Global Software Development Geographical Distance Communication Challenges

Areej Al_Zaidi and Rizwan Qureshi
Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia

Abstract: Global Software Development (GSD) is a major direction in software engineering. There is interest in applying scrum practices in distributed projects. Project stakeholder distribution in GSD is represented by geographical distance, which generates challenges for communication. This paper is written to evaluate the effect of scrum practices in mitigating geographical distance-based communication challenges. We also suggest some mitigation strategies those are supported by our survey respondents. This study finds that scrum provides advantage in mitigating geographical distance-based GSD communication challenges. The research is a reference guide for other researchers to validate and extend current knowledge about scrum practices i.e., how it can be used to mitigate geographical distance-based communication challenges in GSD.

Keywords: GSD, communication challenges, scrum, geographical distance-based, mitigation strategies, survey.

Received December 29, 2013; accepted June 2, 2015

1. Introduction

In the recent years, software development environment is shifting from centralized to a distributed environment in order to offer benefits over the conventional techniques. Global Software Development (GSD) is software development that is separated through two or more sites that are dispersed by national or continental lines. GSD can offer benefits such as improving time to market, improve quality, round-the-clock development, access to cheaper skilled resources, reach to local knowledge and growing productivity.

However, along with benefits, GSD suffers from challenges relating to communication of the software development process. GSD typically involves stakeholders located in distributed geographic sites such as geographical distances can result in communication challenges that need to be eliminated.

Design of Agile methods typically allows close interaction between development team members as a collocated development teams. In fact, face-to-face conversation is the most efficient way of exchanging information in a development team which considered a problem in GSD. Scrum methodology is the most popular approach agile software development which is an incremental methodology that characterized by reliability, responsiveness and flexibility. Among the various agile methods, scrum focuses on project management, are the most well-known due to its flexible approach, and it's based on the collocated, frequent and close collaboration.

Increased number of sites and number of project members, also lack of tool support, and all these factors of GSD may impact on communication and collaboration of project and restricts the use of scrum practices. Therefore, GSD needs to identify mechanisms to mitigate these challenges. Strategy is any activity performed to mitigate the effect of problems associated with challenges. In this paper sets some of the mitigation strategies for challenges.

Scrum practices are increasingly being adapted in GSD to get the advantages of both approaches. The study focused on examining scrum practices provide a contribution to mitigate GSD geographical distance-based communication challenges. Geographic distance’s communication challenges in GSD and scrum practices formed the axes of a research framework via suggesting some mitigation mechanisms.

The paper is organized as follows. Briefly overviews related fields in section 2 and section 3 describes problem statement. Section 4 depicts the details of proposed solution. Section 5 presents validate of the proposed solution. Concludes and addresses future work in section 6.

2. Related Works

According to Ramanujam and Lee [13], “Scrum software development had attracted a great deal of attention in recent years due to its flexibility, responsiveness and reliability.” And they proposed a collaborative agile scrum software development framework for complex multi-vendor competing environments. In the building of large systems it is imperative that organizations engage multiple vendors so that they can bring each of their specializations into the project.

Research has shown that the use of SCRUM within a company can lead to significant benefits, and that its
use is not limited to local projects. Also functioning team of product managers should cooperatively with the development team to handle large amounts of complex requirements in an agile environment [20].

In [1], it is identified that Requirements Understanding (RU) is a severe challenge for software companies of Kingdom of Saudi Arabia that are involved in GSD. The main challenges faced in GSD are communication problem, culture diversity, coordination, geographical distance, time zone difference but the culture and loss of communication are the most challenging issues faced during RU, document management and competence management can be used to overcome RU challenges in a global context.

One of the main challenges of GSD practices is to ensure effective communication among the team members [17]. Shah et al. [17] identified the solution by using ontology’s as communication facilitators, modularization of work, study of the cognitive nature of people and the characteristics of their environment and training on cultural norms. Also finds agile development techniques are best suited for GSD environment.

Sriram and Mathew [18] describes the following in support of the use agile methodologies in GSD: “Although, the principles of agile methodology like scrum and the principles of GSD are apparently contradictory in many areas.” Some studies reported that scrum is the widely used methodology in GSD. Some studies have focused on the potential use of a scrum in GSD; however concrete evidence is not provided on the implementation of varied type of scrum in distributed project scenario for large projects.

