
 The International Arab Journal of Information Technology, Vol. 14, No. 3, May 2017 355

Mapping XML to Inverted Indexed Circular

Linked Lists

Teng Lv
1
, Ping Yan

2
, and Weimin He

3

1
School of Information Engineering, Anhui Xinhua University, China

2
School of Science, Anhui Agricultural University, China

3
Department of Computing and New Media Technologies, University of Wisconsin-Stevens Point, USA

Abstract: Extensible Markup Language (XML) has become the de facto standard for data exchange on the World Wide Web

and is widely used in many fields, so it is urgent to develop some efficient methods to manage, store, and query XML data.

Traditional methods use relational databases to store XML data which take advantage of mature technologies of relational

databases. But it needs to map XML schemas to relational schemas, then rewrite XML queries to SQL queries, and finally,

transform returned SQL-style results to XML-style results again. One possible solution to this is to store XML data directly

and query it directly by XML query languages. In this paper, we research the problem of how to map XML data so that storing

and querying it can be efficient. We propose the following framework to gain the goal: Firstly, we map a given XML data tree

to a set of inverted indexed circular list, in which the relationships between parent and child nodes (and also ancestor and

descendent nodes) are preserved. Then, an XML schema tree is used to guide and improve the efficiency of querying the

corresponding XML data tree, which is generated from the given XML data tree. Finally, an efficient algorithm is given to

query the XML data tree by using the corresponding set of inverted indexed circular list and its schema. The algorithms

analysis and experiments prove the efficiency of our method over naïve method.

Keywords: XML, mapping, query, schema.

Received August 12, 2014; accepted December 23, 2014

1. Introduction

Extensible Markup Language (XML) has become the

de facto standard for data exchange on the World Wide

Web and is widely used in many fields. With the

increase of XML data on the World Wide Web, it is

urgent to develop some efficient methods to manage,

store, and query XML data. There are two main

methods of storing and managing XML data today.

The first method uses native XML databases to store

and manage XML data directly, such as [15, 16]. The

second method proposed in [5, 7, 14, 17] use relational

databases to store XML data which takes advantage of

the mature technology of relational databases. For the

latter case, it needs to research some efficient methods

to map XML schemas to relational schemas [12].

Furthermore, to query XML data, it is needed to

transform XML queries to SQL queries, which is an

additional cost of querying XML data and may

decrease the querying efficiency. So it is significant to

store XML data directly and query it directly by XML

query languages such as XPath.

In this paper, we research the problem of how to

map XML data so that storing and querying XML data

can be efficient. We gain the goal by the following

steps: Firstly, we map a given XML data tree to a set

of inverted indexed circular list, in which the

relationships between parent and child nodes (and also

ancestor and descendent nodes) are preserved. Then,

an XML schema tree is generated from the given XML

data tree. The XML schema tree can be used to guide

and improve the efficiency of querying the

corresponding XML data tree. Finally, an efficient

algorithm is given to query an XML data tree by using

the corresponding set of inverted indexed circular list

and its schema produced in the previous step.

2. Related Works

Our work is concentrated on mapping XML data

efficiently in order to support efficient querying XML

data directly. For XML labelling, [9] proposed a

labelling scheme based on the concept of the complete

tree whose space requirement of labelling scheme is

superior to others in most cases. But we use e a simple

label for each node to represent its path in the XML

data tree and a set of inverted indexed circular list to

represent the XML data tree. Our method can support

upgrade easily as the nodes are linked by links in the

circular lists. Also, many normalization forms [2, 10,

11, 18, 19] for XML are proposed based on different

methods to remove data redundancies, but they cannot

efficiently support querying XML documents as there

are many joins when normalization are applied,

especially in very small and sparse XML segments. So

schema-based approach, such as [1, 6], uses schema to

minimize tree patterns to improve query efficiency.

