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Abstract: This paper proposes a compression scheme for medical images through differential pulse code modulation coding of 

multi resolution and multidirectional subbands. Multi resolution representation of the medical images are obtained through 

laplacian pyramid which successfully decorrelates the image and thus reduces the redundant information by representing the 

image by a coarse signal at a lower resolution with several detail signals at successively higher resolutions. This multi scale 

transform is followed by directional transform to gather the nearby basis functions at the same scale in to linear structures. 

Thus each image is decomposed in to low pass subband and several band pass directional subbands that are encoded through 

DPCM. The proposed scheme was tested on various medical images and numerical results in this work shows the potential of 

various directional filter banks in the compression of medical images. 
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1. Introduction 

Medical imaging has a vital role in medicine, 

especially in the fields of diagnosis and surgical 

planning. However, imaging devices such as such as 

Computed Tomography (CT), Magnetic Resonance 

Imaging (MRI), Positron Emission Tomography 

(PET), Single Photon Emission Computed 

Tomography (SPECT), X-rays, Ultrasound imaging 

etc., continue to generate large amounts of data per 

patient, which require long-term storage and efficient 

transmission. Raw data occupy large amount of storage 

area and high bandwidth for transmission. These 

radiology images are of very huge size due to its high 

resolution and large number of images required for 

each examination. Studies have shown that the 

radiology department of a large hospital can produce 

more than 20 terabytes of image data per year. So, 

good compression algorithm which aims at reducing 

the bitrates becomes essential [12].  

JPEG [10] is the widely used compression 

technique for medical images. Though it has become a 

standard, it suffers from blocking artifacts due to block 

processing that becomes more evident with increasing 

compression ratios. To minimize or prevent artifacts 

new compression technique JPEG2000 [7] based on 

wavelet transform arrived. Wavelet based image 

coding has witnessed great success in the past decade 

[3, 6, 9]. Being separable, conventional 2-D discrete 

wavelet transform efficiently captures point 

singularities [5, 8], but fails to capture 1-D 

singularities, such as edges and contours in images that 

are not aligned with the horizontal or vertical direction. 

Therefore, 2D DWT cannot provide efficient 

approximation for directional features of images. To 

incorporate directional representation and to exploit 

the characteristics of medical images for compression, 

we have adopted in this paper an efficient multi 

resolution and multidirectional representation of 

medical images to capture the intrinsic geometrical 

structures that are key features in visual information 

through directional filtering of the multi resolution 

subbands and have experimented on the potential of 

various filter banks in compressive activity on medical 

images. 

2. Multi Scale Representation 

Medical images have unique characteristics of more 

uniform gray levels compared to natural images i.e., 

adjacent pixels are highly correlated with lot of 

redundant information. So, any representation for such 

images should have small redundancy along with 

desirable properties such as multi resolution, 

localization, directionality and anisotrophy, so as to 

accomplish good compression results. One way of 

achieving multi scale decomposition is to use a 

laplacian pyramid as introduced by Burt and Adelson 

[2], which removes image correlation by combining 

predictive and transform coding techniques. In this 

approach, the image is low pass filtered and down 

sampled to construct a lower resolution coarse signal 
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and a detail signal is constructed by computing the 

difference between original signal and the up sampled 

and interpolated form of coarse signal. This procedure 

is repeated on the coarse signal, so as to yield highly 

décor related detail signal for each iteration and a 

coarse signal at the end of last iteration. 

Let X be the input image, after a level of LP 

decomposition, approximation (coarser) signal A1 and 

detail signal B1 are formed. If j level of decomposition 

is done then final stage output bands which has to be 

encoded are [Aj, B1, B2, B3,...,Bj] i.e., at j
th
 level of 

decomposition Aj-1 subband is decomposed into coarser 

signal Aj and detail signal Bj. If all the Approximation 

bands are stacked one above the other in increasing 

order of decomposition levels, a pyramid like data 

structure will be formed which justifies its name.  

Instead of encoding the original image, coarse and 

the detail signals are encoded. This gives a higher 

compression gain because the detail signal is highly 

décor related and contains lower dynamic range of 

values which are coded with fewer bits than the 

original image. Moreover, the coarse signal is sub 

sampled which gives further compression gain.  

