
230 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

QoS Adaptation for Publish/Subscribe Middleware

in Real-Time Dynamic Environments

Basem Almadani
1
, Shadi Abudalfa

1
, and Shuang-Hua Yang

2

1
Computer Engineering Department, King Fahd University of Petroleum and Minerals, KSA

2
Computer Science Department, Loughborough University, UK

Abstract: Automatic Quality of Service (QoS) adaptation is promising approaches in developing real-time systems built on

publish/subscribe middleware, and its importance increased when developing huge real-time distributed systems in dynamic

environments. In this paper we proposed a new approach by building a closed loop QoS adaptive control for adapting some

QoS polices automatically in publish/subscribe middleware. We use some techniques of artificial intelligence to automate QoS

adaptation and improve the performance of the real-time systems in dynamic environments. The proposed approach improves

the performance of the real-time system by saving its computing capabilities and making it more stable. Experimental results

shown in this paper illustrate the effectiveness of the proposed approach.

Keywords: Publish/Subscribe middleware, QoS, adaptation, DDS, real-time, dynamic environments, clustering, online k-

means.

Received April 4, 2014; accepted may 24, 2015

1. Introduction

Complex heterogeneous distributed systems that cover

large geographic areas and consist of a large number of

nodes are common in today’s networked world [8].

The widespread use of the Internet and advanced

networking equipment facilitates the building of

increasingly large systems with relatively low costs.

Large-scale distributed systems are being built between

organizations, individuals, and also between

organizations and individuals. Publish/subscribe has

been grown as a scalable communication mode for

large distributed systems where traditional modes have

weaknesses.

Publish/subscribe is not a magic solution to be used

in all distributed systems. Publish/subscribe systems

have been supported for specific systems where event

services transmit through a large geographic area,

because the publish/subscribe communication model

performs extremely well under high latency conditions

compared to other alternatives.

Publish/subscribe paradigm is an interest-oriented

communication model. Event notifications are

published by the producer (publishers) and consumed

by the receiver (subscribers). In fact publish/subscribe

system is a large group of nodes, these nodes are

divided into clients who represent the beneficiaries

from the network, and mediators which are responsible

about routing notifications from publishers to

subscribers.

A publish/subscribe system decouples event

producers from event consumers by driving an abstract

event service through the communication nodes. The

event service delivered published events from

publishers to subscribers who have registered their

interest in the given event. The decoupling of

publishers from subscribers and using asynchronous

messaging allows publish/subscribe systems to

improve their scalability for an increasing number of

nodes and geographic distances between them.

The Object Management Group (OMG) defines

the Data Distribution Service (DDS) for real-time

systems [12] as standard specifications for publish/

subscribe architecture and runtime capabilities. The

DDS standard enables applications to exchange data in

event-based distributed systems. DDS offers high-

performance communication capabilities and is

currently used for several distributed critical mission

applications. DDS is decentralized and scalable

middleware for asynchronous distribution of

publish/subscribe data. DDS is different from

traditional publish/subscribe middleware. It can

evidently control the efficient use of network

resources, which are critical for real-time applications.

The proposed approach of our work depends on

a publish/subscribe middleware based on the OMG’s

DDS standard.

The DDS middleware has a layer that depends on

a rich set of Quality of Service (QoS) which includes

Topics, Data Readers, and Data Writers policies.

Behaviours of these entities are configured by using

a set of 22 QoS policies. On the other hand, The DDS

middleware also has a layer for facilitating transparent

information management and object oriented language

constructs. Publishers control collection of data writers

and subscribers control collection of data readers.
QoS policy [3] has many parameters and each

parameter includes a range of values. Configuration of

QoS Adaptation for Publish/Subscribe Middleware in Real-Time... 231

QoS policy associated with individual publishers or
subscribers has many complications and lack of
attention in setting some parameters may affect overall
behaviour of system QoS. It is a boring task to
configure QoS policy manually when implementing
any system by using the DDS middleware. Many
compatible QoS policies should be checked to make
the system able to run. In this paper we propose a new
approach for adapting the QoS policies automatically.

In the dynamic environments systems that based on
publish/subscribe middleware; some values of specific
parameters might change while the system is running.
This variation will affect some QoS policies and may
cause the whole system to stop. This trouble is very
acute when using critical mission systems because
maintaining these systems costs additional expenses
and wastes time, and it may also raise level of risk to
human life.