Although these methods can simplify query patterns in

356 The International Arab Journal of Information Technology, Vol. 14, No. 3, May 2017

the sense that some irrelevant elements can be avoided

to access in the query compilation, but they cannot

avoid other irrelevant elements in the case that

irrelevant data are stored continuously. [3, 4, 8, 13]

storage XML based on various partition method. They

can be used to improve XML queries efficiency

because only relevant XML data need to be accessed

when queries are simplified to specific paths. Our

method in the paper use set of inverted indexed

circular linked list to store XML data and set of

indexed circular linked list for its schema, which can

avoid both of these two types of irrelevant data in the

process of querying XML data.

2.1. Main Contributions

In this paper, we study the problem of mapping and

querying XML data, the main contributions are listed

as follows:

1. A new mapping framework to map XML data tree

to a set of inverted indexed circular linked list,

which is efficient both in mapping time and storage

space.

2. An efficient algorithm to directly query XML data

by a set of inverted indexed circular linked lists with

their schemas. The algorithm is a two stages

process: the first stage is fully directed by the

schemas inferred from the XML data tree, and the

second stage is fully applied the inter-relationship

between nodes in the inverted indexed circular

linked list of the XML data tree.

2.2. Organization

The paper is organized as follows. Section 2 gives the

algorithm to map XML data tree to a set of inverted

indexed circular linked lists. Section 3 gives the

algorithm to generate XML schema from a given XML

data tree. Section 4 gives the algorithm of querying

XML data tree by a set of inverted indexed circular

linked lists with their schemas. Section 5 gives some

experiments to verify our method. And finally, section

6 concludes the paper and points to the future direction

of the work.

3. Mapping XML Data Tree to Inverted

Indexed Circular Linked Lists

An XML document is depicted as a labelled XML tree

such as Figure 1. we use uppercase letter to denote

element type, and uppercase letter followed by a

number to indicate a specific element node of this

element type. For example, A, B, C, D, and E are all

element types, and B1, B2, and B3 are all element

nodes with element type B. Each node is labelled by its

path. The root node is labelled as /1, and the other node

labelled orderly as its occurrence under its parent node

prefixed by its parent’s label recursively. For example,

node B1 is the first child node of root node A1, so its

label is /1/1 as its parent node, i.e., root node A’s label

is /1. Another example, D1 is the third child node of

B1, so its label is /1/1/3 as its parent node’s label is

/1/1.

A1 /1

B1 /1/1

C1 /1/1/1 D1 /1/1/3 E1 /1/1/5

B3 /1/3

D4 /1/3/1C2 /1/1/2 D2 /1/1/4

B2 /1/2

D3 /1/2/1 E2 /1/3/2

Figure 1. An XML tree.

For an XML tree such as Figure 1, we can store it as

circular linked lists for efficiently accessed and

queried. For each non-leaf node, we construct a

circular linked list, in which each node has the

following form: {ParentLink, NodeName, Path,

ChildLink}, where ParentLink except for the head

node points to its parent node, NodeName is the

element type of the node, Path indicates the node’s

path from the root node to itself, ChildLink except for

the tail node points to the next child node of the head

node of the circular linked list. For tail node, i.e., the

last child node, its ChildLink points to “NULL”

indicating that there is no more child node of the head

node. For example, root node A1 of Figure 1 has the

following circular linked list as illustrate in Figure 2,

which says that A1 has 3 child nodes, such as B1, B2,

and B3, respectively, each child node points to its

parent node by a pre-link.

A /1 B /1/1 B /1/2 B /1/3 NULL

Figure 2. A circular linked list of root node A1 of Figure 1.

For leaf node, there is no necessary to construct a

circular linked list as non-leaf nodes do, because leaf

nodes are directly linked by their parent nodes so far.

So their connectivity structure has been captured by the

circular linked lists of their parent nodes.