The signal flow graph of the Laplacian Pyramid for 

two levels is shown in Figure 1, where X is our original 

image, H is an FIR decimation filter, G is an FIR 

interpolating filter, A is the coarse signal and B is the 

detail signal. 
 

      
 

Figure 1. Laplacian pyramid signal flow graph. 

 

The decimation blocks here, indicate decimation by 

a factor of two. For an input image X the 

approximation and detail signal are determined as 

follows: 
 

A=HXHT                               (1) 
 

B=X-GAGT                             (2) 
 

Superscript T denotes matrix transpose operation. 

Given A and B we can reconstruct [4] the image X as 

follows if the decimation and interpolation filters are 

orthogonal. The reconstruction signal flow graph is 

shown in Figure 2. 
 

          
 

Figure 2. Reconstruction signal flow graph. 

 

X̂ =G (A-HBH
T
) G

T
+B                       (3) 

Thus, the image is represented as a series of band-pass 

filtered images, each sampled at successively sparser 

densities. When compared to critically sampled 

wavelet scheme, Laplacian pyramid has the drawback 

of oversampling. However, frequency scrambling 

which happens in the wavelet filter bank when a high 

pass channel after down sampling is folded back into 

the low frequency band is avoided in each level band 

pass image of laplacian pyramid as it down samples 

only the low pass channel. 

3. Multidirectional Representation 

Among the bands [Aj, B1, B2, B3, ..., Bj] generated after 

j
th
 level of decomposition by laplacian pyramid, B1, B2, 

B3, ..., Bj are subjected to directional filter bank [1] 

which captures high frequency components 

representing directionality of images. DFB can 

maximally decimate the input subbands with perfect 

reconstruction. It is realized through tree structured 

two band decomposition systems. For n level of 

decomposition, the input is split into 2
n
 sub-bands with 

each sub-band having a wedge-shaped frequency 

response. Figure 3 shows the wedge-shaped frequency 

partition for 3 level of decomposition. An increase in 

the number of levels leads to an increase in the number 

of wedge-shaped bands and a corresponding increase 

in the angular resolution of the directional 

decomposition. 

 

 
 

Figure 3. Wedge-shaped frequency response for 8-band 

decomposition. 
 

Following are the steps to obtain eight directional 

subbands from each bandpass image of the LP. 
 

1. Input is modulated by   in the frequency 

variable 1 . 

2. Modulated output is subjected to two band 

decomposition filter bank system H0, H1 as shown 

in Figure 4, whose frequency responses (Diamond 

shaped) are as shown in Figure 5. 

 

   

Figure 4. Analysis and synthesis bank for 2-band decomposition. 
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   a) Frequency response of H0.     b) Frequency response of H1. 

Figure 5. Frequency response of analysis filters. 

3. The two sub band outputs are decimated by 

Quincunx sampling matrix as given by Equation 4 
 

1 -1

-1 1
D

 
  
 

                             (4) 

 

4. Frequency response of the two subband outputs are 

as shown in Figure 6. Steps 1 to 3 are repeated on 

these two subands to form four sub bands. 

 

                      
 

Figure 6. Wedge-shaped frequency response of two sub-band 

outputs. 

 

5. These four sub bands are subjected to resampling 

matrices as given by Equation 5 respectively, which 

only rearranges the samples and steps 2 to 3 are 

repeated on each subband to yield eight directional 

subbands. 
 

1 2 3 4

1 -1 1 1 1 0 1 0
, , , .

0 1 0 1 -1 1 1 1
R R R R

       
          
       

  (5) 

 

Directional decomposition is thus done by the DFB, it 

is also designed to have perfect reconstruction property 

[14, 15] or alias free reconstruction. If sum of the 

decomposed subbands equals the input image then the 

filter bank is said to possess Perfect Reconstruction. 

For PR, 
 

H0(Z)=H1(-Z)                                   (6) 
         

and, the polyphase representation matrix Hp(Z) of 

analysis filter and polyphase representation matrix 

Gp(Z) of synthesis filter should satisfy the following 

condition. 
 

HP(Z)GP(Z)=I                                  (7) 
              

If PR is satisfied by the filter pair H0 and H1 for two 

band decomposition then the filter bank is PR for any 

number of cascades of this filter pair. 