To encourage the need for autonomic QoS
adaptation in publish/subscribe middleware, we
describe the challenge in this research associated with
Search And Rescue (SAR) operations in Pilgrims
Tracking and Monitoring System (PTMS) during the
Hajj season. There are many operations help to locate
and extract risky pilgrims in a large area with a huge
population density. This system uses Unmanned Aerial
Vehicles (UAVs), existing infrastructure cameras, and
Command and Control Center (CCC) as shown in
Figure 1. The CCC receives and processes data stream
from sensors and cameras, and transmits action to
emergency equipment that can be send to areas where
risky pilgrims are identified. In this scenario UAVs
deliver infrared scans along with GPS coordinates and
infrastructure cameras deliver video steam. These
infrared scans and video stream are sent to the CCC for
processing by intelligent applications to detect risky
pilgrims. Once risky pilgrims are detected the
application can illustrate a multi dimensional view
with accurate position to start the rescue operations.
This system requires a huge amount of resources for
storing and manipulating the data stream. And this
system depends on keeping the history of the tracing
process for pilgrims which need a plenty of storage to
achieve. Storing all of these data may conflict with the
resources which are available while the system is
running in the dynamic environments. And if the limit
of resources exceeded for any reason the system would
halt and some time may be exhausted for maintaining.

Figure 1. Pilgrims tracking and monitoring system.

The idea in our work is how to manipulate the

challenges of checking compatible QoS policy

configurations, by developing a new self-adaptive

system publish/subscribe middleware in real-time

dynamic environments. And our study will concentrate

on using history QoS and resource limit QoS, and

adapting the policy between them in the real-time

systems.

The rest of the paper is organized as follows: section

2 describes review of literature and related studies.

Section 3 illustrates our contribution by presenting our

new mechanism for QoS adapting in publish/subscribe

system. Section 4 previews some of experimental

works to demonstrate the effectiveness of the proposed

system. Section 5 illustrates results and analysis the

experiment work. Finally, section 6 concludes the

paper and presents suggestions for future work.

2. Literature Review

Hoffert et al. [5] developed modeling language to help

developers for choosing valid sets of values when

configuring QoS policies in publish/subscribe

middleware. This language helps in ensuring that the

QoS policy configurations are compatible and do not

conflict with each other. Also it helps to transform QoS

policy configuration design into the correct

Publish/subscribe middleware specific implementation

in automated manner.

Article [6] describes architecture of QoS enabled

middleware and corresponding algorithms to support

specified QoS in dynamic environments. This article

has prototyped approach in the adaptive middleware

and network transports platform that supports

environment monitoring and provides timely

autonomic adaptation of the middleware. The article

explains how the architecture monitors environment

changes that affect QoS, and after that determines in a

timely manner which appropriate transport protocol

changes are needed in response to environment

changes. This approach integrates the use of multiple

supervised machine learning techniques to increase

accuracy, and autonomically adapts the network

protocols used to support the desired QoS.

Some composite metrics are defined in [6] to

estimate different QoS worries and. These metrics also

analyze distinct modification mechanisms that are used

for the QoS configurations of a DRE system in a

dynamic environment. This research evaluated

adaptation approaches for smart city ambient assisted

living applications. It evaluated policy-based

adaptation approaches, reinforcement learning, and

supervised machine learning.

Traditional machine learning tools, such as decision

trees and reinforcement learning, have been used to

support autonomic adaptation in embedded and

undistributed real-time systems [15]. These techniques

http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fwww.academia.edu%2F1838254%2FHajj_pilgrims_tracking_and_monitoring_system&ei=qN1uUvn4DIub0AWnroG4Dg&usg=AFQjCNF2zbWUCXbemGUzdHUjlTut6WwE4w

232 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

aren’t used widely for Distributed Real-time and

Embedded (DRE) systems.

Not all machine learning techniques are usable for

DRE systems. Some techniques like reinforcement

learning [2] seek the whole solution space to find an

adequate solution without care of the elapsed time.

Other techniques like decision trees have a time

complexity that depends on data values and not known

in advance. On the other hand, decision trees may use

different length of branches, which make adaptations

of the DRE systems unpredictable when finding the

required adaptations.

Machine learning algorithms are described as either

supervised or unsupervised. The difference is dragged

from how the learner classifies data. In supervised

algorithms [10], the classes are predetermined. These

classes can be imagined of as a finite set previously

determined. In other words, a certain segment of data

will be labeled with these classifications. Unsupervised

learners [4] are not provided with classifications. The

main idea of unsupervised learning is to develop

classification labels automatically.

The evaluation of Artificial Neural Networks

(ANNs), which is a supervised machine learning

technique, to treat time complexity worries of adaptive

DRE systems is presented in [6]. This article integrates

the ANN machine learning technique with the DDS

middleware to guarantee accurate, timely, and

predictable adaptation in dynamic environments. This

system takes into account increasing data sending rate

and number of data receivers while system is running.