To improve query and search efficiency, we can

construct inverted index on each head node of circular

linked list based on what child nodes contained in each

head node. For example, Figure 3 is the inverted

indexed circular linked lists for Figure 1, it means that

containing child element type B is head node A(/1),

containing child element type C is head node B(/1/1),

containing child element type D are head nodes B(/1/1)

and B(/1/2), etc.

Mapping XML to Inverted Indexed Circular Linked Lists 357

A /1 B /1/1 B /1/2 B /1/3 NULL

B /1/1 C /1/1/1 E /1/1/5 NULL … …

B /1/2 D 1/2/1 NULL

B /1/3 D /1/3/1 E /1/3/2 NULL

B

C

D

E

Figure 3. The inverted indexed circular linked lists for Figure 1.

An XML data tree can be mapped to inverted

indexed circular linked lists by Algorithm 1.

Algorithm 1: Mapping XML data tree T to inverted indexed

circular linked lists.

Traverse from the root node r of T by Breadth First Search

(BFS), for each non-leaf node n, construct a circular linked list

l:

1. The head node H is {null, Element(n), Path(n),

ChildLink(n)}, where n is the element type of the node,

Element() is a function to get the element type of the node,

Path() is a function to assign a path for each node as

described before, and ChildLink(n) points to NULL and if

the head node has child node, it will points to the new

constructed node in the succeeding step 2.

2. Construct the next node Ni if there is a child node of the

head node. Update ChildLink(n) Ni.

3. Let Ni ={H, Element(Ni), Path(Ni), ChildLink(Ni)}, where

ChildLink(Ni) points to NULL and if the head node has

another child node, it will point to the new constructed node

in step 3. Construct the next node Ni if there is a child node

of the head node and update ChildLink(Ni) Ni.

4. Go to step 3 and until there is no child node of node n.

5. Add the list l into the inverted indexed list according to its

child element by function AddIndex(l).

6. Terminate until all the non-leaf nodes are processed.

 Complexity Analysis: Suppose there are n nodes in

the XML tree, and the fraction of the non-leaf nodes

is f (where f<1 is a constant number), so the number

of non-leaf node is f•n. And suppose each head node

has c child nodes on average (where c is a very

small constant number comparing to n), so

Algorithm 1 generates f•c•n nodes in inverted

indexed circular linked lists. Each node in the list

can be processed in O(1) time, so the complexity of

Algorithm 1 is O(f•c•n), i.e., O(n).

 Improvement: To improve the storage efficiency, for

each inverted indexed circular linked list, only the

head node stores the whole path (i.e., absolute path)

in its item “Path”, and the other node only stores the

relative path in its item “Path”, as we can construct

the absolute path from its relative path plus its

parent node path. For example, root node A1 of

Figure 1 has the following circular linked list as

illustrated in Figure 4.

A /1 B /1 B /2 B /3 NULL

Figure 4. An improved circular linked list of root node A1 of

Figure 1.

To obtain the absolute path of B(/1/1), we just use

its parent node path plus its own relative path, i.e.,

B.Path = “/1” + “/1” = “/1/1”.

4. Generating XML Schema From XML

Data Tree

The XML schema tree of an XML tree is a labeled tree

that summarizes all paths in XML documents. All

nodes that have the same root-to-node path are mapped

into a single node in the XML schema tree. So each

distinctly labelled path appears exactly once in the

corresponding XML schema tree. Furthermore, each

node in XML schema tree is annotated by one of the

following symbols which indicates the number of

occurrences of this schema node under its parent in the

XML documents:!: exactly once and only once;?: zero

or once;*: zero or more times; and +: once or more

times. Figure 5 is an XML schema tree for XML tree

of Figure 1.

We give Algorithm 2 to generate an XML schema

tree from an given XML tree.

Algorithm 2: Generating XML schema tree from an XML

tree.

1. Convert the root node r to Element(r).

2. Traverse from the root node r of T by BFS. For each node n,

and for each child node ci of n, generate Element(ci) as the

child of Element(n). Merge all child nodes if their

Element(ci) are equal by function Merge(Element(ci)).