Hossain et al. [7] categorized the key risks of GSD project contextual factors, and current strategies to deal with these risks while using scrum practices with reference to the seven of risks. This categorize have some limitations: the conceptual framework is based on twenty papers identified through a SLR that addressed the use of scrum in GSD projects. One of the main limitations of this framework is that it has a small and narrow project specific focus. It is very difficult to identify all the risks and the corresponding strategies to reduce these risks when using scrum in a GSD product consisting of several projects.

In 2011, running an GSD project, students distributed across three countries developed mobile solutions targeting the theme of sustainability. They followed the scrum process and used the IBM Rational Team Concert tool. The teams faced many difficulties such as: readings are not enough to understand scrum before the project, difficulties to dissociate the roles of developer and product owner, scrum master, no preparation of the retrospective, sprint planning done late, and the burndown chart is not used as an instrument to monitor the progress of the team [16].

Scharff [15] described a GSD model where extended teams of students distributed across two to three countries and developers used scrum to develop mobile applications for different mobile platforms. It was a first attempt to introduce auditors to provide additional support in fostering a process appreciation and adherence to scrum and their work was better supported by end-to-end tooling infrastructures such as RTC while developers were satisfied because they found their experience in the project rewarding and challenging.

Su [19] describes some management lessons learned from a GSD project undertaken in an educational setting with the students and this It was the first time that the project adopted Agile Methodologies and scrum for the development of an educational mobile application. It is concluded with some important management principles such as: students should be motivated, concentrated on the tasks that matters most, work at a constant pace and good understanding of strength and weakness of each team member in order to cover the shortcomings of the weak members.

According to Gomes and Marczak [6], “The challenges imposed by geographical, temporal, and cultural distance are numerous,” the software engineering community has been studying these challenges but few studies are discussing the solutions of GSD projects [6].

In [12], a systematic review on GSD is performed using a survey to gather information about the key challenges and mitigation strategies in GSD. The main categories are communication, coordination, and control and each category has subbed categories of geographical distance, temporal distance, and socio-cultural distance. From the systematic review, they collected 48 challenges and 42 mitigation strategies also they identified by survey respondents with four additional strategies that were found from the survey. Therefore, it was concluded that all the challenges and strategies that were collected during the systematic literature review were prevalent in certain industrial settings.

In [11], it is found that a transition from RUP to scrum brings a positive effect in requirement’s engineering, communication, cost management and cross-functionality of the distributed team. In this way, agile practices can have a positive impact on GSD projects and can help to mitigate many of the well-known challenges of GSD.

Project stakeholder distribution in GSD is characterized by temporal, geographical and socio-cultural distance, which creates challenges for communication, coordination and control. Practitioners constantly seek strategies, practices and tools to counter the challenges of GSD. Overall, the literature appears to suggest that scrum practices have no distinctive advantage over other development
methods in mitigating temporal distance-based challenges [8]. The proposal has some limitations. First, the framework is a theoretical contribution that remains to be empirically validated. Second, it may be possible, in some instances, that the researchers misinterpreted an author’s intent. Third, the challenges and mechanisms contained in the framework are not exhaustive so may not be complete. Finally, the framework implicitly assumes a generic GSD context so it may obscure project-specific variations in mechanisms.

In [2], it is examined where scrum practices are used in four GSD projects. There is no distinctive advantage provided in mitigating coordination challenges. Four temporal, geographical, socio-cultural and temporal distance-based coordination challenges were identified from the literature along with seven scrum practices. Consequently, based on the cases studied, it was found that scrum offers a distinctive advantage in mitigating geographical and socio-cultural but not temporal distance-based GSD coordination challenges.

The limitations of this result are: First, only four of the twelve GSD challenges identified from the literature were examined. Second, the study focused on the scrum practices, rather than the tools and mechanisms that mediate the challenge mitigation. Third, the study did not directly compare scrum practices with traditional development methods. Khan et al. [9] proposed a framework to address the communication risks that are one of the obstacles in GSD projects. According to Khan et al. [9], communication risks are difficult to address during the Requirement Change Management (RCM) process. A framework is proposed to categorize risks into geographical, socio-cultural and temporal distances and it is also used to mitigate the communication risks [9].

Five communication wastes are identified and a solution is proposed to mitigate them in globally distributed agile development [10]. These wastes are lack of involvement, lack of shared understanding, outdated information, restricted access to information and scattered information. A case study is conducted to validate the proposed solution [10].

Rizwan and Isaac [14] proposed a web system to mitigate communication and coordination challenges in GSD projects using scrum methodology. The proposed system offers seamless communication, collaboration and knowledge sharing among the distributed teams in GSD [14]. Geographical systems and its associated challenges related to site selection are illustrated [3, 4, 5].

