India,
M.E. in Computer Science and
Engineering from Anna University,

India, M.S. in Computer and Information Systems
from the Ohio State University, USA, B.E. from PSG
College of Technology, India. She has published over
50 research publications in refereed International
Journals and Conferences. Her research interests
include object and aspect oriented software
engineering, service oriented architecture and cloud
computing.

Madhumitha Raju received her B.E.
in Computer Science and Engineering
from SSN College of Engineering,
India. She worked as a Trainee Software
Engineer by Ford Technology Services,
India specializing in Mainframes. She is
currently a software engineer in Ford
Technology Services, India.

	A Quantitative Evaluation of Change Impact Reachability and Complexity Across Versions of Aspect Oriented Software