Assign one of the symbols “!”, “?”, “*”, and “+”

according to their occurrences by function AssignSymbol

(Element(ci)).

3. Terminate if all the nodes are processed in the way of step 2.

A

B+

D+C* E?
Figure 5. The XML schema tree of Figure 1.

 Complexity Analysis: Suppose there are n nodes in

the XML tree. Each node in the tree can be

processed in O(1) time by functions Element(),

Merge(), and AssignSymbol(). So the complexity of

Algorithm 2 is O(n).

For XML schema tree, we can also store it in inverted

circular linked lists for efficiently accessed and

queried. For each non-leaf node, we construct a

circular linked list, in which each node has the

following form: {ParentLink, ElementName,

OccurrenceSymbol, ChildLink}, where ParentLink

(except that of the head node) points to its parent

element, ElementName is the element type name of the

358 The International Arab Journal of Information Technology, Vol. 14, No. 3, May 2017

element node’s name in the XML schema tree,

OccurrenceSymbol can be one of the symbols “!”, “?”,

“*”, and “+” indicating the possible number of

occurrences of this schema node under its parent in the

XML tree, ChildLink (except that of the tail node)

points to the next child node of the head node of the

circular linked list. For tail node, i.e., the last child

node, its ChildLink points to “NULL” indicating that

there is no more child node of the head node. For

example, root node element A of Figure 5 has the

following circular linked list which says that element A

may have one ore more element B as its child node,

and B’s parent is A.

A ! B + NULL

Figure 6. A circular linked list for element A in Figure 4.

The algorithm of how to map an XML schema tree

to circular linked lists is similar to Algorithm 1, so we

do not give the details here considering the space and

clarity.

5. Querying XML Data Tree by Inverted

Indexed Circular Linked Lists with

Schema

In this section, we study how to query XML data tree

represented in inverted indexed circular linked lists

with its schema represented in circular linked lists. We

consider the query in XPath form. The process can be

finished by two stages.

1. Simplify the query against the schema tree by the

following rules. As the schema provides some path

information, a query may be simplified by the

schema.

2. Using the simplified query to query the XML data

tree represented in inverted indexed circular linked

lists. In summary, the whole process is a two stages

process: the first stage is a top-down stage to

process the query by the schema tree and the second

stage is a bottom-up stage to process the query by

the XML data tree.

 Simplifying Rules: From the characteristics of path,

we give some simplifying rules to simplify a given

query to improve query efficiency:

 Rule 1. For a part of path /A/B, if B is never

adjacent to A, i.e., wherever there is an element

A, there is no element B, then no result satisfies

the query.

 Rule 2. For a part of path /A//B, if B is not a

descendent of A, i.e., wherever there is an

element A, there is no descendent element B,

then no result satisfies the query.

 Rule 3. For a part of path /A/[./B], if B is always

adjacent to A, i.e., wherever there is an element

A, there is always an element B, then it can be

simplified as /A.

We now give an algorithm to process a query given in

XPath form by using the above process as illustrated in

Algorithm 3.

Algorithm 3: Query an XML data tree.

Given an XPath query Q, the inverted indexed circular linked

lists L of an XML data tree T, and circular linked lists of XML

schema tree TS.

 (Top-Down Stage) Simplify the query Q as QS against the

schema tree by the above rules. From the left of query Q,

process each part of Q until the end of Q:

1. If it is the form /A/B, traverse element A’s circular linked

list of schema TSA to determine whether it is a legitimate

path in TS. If it is not, return “no result” by Rule 1.

2. If it is the form /A//B, traverse from element A’s circular

linked list of schema TSA, then A’s child elements’

circular linked list of schema one by one recursively to

determine whether it is a legitimate path in TS. If it is not,

return “no result” by Rule 2.