Table 1 shows a brief description of the literature reviewed regarding this paper including project title and the problem found in them.

<table>
<thead>
<tr>
<th>Paper Title with Reference Number</th>
<th>Problems Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrum Practice Mitigation of GSD Coordination Challenges: A Distinctive Advantage[2]</td>
<td>Use scrum practices in four distributed GSD projects to leverage the benefits of Agile methods in mitigating coordination challenges.</td>
</tr>
<tr>
<td>Scrum Practices in GSD: A Research Framework[8]</td>
<td>Limitations in that paper are theoretical framework, may be possible the researchers misinterpreted the challenges also mechanisms contained in the framework are not exhaustive.</td>
</tr>
<tr>
<td>Risk Identification and Risk Mitigation Instruments for GSD: Systematic Review and Survey Results [12]</td>
<td>Limitations in that paper:</td>
</tr>
<tr>
<td>Goods Difficulties to Adhere to Scrum in GSD Projects: Preliminary results [16]</td>
<td>Running GSD project, difficulties encountered by the students distributed across three countries developed mobile solutions targeting the theme of sustainability. They followed the scrum process and used the IBM Rational Team Concert tool.</td>
</tr>
<tr>
<td>Guiding GSD Projects using Scrum and Agile with Quality Assurance [15]</td>
<td>Described GSD model where extended teams of students distributed across two to three countries and developers used scrum and Agile to develop mobile applications for different mobile platforms.</td>
</tr>
<tr>
<td>Communication Issues in GSD [17]</td>
<td>On the main challenges of GSD communication among the team members:</td>
</tr>
</tbody>
</table>

3. Problem Statement

Examining whether scrum practices, used in GSD projects provided any advantage in mitigating geographical distance communication challenges.

4. The Proposed Solution

Agile methods allow face-to-face communication and it is very efficient to share information among collocated team members but it is a big problem in GSD projects. Geographical distance is a measure of
the effort required for travelling between sites and it is very necessary for the relationships (team spirit) between the distributed teams.

Due to dispersion of sites and development teams located in different countries, limited face-to-face meetings can reduce possibility of informal contact which reduce team awareness and causes negatively lack of team cohesiveness, interaction and impact general management. We need suitable mechanisms to mitigate geographical distance-based communication challenges to get the benefits of scrum in GSD.

4.1. Tools Used

4.1.1. Multiple Communication Modes

Scrum team during their meetings can be selected the appropriate communication tool depend on the communication bandwidth:

- Synchronous communication tools allow people to use the “same time, different place” mode, so, it enables real-time communication. Drawbacks of synchronous tools are cost and high communication bandwidth and require same-time participation. The most common synchronous tools are: Audio conferencing, web conferencing, video conferencing, chat, instant messaging, telephone, net meeting, and shared mailing list.

- Asynchronous communication tools allow people to use the “different time-different place” communication model to keep on communicating over a period of time. The most common asynchronous tools are: discussion boards, wiki, web logs (blogs), messaging (e-mail), streaming audio, streaming video, desktop and application sharing.

4.1.2. Version One’s Project Management Tool

Version one is project management software designed from the bottom up to support agile development methodologies such as scrum. It is used by teams to easily plan and manage scrum projects. Version One tool allows to:

1. Manage backlog items, tasks, and bugs.
2. Plan sprints and track them.
3. Streamline sprint reviews.
4. Generates burn down charts.
5. Conduct retrospectives.
6. Provide electronic taskboards and storyboards.
7. Prioritize product backlog and monitor scrum team impediments.

4.2. The Proposed Framework

In each site, forming autonomous local scrum team that performs their own scrum with own local scrummaster and to each team assign independent architectural subsystems to reduce communication and dependency between sites. For each sub-team, scrum meeting will be held daily with own local scrum master to discuss about what they did, and what they are planned to do also discuss about obstacles in way or slowing team down. Make asynchronous retrospective meetings by publishing the results of minutes of a local scrum meeting on wikis or blogs and other teams can post their comments there. As shown in Figure 1. The proposed framework is shown in Figure 2.

Figure 1. Autonomous local scrum team structure.

Figure 2. The proposed framework.
The practices scrum of scrums occurs once in a week between key members or representative (scrum master from each sub-team) to coordinate between them and discuss about product backlog and any new requirements from the client also asked about work for each team since last met, what do before meet again, anything slowing team down and asked if any team want to put something in another team’s. During the meetings, to provide a rich communication environment also to prevent unreliable transmission, meetings, to provide a rich communication environment also to prevent unreliable transmission, using practice like multiple communication modes such as web camera, video conference, live meeting, IRC, teleconference, audio/video Skype.