The results of the article concluded that ANNs treat the

complexity of DRE systems by undertaking that

adaptations are suitable for the dynamic environments.

Mabrouk et al. [11] have developed an algorithm for

service selection by providing the appropriate ground

for QoS awareness in dynamic service environments.

This algorithm depended on k-means [1] algorithm,

which is an unsupervised machine learning technique,

in selecting the best set of services.

Machine learning techniques are applied in [6] to

facilitate QoS configuration and change transport

protocols dynamically to preserve specified QoS while

systems is running. The approach used decision trees

and ANN for classifying the protocol parameters to use

in dynamic environments for critical mission.

Two supervised machine learning techniques are

used in [6] to determine the appropriate techniques for

two situations, environment configurations known a

priori or unknown until runtime. This approach used

ANNs and Support Vector Machines (SVMs) to reduce

time complexity, latency, and development

complexity. The results showed that ANNs are

generally more accurate in adapting environments

whose properties are known before operating the

system, while SVMs are more accurate in adapting

environments whose properties are known after

running the system. The article concluded that both

techniques can be used together with publish/subscribe

middleware in DRE systems to control the

development complexity, accuracy, and timeliness in

dynamic environments.

Hoffert and Schmidt [7] describes how the authors

are evaluating multiple QoS concerns based on

variation in computing and network resources and

configuring the publish/subscribe middleware

automatically in cloud environments. The proposed

approach adjusts network transports platform in

alignment with the middleware to control problems of

QoS configuration in DRE systems for cloud

environments. The approach uses ANN tools to

determine dynamically the suitable transport protocol

for the publish/subscribe middleware after running the

DRE system. ANN tools are trained by using data

configurations to support the best QoS and predict the

response times which are needed in DRE systems. The

approach middleware used the Adaptive Network

Transports (ANT) framework to choose the best

transport protocol that concerns multiple QoS in

compatible with availability of computing resources.

There are many challenges should be taken into

account when using distributed systems worked in

dynamic environments and based on publish/subscript

middleware. SAR operations must adjust in a timely

manner while the environment behaviour changes

dynamically. In case of resources limits, if the amount

of requested data is increased, then operations must be

adjusted to preserve the service with minimum level.

Of course, modifying QoS manually will be too slow

and sensitive to error. The SAR system should control

multiple QoS polices which interact together such as

history and recourse limit. This demand will be more

needed when a lot of organizations request video

streams, infrared scans, and also the merge data of the

SAR operations. On the other hand, the SAR systems

should be designed with concentration on decreasing

complexity in specifying QoS. Application developers

need to support a various QoS polices to handle

dynamic environments.

3. Proposed Solution

The goal of our work is to design a dynamic

mechanism for adapting QoS behaviour in distributed

systems worked in dynamic environments and based

on real-time publish/subscript middleware for critical

mission.

In our work, we designed publish/subscribe system

that solves some of problems that might occur in

a real-time system during the running time while the

QoS behaviour is changed. The proposed system deals

with monitoring the QoS behaviour while the system is

running and checks inconsistency between specific

QoS polices and then adapting the QoS behaviour to

obtain the best performance for the whole system. The

QoS Adaptation for Publish/Subscribe Middleware in Real-Time... 233

main components of the proposed system are included

in Figure 2. The proposed system consists of data

writers for collecting a stream of data. The type of

gathered data depends on the purpose of the system. In

the PTMS system which is represented in the

introduction section, the data writers are used to gather

video streams and infrared scans. The second

component of the proposed system is a data reader

which used to read and manipulate the gathered data to

take a suitable decision later by the subscriber that is

connected to this data reader. We can say that data

reader and the corresponding subscriber resemble the

CCC in the PTMS system. The third component of the

proposed architecture is a system monitor. The system

monitor tracks the QoS behaviour and collects

a specific statistical data based on the system

performance. The last part of the proposed system is

adaptive controller which receives the statistical data

that is collected from the system monitor and classifies

it for selecting the best situation and then sends the

correct action to the data readers to change their

behaviour by modifying specific settings of QoS.

Figure 2. Proposed system architecture.

The proposed system based on the OMG’s DDS

standard [12]. For building the proposed system and

testing its performance, we use Real-Time Innovations

(RTI) Connext™ DDS solutions which provide real-

time information commute between applications and

systems [14]. RTI Connext™ DDS software supports a

messaging solution for optimizing communication

between intelligent machines. It is a powerful data-

centric approach for addressing the contemporary

challenges of big data in machine-to-machine

communication.