3. If it is the form /A[./B], traverse element A’s circular

linked list of schema TSA to determine whether B is

always adjacent to A. If it is, then /A[./B] is simplified as

/A by Rule 3.

 (Bottom-Up Stage) Query QS against the XML data tree.

From the right element of the simplified query QS obtained

in Step 1, process each element of QS until the head of QS:

1. For each element E, search the “E” index L(E) of the

inverted indexed circular linked lists L and locate the

satisfied nodes set N.

2. For each node n in N, find its parent node np.

3. If np has a condition path of the following form

\Element(np)\[\.Ec], then determine whether

“Element(np)” index L(Element(np)) of the inverted

indexed circular linked list L has such a node. If it is not

the case, process the next node n in N, go to step 2.

4. Traverse np’s parent node recursively until the left

element of query QS and return the satisfied result nodes.

Go to step i.

 Complexity Analysis:

1. Step 1. Top-Down Stage: suppose there are n

elements in query Q. In step 1, at most (n-1) parts of

the query should be processed against circular

linked lists of XML schema tree TS in the worst

case, and each part can be processed in O(1) time,

so the overall time is O(n).

2. Step 2. Bottom-Up Stage: suppose there are m

elements in query QS and the right element of query

QS has c nodes to be processed, where c is related to

the specific query and XML data tree. In step 2, at

most cm nodes of the inverted indexed circular

linked lists L should be processed in the worst case,

and each node can be processed in O(1) time, so the

overall time is O(cm). So the complexity of

Algorithm 3 is O(n).

We give some examples to illustrate the queries of

XML data tree of Figure 1 by Algorithm 3:

Mapping XML to Inverted Indexed Circular Linked Lists 359

 Example 1. Consider the query Q1: /A/D.

By searching the schema of circular linked lists

(such as Figure 5), we known that there is no such

path as /A/D, we confirm that no answers can

satisfy such query in the given XML data tree by

rule 1. So there is no need to search the XML data

tree.

 Example 2. Consider the query Q2: /A/B/[./D]/E.

1. From the schema of circular linked lists of Figure

5, we know that wherever there is an element B,

there is always an element D, so the query Q2

can be simplified as /A/B/E by rule 3.

2. From the inverted indexed circular linked lists

(Figure 3), the last element of query Q2 is E, so

from the index “E” of Figure 3, we know that

E(/1/3/2) and E(/1/1/5) satisfy the query. From

E(/1/3/2), we can get its parent B(/1/3). From

B(/1/3) and index “B”, we can get its parent

A(/1). So we get a result “/1/3/2”, i.e., E2 of

Figure 1. Similarly, from E(/1/1/5), we can get

another result “/1/1/5”, i.e., E1 of Figure 1.

 Example 3. Consider the query Q3: /A/B/[./C]/E.

1. From the schema of circular linked lists of Figure

6, query Q3 can not be simplified.

2. From the inverted indexed circular linked lists

(Figure 3), the last element of query Q3 is E, so

from the index “E” of Figure 3, we know that

E(/1/3/2) and E(/1/1/5) satisfy the query. From

E(/1/3/2), we can get its parent B(/1/3). But

B(/1/3) does not have a child element C from

circular linked list of B(/1/3). So E(/1/3/2) does

not satisfy query Q3. From E(/1/1/5), we can get

its parent B(/1/1). As B(/1/1) has a child element

C from circular linked list of B(/1/1), we

continue search B(/1/1) by index “B”, we can get

its parent A(/1). So we get a result “/1/1/5”, i.e.,

E1 of Figure 1.

6. Experimental Results

We implemented an XML data generator generate 10

XML data files. For each XML data file, a root

element “A” is generated. Then, 1-4 elements are

generated randomly for each element. For each new

element, one of the 4 occurrence symbols “!”, “?”, “*”

and “+” is assigned to it to indicate its occurrence. For

element with “!” symbol, exactly one node with this

type is generated as sub-element of its parent element.