The scrum team must have web-based scrum project management software to increase transparency and visibility of project and to support the scrum practice, therefore, scrum teams are using ‘Version One’ to easily access to the electronic planning and manage backlog and display burn down charts. All of the distributed scrum team members need to be present and share in every scrum meeting practice. During scrum of scrums, scrum master teams will talk, and control the scrum project management software ‘Version One’ while rest members in other different sites listening to the audio and look at the same screen by sharing and viewing desktop of the presenter remotely and the same principle will apply when it’s time for a remote member to present.

For increased collaboration, along with formal meetings are also allowed additional distributed meetings for clarifying issues for example between architects of each sub-team.

5. Validation of The Proposed Solution

Validation of the proposed solution is one of the most important points that need to any research. In this paper the validation of the proposed solution through used an electronic survey. The purpose of using this method it’s not too much time consuming and gives the respondent much of time to think and answer questions be credible.

Validation of the proposed solution will be through collecting a sample of people who answer an electronic survey that composed of 19 questions. An electronic survey will be target distributed to specialists in software engineering through social sites such as: Twitter, Facebook, Email. Likert scale will be used in this research to answer questionnaire. Likert scale is given in the following Table 2.

Questions divided into 3 goals were arranged according to their relevancy to defined goals this goal:

- Geographical distance communication challenges can be faced in GSD projects.
- The benefits of using some scrum practices on geographical communication GSD challenges.
- The effectiveness of the proposed solution to mitigate of geographical distance communication challenges.

A statistical analysis is made on the basis of gathering data through the distribution of questionnaires. The analytic form is represented through frequency tables and charts showing the exact degree of analysis. Describe the validation results on the basis of results below.

5.1. Cumulative Statistical Analysis of Goal 1

Geographical distance communication challenges can be faced in GSD projects.

Distribute project stakeholder in GSD through geographical distance which creates challenges for communication because developers are being located indifferent countries that cause difficult to hold face-to-face meetings. The result of the analysis of the goal 1 is shown in Table 3.

<table>
<thead>
<tr>
<th>Q. No</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>17.5</td>
<td>52.5</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>25</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>22.2</td>
<td>62.5</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>7.5</td>
<td>65</td>
<td>27.5</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>12.5</td>
<td>65</td>
<td>22.5</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
<td>84.7</td>
<td>300</td>
<td>115</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.00</td>
<td>0.00</td>
<td>16.95</td>
<td>60.04</td>
<td>23.01</td>
</tr>
</tbody>
</table>

As it is cleared from the cumulative descriptive analysis of goal 1 that 60.04% of the sample agreed that geographical distance communication challenges can face in GSD projects and 33.01% strongly agreed to it while 16.95% remained neutral as shown below in Figure 3.

Figure 3. Graphical representation of goal 1.

5.2. Cumulative Statistical Analysis of Goal 2

The benefits of using some scrum practices on geographical communication GSD challenges.

This paper uses some of scrum practices whether inherent or non-inherent to examine whether scrum
practices improve communication, develop trust, offer visualization, increase quality and teamness in GSD by using sprint planning, scrum of scrums, retrospective meetings, daily scrum meetings, local scrum, synchronous and asynchronous communication. The result of the analysis of the goal 2 is shown in Table 4.

Table 4. Frequency table of cumulative goal 2.

<table>
<thead>
<tr>
<th>Q. No.</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>15</td>
<td>40</td>
<td>10</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>2.5</td>
<td>12.5</td>
<td>67.5</td>
<td>17.5</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>7.5</td>
<td>10</td>
<td>65</td>
<td>17.5</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>5</td>
<td>10</td>
<td>70</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>2.5</td>
<td>15</td>
<td>62.5</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>7.5</td>
<td>15</td>
<td>57.5</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>0.00</td>
<td>2.5</td>
<td>12.5</td>
<td>75</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>0.00</td>
<td>0.00</td>
<td>12.5</td>
<td>67.5</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>4.5</td>
<td>102.5</td>
<td>490</td>
<td>130</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.88</td>
<td>7.81</td>
<td>12.81</td>
<td>61.25</td>
<td>16.25</td>
</tr>
</tbody>
</table>

As it is cleared from the cumulative descriptive analysis of goal 2 that 61.25% of the sample agreed that scrum practices could be useful in geographical communication GSD challenges. And 16.25% strongly agreed to it 7.81% disagreed to it and 1.88% strongly disagreed to it while 12.81% remained neutral as shown in Figure 4.