DDS supports a set of QoS police which can be

used to configure behaviour of large event-based

distributed systems. There are many constraints in

DDS should be taken into account when configuring

the distributed systems to be compatible with QoS

policies. If these constraints are not tuned then the data

will not flow from data writers to data readers. If there

are some QoS settings are incompatible, then the

system will not behave as needed. It is not easy to

check compatibility and inconsistent among all QoS

policies, and it takes a lot of time to achieve manually.

So, the need to develop a new approach for adapting

QoS policies automatically is increasing every day.

Our approach deals with monitoring some QoS

polices and modifies other specific QoS policy to

increase the performance of running real-time systems

in dynamic environments. Our system address three

QoS polices: history, resource_limits, and

time_based_filter. The history policy controls whether

the service should deliver only the most recent value or

do some jobs in between. Resource_limits policy

specifies the maximum number of resources that the

service can consume to meet the requested QoS.

Time_based_filter policy controls the data reader to

avoid receiving more than one value every minimum

separation period, regardless of how fast the data

changes occur.

The proposed system monitors the history and

resource_limits QoS polices and modifies the

time_based_filter QoS policy. Our system checks

periodically the behaviour of history and

resource_limits QoSs because the performance of the

real- time system will be affected if these QoSs are

overloaded. If the overload exceeds some limit the

adaptive controller will urge the data reader to increase

the value of time_based_filter QoS for saving the

capacity of the system.

The publish/subscribe model of the proposed

approach consists of two topics as shown in Figure 3.

The App topic is used for collecting data such as video

streams and infrared scans in PTMS system. The

Monitor topic is used to gather statistical data for

checking the QoS behaviour of the whole system. The

proposed system uses many data writer for the App

topic to enable the system to gather data from various

recourses such as cameras and UAVs in PTMS system.

There are also many data readers to enable many

authorities to use online data and working together for

applying the best service. In the other side of the

system which is used for monitoring, we use only one

data writer and one data reader to observe the system

behaviour and gather the required data. Using single

data writer and single data reader is enough to

accomplish the required tasks and helps in not

increasing traffic in the network.

Figure 3. Publish/subscribe model of proposed system.

http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fwww.academia.edu%2F1838254%2FHajj_pilgrims_tracking_and_monitoring_system&ei=qN1uUvn4DIub0AWnroG4Dg&usg=AFQjCNF2zbWUCXbemGUzdHUjlTut6WwE4w
http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fwww.academia.edu%2F1838254%2FHajj_pilgrims_tracking_and_monitoring_system&ei=qN1uUvn4DIub0AWnroG4Dg&usg=AFQjCNF2zbWUCXbemGUzdHUjlTut6WwE4w
http://www.rti.com/products/dds/
http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fwww.academia.edu%2F1838254%2FHajj_pilgrims_tracking_and_monitoring_system&ei=qN1uUvn4DIub0AWnroG4Dg&usg=AFQjCNF2zbWUCXbemGUzdHUjlTut6WwE4w
http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fwww.academia.edu%2F1838254%2FHajj_pilgrims_tracking_and_monitoring_system&ei=qN1uUvn4DIub0AWnroG4Dg&usg=AFQjCNF2zbWUCXbemGUzdHUjlTut6WwE4w

234 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

The monitor publisher observes the behaviour of

data writers of SAR publisher and collects specific

statistical data. The monitor subscriber has an adaptive

controller unit to cluster the statistical data which is

gathered by the monitor publisher. Depending on the

results of the clustering, the monitor subscriber sends

the suitable action to the SAR subscriber and change

QoS behaviour of its data readers if necessary. Figure 4

shows a flowchart that illustrates the working

mechanism of proposed approach.

Figure 4. Working mechanism of proposed system.

Hoffert et al. [6] used supervised machine learning

technique to classify the gathered data from the

monitor publisher. In our work we use unsupervised

machine learning technique instead of supervised

machine learning technique to rid of the training step

in the supervised machine learning technique. Using

the unsupervised machine learning technique is more

suitable in real-time environments, because it can be

applied immediately on the online data that may

change frequently. On the other side, we need to label

some data firstly for training phase in supervised

machine learning. So accuracy of the supervised

machine learning technique is sensitive to nature of the

trained data. Using supervised machine learning will

increase also the time consumed in changing the QoS

behaviour by trying to train the dynamic data many

times to preserve the system accuracy.

We use online k-means algorithm in the adapter

controller for clustering the statistical data which is

collected from the monitor publisher. Online k-means

provides a simple and efficient way to cluster a data set

into a fixed number of clusters; in addition to that it is

used for clustering non-stationary data which is

suitable to cluster a dynamic data that is gathered in

real-time systems [9].