For element with “?” symbol, none or one node with

this type is generated as sub-element of its parent

element. For element with “*” symbol, 0-9 node(s)

with this type are generated as sub-element of its

parent element. For element with “+” symbol, 1-10

node(s) with this type are generated as sub-element of

its parent element. From the root node, there are 6

levels in the final XML data file to be generated.

Element names are named as “#level” followed by a

letter alphabetically, such as “1B”, “1C”, “2B”, etc.

Table 1 is the 10 selected XML data files generated by

this method.

Table 1. 10 XML data files.

ID #nodes (K)

#1 5

#2 6

#3 9

#4 12

#5 16

#6 18

#7 21

#8 23

#9 27

#10 30

We implemented Algorithms 1, 2, and 3 and the

algorithm of mapping an XML schema tree to a set of

circular linked list. To evaluate our method, we also

implemented a naïve algorithm without any index

information which just searches an XML data tree by

BFS. All the experiments are performed on a computer

with Windows Server 2008, Intel Core 2 CPU 2.5GHz,

and 6G RAM.

For each XML data file, we design 3 types of

queries: query type 1 cannot be simplified; query type

2 returns no results by rule 1 or rule 2; and query type

3 can be simplified by rule 3. The 3 queries of each

type of XML data file #1 are shown in Table 2.

Table 2. 3 queries of each type of XML data file #1.

Query ID Query Expression

Q11 /A/1B/3B/3C/4F/5B

Q12 /A//4H

Q13 /A/1B/[./2B]/2C/3F

In Table 2, Q11 is type 1 query which can not be

simplified by our method, Q12 is type 2 query which

returns no results just by examining the corresponding

XML schema tree, and Q13 can be simplified

as/A/1B/2C/3F by rule 3. For other queries of file #2-

#10, we omit here considering the space. Figure 7 is

query time of File #1. For Figure 7, we can see that: for

type 1 query Q11, our method presented limited

improvements over naïve method, because type 1

query cannot be simplified in stage 1 of Algorithm 3.

But in stage 2 of Algorithm, our method can

compensate for the loss of time in stage 1. For type 2

query Q12, as there are no results satisfying the query,

our method can immediately return “no result” just by

stage 1 of Algorithm 3. So our method has many

improvements over the naïve method. Similarly, for

type 3 query Q13, as it can be simplified in some

degree, our method has pretty improvements over the

naïve method.

360 The International Arab Journal of Information Technology, Vol. 14, No. 3, May 2017

Figure 7. Query execution time of file#1.

We got similar results considering files #2-10

except for type 1 query in file #4. The reason behind

this is: our method’s improvement in stage 2 cannot

compensate for the extra cost in stage 1 for this query.

In one word, for type 1 queries, our method has

some improvements over the naïve method in most

cases. For type 2 queries, our method has many

improvements over the naïve method in all cases. And

for type 3 queries, our method has pretty

improvements over the naïve method in all cases.

7. Conclusions and Future Work

In this paper, we proposed a new mapping approach to

map XML data so that store and query XML data can

be efficient. The main reason behind this is that the

new mapping can preserve the relationships between

parent and child nodes (and also ancestor and

descendent nodes) of the original XML data tree. And

also, an XML schema tree produced from the original

XML data tree can be used to guide and improve the

efficiency of querying the corresponding XML data

tree. To demonstrate this, we give an efficient query

algorithm to query the XML data tree by using the

corresponding set of inverted indexed circular list and

its schema.

For future work, we think that map only related

parts of the XML data tree according to the given

query to improve the storage and query efficiency

further. The key problem is how to decide the proper

parts of the XML data tree to satisfy the given query

without loss of information. More challenge work is to

design an automatic mechanism to finish the parts

selection within acceptable time.