4. DPCM Coding 

Here, we discuss the basic concept behind differential 

pulse code modulation [13], which has been used for 

coding the multi resolution and multidirectional 

subbands obtained. This scheme consists of a DPCM 

system followed by entropy coder. DPCM possesses 

good compression capability, simple implementation 

and highly suitable for lossless compression schemes 

[17]. DPCM system consists of two main blocks, 

prediction and quantization. In prediction block, 

present and previous inputs are used to predict the 

future data. The difference between predicted and 

present input called predictor residue is quantized in 

quantization block. Output sequence of the quantizer, 

has values around zero and small variance. This is the 

one which has to be entropy coded. If actual input 

values are used to predict the future values, it might 

lead to accumulated errors as process continues. So, in 

DPCM system, the reconstructed data sample is used 

to predict the future value. Thus DPCM system 

transforms the original data sequence into a new 

sequence with a much smaller variance and dynamic 

range, which can be coded with fewer bit rates than 

original data sequence. 

 

 

  a) Encoder.                                       b) Decoder. 

Figure 7. DPCM system. 
 

Shown in Figure 7 is the DPCM system. Here xn is 

the input at n
th
 time step, Pn is the predicted value of 

the data sample xn at the same time instant. The 

difference between the prediction value Pn and the 

input xn is the predictor residue dn. The dn is then 

subjected to quantization. The quantizer output is nd , 

which is the n
th
 value of the new sequence to be 

entropy coded. Simultaneously, nd and the prediction 

Pn are added up to yield nx , which is the reconstructed 

value of xn. nx  is the value saved for the prediction of 

the next data sample. The reconstruction process is as 

shown in Figure 7-b, the reconstructed value nx  is 

calculated from nd and Pn. For our experiment linear 

predictor, Jayant quantizer and arithmetic coding 

(entropy coding) were used. 

5. Experimental Results 

Various medical images such as MRI, CT, X-ray 

images were subjected to proposed scheme. The LP 

was constructed through 9/7 biorthogonal wavelet. 

Haar filter bank, 5/3 filter bank, 9/7 filter bank, PKVA 

[11] filter bank were used for directional 

decomposition. Performance analysis of various filter 

banks in compressing medical images was done 

through the metrics bit rate (bits per pixel), Peak 

Signal to Noise Ratio (PSNR) and Structural 

SIMilarity index (SSIM) [16] as given by: 
 

nd

nP
nP nP


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



nx
Quantizer

Pr edictor

nd

nx
Pr edictor
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PSNR in dB=10log10

2255

MSE

 
 
 

                      (8) 

 

2

i j

(X(i, j) - Y(i, j) )

MSE =
M* N


                      (9) 

Where Mean Squared Error (MSE), X is the original 

image, Y is the restored image and M x N is the 

dimension of the image. 

SSIM(X, Y) =

 

x y 1 xy 2

2 2 2 2

1 x y 2

(2μ μ + C ) (2σ +C )

(μ +μ +C ) (σ +σ +C )x y

                  (10) 

 

 

MN

x i
i=1

1
μ = x

MN


                       
(11) 

 

1

2MN
2

x i x
i=1

1
σ = ( x -μ )

MN


 
 
         

             (12) 

 

MN

xy i x i y
i=1

1
σ = ( x -μ ) (y -μ )

MN
                  (13) 

 

Here, µ is the mean, σ is the standard deviation, 

C1=(K1L)
2
 and C2= (K2L)

2
. L is the dynamic range of 

pixel values and K1, K2<<1 (we have used in our 

experiment K1=0.01 and K2= 0.03). 

Figure 8 shows a few test images used in the 

experiment. Tables 1, 2 and 3 gives PSNR values at 

different bit rates for images shown in Figures 8-a, c 

and e respectively using different filter banks. When 

the quantization step size is varied PSNR values 

changes. At low quantization step size, bit rate 

increases along with PSNR values. Above 40 dB of 

PSNR there is no perceptible difference between 

reconstructed and original image and becomes near 

lossless compression. It can be noted from the tables 

that at higher ranges of PSNR, 5/3 filter bank 

consistently performs better than the other filter banks. 

Evaluating PSNR values for a large dataset of medical 

images, It was found that 5/3 filter bank performed a 

minimum of 6% to maximum of 14% better than other 

filter banks at near lossless compression. 

 

 

 

 
 

a) CT image of brain.                b) CT scan of brain. 

 

 

    
   

     c) Chest X-ray.                         d) Hand X-ray. 