We assume that transport among nodes is

unreliable, and it causes a loss of packets and our

approach will decrease this loss which is characterized

by Packet Loss Rate (PLR) by preserving the

resources. As illustrated in Figure 5, the Markov

probability model of our approach is a first order chain

with two states [13]: “Good”, with a state dependent

error rate equal to 1-K, and “Bad”, with a state

dependent error rate equal to

1-H. Typically, K is assumed equal to 1 so that the

“Good” state implies that no losses are applied, while

in our model we assume that 1-H is equal to PLR.

Figure 5. Markov probability model.

The proposed model is characterized by four

transition probabilities: The probability P to pass from

state “Good” to state “Bad”; and the probability 1-P to

remain in state “Good”; the probability Q to pass from

state “Bad” to state “Good"; the probability 1-Q to

remain in state “Bad”. It is possible to compute P and

Q as follows:

1 -

PLR.Q
P =

PLR

 (1)

-1

Q = ABL (2)

Average Burst Length (ABL) is the mean number of

consecutive lost packets. So if K=1, then no packets

are lost and the model in the “Good" state, while if

H=0, then all packets are lost and the model in the

“Bad" state. It is easy to illustrate that the probability

to lose a packet is equal to the mean PLR over time.

In addition to the above design of the proposed

system, we will analyze it theoretically as illustrated in

[16]. The probability that i events occurred during the

interval between disconnection and restoration is:

i
sub

pub recov

sub sub

pub recov recov

λ λ
P =

λ + λ λ + λpub

 (3)

The average number of events that subscribers miss is:

NL
sub

pubrecov

sub sub

pub recov recov

λλ
E(N) =

λ + λ λ

 (4)

Where NL is the maximum number of events that

the CCC can save in the PTMS system. λpub is the

publication rate of publishers.
sub

recov
 is the recovery rate

of subscription and links.
We improved the performance of the proposed

system by clustering the statistical data that is collected
by the monitor publisher into a number of levels. The
Adaptive controller clusters the statistical data by using
online k-means algorithm [9] to commensurate with

http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fwww.academia.edu%2F1838254%2FHajj_pilgrims_tracking_and_monitoring_system&ei=qN1uUvn4DIub0AWnroG4Dg&usg=AFQjCNF2zbWUCXbemGUzdHUjlTut6WwE4w

QoS Adaptation for Publish/Subscribe Middleware in Real-Time... 235

the nature of the real-time systems which deliver non-
stationary data in the dynamic environments. The
statistical data which is related to the values of history
and resourse_limits QoSs of the middleware is
clustered into a number of clusters whereas each
cluster describes a specific load level in the system.
The adaptive controller modifies the behaviour of real-
time system by changing the value of time_based_filter
QoS for all data readers of the SAR subscriber. The
value of time_based_filter QoS is changed by
depending on the value of current load level. Figure 6
illustrate the idea of clustering the statistical data into
three clusters which are corresponding to three load
levels. The x-axis (NSMDW) denotes to number of data
samples that are managed by data writers in a point of
time. This value reflects the usage of resourse_limits in
the data writers. The y-axis (NSKDW) denotes to
number of data samples that are kept by data writers in
a point of time. This value reflects the usage of history
in the data writers. The lowest level (Kval=1) denotes
that the system used a little amount of resources
(history and resourse_limits) and it is in the safe mood.
The highest level (Kval=3) denotes that the system used
a huge amount of resources and there is overload in the
real-time system. The traditional real-time systems
didn’t manipulate the highest level (overload level) and
causes reduction in the system performance. The
proposed approach manipulates this dilemma
dynamically by saving the system capabilities and
improves efficiency of its work.

The proposed approach needs to determine the
number of clusters Knum in advance before running the
system. We can increase the value of Knum to increase
the accuracy of the system performance. Increasing the
value of Knum will cause a smooth changing in the QoS
behaviour over the time of running the system, but in
the same time it will also increase the number of
switching operations to the value of time_based_filter
QoS which may increase time complexity of the
proposed system. So there is a tradeoff between the
accuracy and time complexity of using the proposed
system when selecting the value of Knum.

Figure 6. Example of selecting three load levels (Knum=3) by using

online k-means clustering.