Figure 4. Graphical representation of goal 2.

5.3. Cumulative Statistical Analysis of Goal 3

The effectiveness of the proposed solution to mitigate of geographical distance communication challenges.

This goal measures the effectiveness and efficiency of proposed solution, which consists of the integration of scrum practices inherent and non-inherent with each other and with the modification in some of them in order to mitigate of geographical distance communication challenges in GSD. The result of the analysis of the goal 3 is shown in Table 5.

Table 5. Frequency table of cumulative goal 3.

<table>
<thead>
<tr>
<th>Q. No.</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0.00</td>
<td>0.00</td>
<td>17.5</td>
<td>50</td>
<td>32.5</td>
</tr>
<tr>
<td>15</td>
<td>0.00</td>
<td>2.5</td>
<td>15</td>
<td>67.5</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>0.00</td>
<td>5</td>
<td>12.5</td>
<td>65</td>
<td>17.5</td>
</tr>
<tr>
<td>17</td>
<td>0.00</td>
<td>0.00</td>
<td>7.5</td>
<td>77.5</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>0.00</td>
<td>0.00</td>
<td>7.5</td>
<td>75</td>
<td>17.5</td>
</tr>
<tr>
<td>19</td>
<td>0.00</td>
<td>0.00</td>
<td>12.5</td>
<td>57.5</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>7.5</td>
<td>72.5</td>
<td>392.5</td>
<td>127.5</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.00</td>
<td>1.25</td>
<td>12.08</td>
<td>65.42</td>
<td>21.25</td>
</tr>
</tbody>
</table>

As it is cleared from the cumulative descriptive analysis of goal 3 that 65.42% of the sample agreed that effectiveness and efficiency of proposed solution to mitigate of geographical distance communication challenges in GSD. And 21.25% strongly agreed to it 1.25% disagreed to it while 12.08% remained neutral as shown in Figure 5.

Figure 5. Graphical representation of goal 3.

5.4. Cumulative Evaluation of 3 Goals

The evaluation of 3 goals shows that 0.63% are strongly disagreed, 3.02% are disagree, 13.95% are neither agreed nor disagree, 62.24% are agreed and 20.17% are strongly agreed as shown in Table 6 and Figure 6.

Table 6. Frequency table of cumulative 3 goals.

<table>
<thead>
<tr>
<th>Goal No.</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>16.95</td>
<td>60.04</td>
<td>23.01</td>
</tr>
<tr>
<td>2</td>
<td>1.88</td>
<td>7.81</td>
<td>12.81</td>
<td>61.25</td>
<td>16.25</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>1.25</td>
<td>12.08</td>
<td>65.42</td>
<td>21.25</td>
</tr>
<tr>
<td>Total</td>
<td>1.88</td>
<td>9.06</td>
<td>41.84</td>
<td>392.5</td>
<td>127.5</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.63</td>
<td>3.02</td>
<td>13.95</td>
<td>65.42</td>
<td>20.17</td>
</tr>
</tbody>
</table>

Figure 6. Graphical representation of cumulative 3 goals.

6. Conclusions and Future Work

This paper focused to show the advantages of scrum method in GSD projects. It also aimed to study that how much scrum practices helped to overcome GSD communication challenges. In fact; this study focused on tools and mechanisms of scrum to mitigate GSD challenges. In this paper, we study one of the factors that create restriction in communication due to geographical distances among teams and limited face-to-face meetings. Limited face-to-face meetings reduce informal contact and this can lead to reduction of teamness, loss awareness of task and decreased trust. This challenge can be met by using proposed solution, which making the communication process are simpler and effective. We can conclude that, scrum practices have a positive effect on GSD projects and
the properties inherent in scrum method can benefit distributed software development projects by helping to mitigate geographical distance-based communication challenges of GSD. The framework represents a theoretical contribution that needs to be tested and empirically validated. Future research will conduct case studies in an industrial context to validate, modify and extend the framework as a reference.

References


Areej Al_Zaidi is master student in Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia.

Rizwan Qureshi received his BSc Engineering degree from Punjab University, Pakistan in 1997, MSc IT degree from Staffordshire University, UK in 2002 and PhD Computer Science degree from National College of Business Administration and Economics (NCBA&E), Pakistan in 2009. This author is the best researcher awardees from Faculty of Computing and Information Technology, King Abdulaziz University Saudi Arabia in 2013 and Department of Computer Science, COMSATS Institute of Information Technology Lahore Pakistan in 2008.