 

 

 

     

     e) MRI of human                      f) MRI scan of 

Figure 8. Test images used for experiment. 

 

Table 1. PSNR values at different bit rates of test image 8-a. 

Bitrate (bpp) 
Filter Banks 

HAAR PKVA 9/7 5/3 

0.4 24.08 24.62 25.73 27.31 

0.6 25.41 26.08 27.87 29.23 

0.8 28.42 29.92 31.44 34.25 

1.0 31.17 32.63 33.19 35.88 

1.2 32.13 33.43 35.16 37.97 

1.5 35.84 36.98 37.57 40.24 

2.0 38.75 39.24 41.46 43.19 

Table 2. PSNR values at different bit rates of test image 8-c. 

Bitrate (bpp) 
Filter Banks 

HAAR PKVA 9/7 5/3 

0.4 23.72 24.31 25.65 26.72 

0.6 25.46 26.59 26.62 29.91 

0.8 27.70 28.30 30.15 32.85 

1.0 30.26 30.47 32.23 35.83 

1.2 31.05 32.75 33.81 36.70 

1.5 34.08 34.63 35.89 39.03 

2.0 37.83 38.15 39.68 42.16 

Table 3. PSNR values at different bit rates of test image 8-e. 

Bitrate (bpp) 
Filter Banks 

HAAR PKVA 9/7 5/3 

0.4 24.37 26.15 27.20 27.96 

0.6 27.54 28.09 28.83 29.19 

0.8 28.84 30.13 31.68 33.08 

1.0 32.45 33.46 33.87 35.33 

1.2 33.38 34.91 35.93 37.10 

1.5 36.44 37.57 38.74 41.16 

2.0 39.27 40.38 41.51 43.64 

 

MSE measures are adequate for giving an idea of 

global compression quality, since they are not 

differentiated enough and measure only one quantity 

over the whole (large) dataset. PSNR can be used as an 

indicator for quality, but it is not enough for drawing 

detailed conclusions on the proposed compression 

method. So, we have also assessed the scheme through 

another metrics SSIM Index, whose values lie between 

0 and 1. A window of size 8 x 8 was run on the image 

and SSIM was calculated for every window location. 

Obtained SSIMs were averaged to give a single index 

representing the quality of the image. Tables 4 and 5 

gives the SSIM index values for image 8-a and c at 

different bit rates respectively. This again reiterates the 

same results. 

Table 4. Structural SIMilarity index values at different bit rates for 

test image 8-a. 

Bitrate (bpp) 
Filter Banks 

HAAR PKVA 9/7 5/3 

0.4 0.2516 0.2635 0.2918 0.4626 

0.6 0.5164 0.5429 0.5942 0.7652 

0.8 0.5241 0.5713 0..6101 0.7986 

1.0 0.6032 0.6210 0.6899 0.8421 

1.2 0.6248 0.6581 0.7358 0.8934 

1.5 0.6567 0.6930 0.7435 0.9786 

2.0 0.6957 0.7125 0.7815 0.9960 

 
 

 

 

 



   150                                                            The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017 

Table 5. Structural SIMilarity index values at different bit rates for 

test image 8-c. 

Bitrate (bpp) 
Filter Banks 

HAAR PKVA 9/7 5/3 

0.4 0.2862 0.3005 0.3096 0.4851 

0.6 0.5217 0.5357 0.5442 0.7746 

0.8 0.5833 0.5951 0..6682 0.8981 

1.0 0.6335 0.6415 0.6933 0.8712 

1.2 0.6512 0.6795 0.7491 0.9654 

1.5 0.6897 0.6973 0.7644 0.9868 

2.0 0.7014 0.7546 0.7928 0.9987 

6. Conclusions 

This paper proposes a compression scheme for medical 

images through which efficiency of different filter 

banks in compression activity has been analysed. 

Medical images which have highly correlated data are 

décor related, preserving the edge information by multi 

resolution and multidirectional representation. The 

DFB served as a valuable tool for carrying out 

directional decomposition of images. Perfect 

reconstruction provides robustness to the scheme, as 

no information is lost during the decomposition 

process. The proposed scheme also takes the advantage 

of simplicity of the DPCM encoder. The numerical 

results shows that 5/3 filter bank had better 

performance on medical images than other filter banks 

used in the experiment. 
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