The adaptive controller of our proposed system uses
a new algorithm to improve the performance of the
whole system. This algorithm runs online while the

system is running. There are three input parameters for
the proposed algorithm that are determined in
advanced before running the system: the first
parameter is PR which determines the required
performance ratio of the system. This parameter is
compared periodically with the consumed percentage
of resource limits and history in the data writers at the
publisher side. The second parameter is Knum which
determines number of load levels as illustrated in
Figure 6. The value of this parameter equals to the
number of clusters which is used by online k-means
algorithm that is called for clustering the statistical data
which is gathered by the monitor publisher. The last
parameter is MinSepMax which determines the
maximum value of minimum separation that has been
accepted to set in the time_based_filter QoS in the data
readers of SAR subscriber. The algorithm uses a
statistical data which are gathered periodically by data
writers of the monitor publisher. This data is gathered
as data points of two values: the first value is NSKDW
which determines the number of samples that are kept
in queue for all data writers of SAR publisher (y-axis
of Figure 6). The second value is NSMDW which
determines the number of samples that are buffered by
all data writers of SAR publisher (x-axis of Figure 6).
The algorithm will change the value of
minimum_separation in time_based_filter QoS for all
data readers of SAR subscriber when behaviour of the
real-time system is changed in a point of time. The
value of minimum_separation will be modified
depending on the value of point (NSMDW, NSKDW)
which is located in one of the clusters that generated by
using online k-means. We present the pseudocode of
the proposed algorithm as shown in Algorithm 1:

Algorithm 1: Adaptive_Controller.

Input: PR, Knum, MinSepMax

1. IF Overload(PR) == TRUE then

2. MinSepDataReader = SelectLoadLevel(NSMDW, NSKDW, Knum,

MinSepMax)

3. IF MinSepData Reader < DeadlineData Reader

4. Time_Based_FilterDataReader=MinSepData Reader

5. END IF

6. END

Function boolean Overload(PR)

1. CurrPerf=0

2. For i1 to NumDataWriters

3.
 () / 2

UsedSamples(i) NumSamplesKept(i)
CurrPerf = CurrPerf + +

maxNumSamples(i) maxHistoryDepth(i)

4. END FOR

5. TotalCurrPerf =CurrPerf/NUMDataWriters

6. IF TotalCurrPerf > PR

7. return TRUE

8. ELSE

9. return FALSE

10. END

Function float SelectLoadLevel (NSMDW, NSKDW, Knum,
MinSepMax)

236 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

1. Kcentroides= OnlineKMeans(NSMDW, NSKDW, Knum)

2. Kval =SelectCluster(NSMDW, NSKDW, Kcentroides)

3. MinSep =Kval×(MinSepMax/Knum)

4. return MinSep

The pseudocode is called periodically by adaptive

controller to check whether the system is overloaded or

not by using Overload function. If the system becomes

overloaded (exceeded PR ratio) in a specific time, then

the SelectLoadLevel function will be called to

calculate a new value of MinSepDataReader. The value

of minimum_separation in time_based_filter QoS will

be set after that by the new value of MinSepDataReader.

SelectLoadLevel function will call OnlineKMeans

function for clustering the accumulative collected data

and return the cluster centers. The number of the

cluster, which is contains the values of current NSMDW

(resourse_limits) and NSKDW (history), is calculated by

SelectCluster function. Finally, equation in line 3 of

SelectLoadLevel function divides the MinSepMax value

into Knum levels and calculates the new value of

MinSepDataReader.

4. Experimental Work

In this section, we demonstrated some experiments to

prove the performance of the proposed approach. The

experiments were carried out in COE distributed real-

time systems lab at KFUPM by using specified

hardware and software tools. The measurement tools

and hardware platform specifications are described in

Tables 1 and 2 respectively.

Table 1. Tools and programs.

Tool Version Purpose

RTI Analyzer 5.0.0 QoS monitoring

RTI Monitor 5.0.0 Measure CPU usage

MS Excel 2010 Plotting Graphs

Eclipse 2013 Compiling Java code

Java platform jdk1.6.0_21 Implementing Java code

Table 2: Platform specifications.

 Publishers Subscribers

CPU Intel(R) Core (TM) 2 1.66 GHZ Intel(R) Core (TM) 2 1.66 GHZ

Memory 1.00 GB 1.00 GB

OS Windows 7 Windows 7

Network LAN 100Mbps LAN 100Mbps

The experiments framework is shown in Figure 7.

The framework consists of many publishers and

subscribers connected together through DDS

middleware technology over LAN. We used many

publishers and subscribers to illustrate the performance

of the proposed system by increasing number of nodes

(publisher/subscriber) when increasing the overload on

the system and measure the results in a worse case. We

didn’t use computers with very high capabilities to

make the scenario more realistic when building the

real-time systems in dynamic environments and to

increase the load in the experimental framework.

Figure 7. Experiment framework.

5. Results and Analysis

Time_based_filter QoS allows applications to specify

minimum separation time between data samples. This

policy controls network bandwidth, memory, and

processing power for subscribers. If the subscribers

have limited computing capabilities and connected

over limited bandwidth networks, then we can use this

policy to improve performance of the whole system.

To clarify the effect of time_based_filter QoS on the

computing capabilities we applied an experiment to

measure CPU utilization while changing value of

minimum separation. The experiment consist of three

publishers (NP=3) and five subscribers (NS=5). To

increase the load in the system we set deadline period

to infinite and the depth of history equals to 100 for all

subscribers and publishers. We set also durability QoS

to transient_local to be compatible with history policy.

It shouldn’t be volatile in critical real-time systems

such as rescue system. The results of the experiment

are shown in Figure 8.

Figure 8. CPU Utilization.

The CPU utilization, which indicates to the total

CPU usage by all subscribers, is decreased as expected

while the value of minimum separation value of

time_based_filter increased for all subscribers. This

implies that we can save the subscriber capabilities by

decreasing the value of minimum separation for the

time_based_filter QoS. We noted also that the

percentage of reduction in CPU utilization is about

25% while the modification in the minimum separation

value did not exceed 0.5 sec. This means that we can

save valuable amount of CPU utilization by decreasing

little amount from the value of minimum separation.

So we can conclude that it is beneficial to change the

value of time_based_filter for saving a lot of

QoS Adaptation for Publish/Subscribe Middleware in Real-Time... 237

computing capabilities at data readers when the real-

time system running in the dynamic environments.

We demonstrated the efficiency of modifying

time_based_filter QoS when running the real-time

system by applying another experiment. This

experiment measured the changing in percentage of

filtered bytes at data readers while changing the

minimum separation value of time_based_filter QoS.

The percentage of filtered bytes is calculated by

measuring the number of filtered bytes divided by the

number of received bytes in the data readers. The

results of this experiment are shown in Figure 9. We

note that the percentage of filtered bytes changed

slightly (from 0.246 to 0.366) in a long period

(between 1 and 5000 msec). This result proves

efficiency of our approach in changing minimum

separation value of time_based_filter QoS when

running the real-time system. When applying the

proposed approach we can save significant computing

capabilities in the subscriber and the quality of service

will be decreased by a negligible amount. We can also

conclude that the proposed approach will decrease

overload on the whole system by saving resources of

the middleware and decreasing the number of events

which are executed to read a lot of data samples.

Figure 9. Percentage of filtered bytes.

We concluded that modifying the time_base_filter
automatically will be more effective in real-time
system that runs in dynamic environments. The
proposed approach will save resources of data writers
and computing capabilities of data readers. The
proposed system is more stable and it is able to bear
more burden than traditional system. The traditional
system will be halted and overloaded when using a
huge number of publishers and subscribers in dynamic
environment.

6. Conclusions and Future Work

The necessity of developing a new approach for
adapting QoS policies automatically is increasing
every day. Its importance increased after developing
huge real-time distributed systems worked in dynamic
environments. A new approach has been developed in
this paper for adapting a specific QoS in
publish/subscribe middleware at real-time systems
which works in dynamic environment. The proposed
approach improved performance of the critical mission
systems and made them more stable in the dynamic

environments. Some data mining methods are used to
develop the proposed system and improve its
efficiency. Some experiments are demonstrated in this
paper to prove the effectiveness of the proposed system
in the real-time dynamic environments.

We can extend this research by developing a new
algorithm for determining automatically all parameters
which are used by the proposed approach to develop
a fully automated system for QoS adaptation. We
suggest also developing a modified version of online k-
means algorithm to improve the performance of
proposed system by decreasing the time complexity.

Acknowledgment

The authors gratefully acknowledge staff of
Distributed Real-Time Systems Lab in computer
engineering department at KFUPM, with special
thanks to Mr. Anas AI-Roubaiey for their supports.
The authors are grateful for useful advice and
suggestions from Mr. Richard Williamson in RTI
community. Moreover, authors thank RTI Company
for their support with all tools that have been used in
this work.

References

[1] Al-Zoubi M., Hudaib A., Huneiti A., and Hammo

B., “New Efficient Strategy to Accelerate K-

Means Clustering Algorithm,” American Journal

of Applied Sciences, vol. 5, no. 9, pp. 1247-1250,

2008.

[2] Bu X., Rao J., and Xu C., “A Reinforcement

Learning Approach to Online Web Systems

Auto-Configuration,” in Proceeding of 29
th
 IEEE

International Conference on Distributed

Computing Systems, Washington, pp. 2-11, 2009.

[3] Object Management Group, Data Distribution

Service for Real-time Systems, Object

Management Group, 2007.

[4] Gan G., Ma Ch., and Wu J., Data Clustering:

Theory, Algorithms, and Applications, Society

for Industrial and Applied Mathematics, 2007.

[5] Hoffert J., Schmidt D., and Gokhale A., “DQML:

a Modeling Language for Configuring

Distributed Publish/Subscribe Quality of Service

Policies,” in Proceeding of 10
th
 International

Symposium on Distributed Objects, Middleware,

and Applications, Monterrey, pp. 515-534, 2008.

[6] Hoffert J., Mack D., and Schmidt D., “Integrating

Machine Learning Techniques to Adapt

Protocols for QoS-Enabled Distributed Real-

Time and Embedded Publish/Subscribe

Middleware,” International Journal of Network

Protocols and Algorithms:Special Issue on Data

Dissemination for Large-scale Complex Critical

Infrastructures, vol. 2, no. 3, pp. 1-33, 2010.

[7] Hoffert J. and Schmidt D., “Adapting Distributed

Real-Time and Embedded Publish/Subscribe

http://community.rti.com/profile/profile_fullname/Richard%20P.%20Williamson

238 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

Middleware for Cloud-Computing

Environments,” in Proceeding of

ACM/IFIP/USENIX 11
th
 International

Middleware Conference, Bangalore, pp. 21-41,

2010.

[8] Ijaz S., Munir E., Anwar W., and Nasir W.,

“Efficient Scheduling Strategy for Task Graphs

in Heterogeneous Computing Environment,” The

International Arab Journal of Information

Technology, vol. 10, no. 5, pp. 486-494, 2013.

[9] King A., Online K-Means Clustering of

Nonstationary Data, Prediction: Machine

Learning and Statistics, 2012.
[10] Kotsiantis S., “Supervised Machine Learning: a

Review of Classification Techniques,”

Informatica, vol. 31, no. 3, pp. 249-268, 2007.
[11] Mabrouk N., Beauche S., Kuznetsova E.,

Georgantas N., and Issarny V., “QoS-Aware

Service Composition in Dynamic Service

Oriented Environments,” in Proceeding of

ACM/IFIP/USENIX International Conference on

Distributed Systems Platforms and Open

Distributed Processing, pp. 123-142, 2009.
[12] Object Management Group, www.omg.org/spec,

Last Visited 2014.
[13] Platania M., Ordering, Timeliness and Reliability

for Publish/Subscribe Systems Over WAN,

Sapienza University of Rome, 2011.
[14] Object Management Group,

http://www.rti.com/products/index.html, Last

Visited 2015.
[15] Schulzrinne H., State R., and Niccolini S.,

Principles, Systems and Applications of IP

Telecommunications. Services and Security for

Next Generation Networks, chapter Automatic

Adaptation and Analysis of SIP Headers Using

Decision Trees, Springer, 2008.
[16] Zhai L., Guo L., Cui X., and Li S., “Research on

Real-Time Publish/Subscribe System Supported

by Data-Integration,” Journal of Software, vol. 6,

no. 6, pp. 1133-1139, 2011.

Basem Almadani joined KFUPM in

2007 and Chaired Computer

Engineering Department between

2009 and 2014. Before that, he was

an assistant professor in Automation

Institute at Montan University of

Austria after receiving his PhD from

the same university. Dr. Basem spent 12 years in the

industry locally and internationally. He served in

SABIC for four years and in several companies in

Austria for another 8 years. His specialization is in

Real-Time Mission Critical Systems and Middleware

software. His areas of interest are Command and

Control Systems (C4I-SR), WSN, and E-Government.

Shadi Abudalfa received the BSc

and MSc Degrees both in Computer

Engineering from the Islamic

University of Gaza (IUG), Palestine

in 2003 and 2010 respectively. He is

a lecturer at the University Collage

of Applied Sciences, Palestine. He is

currently a PhD candidate in Computer Science and

Engineering at King Fahd University of Petroleum and

Minerals, Saudi Arabia. From July 2003 to August

2004, he worked as a research assistant at Projects and

Research Lab in IUG. From February 2004 to August

2004, he worked as a Teaching Assistant at Faculty of

Engineering in IUG.

Shuang-Hua Yang is a Professor in

Computer Science at Loughborough

University in the UK and an adjunct

professor at King Fahd University of

Petroleum and Minerals in Saudi

Arabia. He is an associate editor for

four academic journals including

International Journal of Systems

Science, Arabian Journal for Science and Engineering

and a member of the editorial and advisory board for

another two academic Journals. He is a fellow of the

Institute of Measurement and Control since 2005, and

a senior member of IEEE since 2003. He was the guest

editor of six special issues on wireless sensor networks

and Internet based control in various journals. He was

awarded 2010 Honeywell Prize by the Institute of

Measurement and Control in the UK to recognize his

contribution to home automation research. He authored

two research monographs published by Springer:

Wireless sensor networks – principles, design and

applications (2014), and Internet-based control systems

design (2011).