Acknowledgements

The work is supported by Anhui Province Colleges

Nature Science Research Project(No.KJ2015A325),

Anhui Province Quality Engineering (2015zy073),

Introduction of Talents Foundation and Academic

Leader Foundation of Anhui Xinhua University

(2014XXK06), National Nature Science Foundation of

China (No.11201002), and Natural Science Foundation

of Anhui Province (No.1208085MF110).

References

[1] Amer-Yahia S., Cho S., Lakshmanan L., and

Srivastava D., “Tree Pattern Query

Minimization,” The International Journal on

Very Large Data Bases, vol. 11, no. 4, pp. 315-

331, 2002.

[2] Arenas M. and Libkin L., “A Normal Form for

XML Documents,” ACM Transactions on

Database Systems, vol. 29, no. 1, pp. 195-232,

2004.

[3] Arion A., Bonifati A., Manolescu I., and Pugliese

A., “Path Summaries and Path Partitioning in

Modern XML Databases,” World Wide Web, vol.

11, no. 1, pp. 117-151, 2008.

[4] Beyer K., Cochrane R., Josifovski V., Kleewein

J., Lapis G., Lohman G., Lyle R., Özcan F.,

Pirahesh H., Seemann N., Truong T., Linden B.,

Vickery B., and Zhang C., “System RX: One Part

Relational, One Part XML,” in Proceeding of the

ACM SIGMOD International Conference on

Management of Data, Maryland, pp. 347-358,

2005.

[5] Chen L., Bernstein P., Carlin P., Filipovic D.,

Rys M., Shamgunov N., Terwilliger J., Todic M.,

Tomasevic S., and Tomic D., “Mapping XML To

A Wide Sparse Table,” in Proceeding of IEEE

28
th
 International Conference on Data

Engineering, Washington, pp. 630-641, 2012.

[6] Chen Z., Jagadish H., Lakshanan L., and

Paparizos S., “From Tree Patterns to Generalized

Tree Patterns: on Efficient Evaluation of

Xquery,” in Proceeding of 29
th
 International

Conference on Very Large Data Bases, Berlin,

pp. 237-248, 2003.

[7] Deutsch A., Fernandez M., and Suciu D.,

“Storing Semistructured Data With STORED,” in

Proceeding of ACM SIGMOD International

Conference on Management of Data,

Pennsylvania, pp. 431-442, 1999.

[8] Georgiadis H. and Vassalos V., “Xpath on

Steroids: Exploiting Relational Engines for

Xpath Performance,” in Proceeding of the ACM

SIGMOD International Conference on

Management of Data, Beijing, pp. 317-328,

2007.

[9] Lin R., Chang Y., and Chao K., “A Compact and

Efficient Labeling Scheme for XML

Documents,” in Proceeding of 18
th
 International

Conference on Database Systems for Advanced

Applications, Wuhan, pp. 269-283, 2013.

[10] Lin X., Wang N., Zeng X., and Sun Y., “XML

Normalization Based on Entity Segments,”

Information Sciences, vol. 239, pp. 85-95, 2013.

[11] Lv T. and Yan P., “A Framework of

Summarizing XML Documents with Schemas,”

The International Arab Journal of Information

Technology, vol. 10, no. 1, pp. 18-27, 2013.

[12] Lv T. and Yan P., “Mapping Dtds to Relational

Schemas with Semantic Constraints,”

Information and Software Technology, vol. 48,

no. 4, pp. 245-252, 2006.

http://www.informatik.uni-trier.de/~ley/pers/hd/a/Amer=Yahia:Sihem.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lakshmanan:Laks_V=_S=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Srivastava:Divesh.html

Mapping XML to Inverted Indexed Circular Linked Lists 361

[13] Murthy R., Liu Z., Krishnaprasad M.,

Chandrasekar S., Tran A., Sedlar E., Florescu D.,

Kotsovolos S., Agarwal N., Arora V., and

Krishnamurthy V., “Towards an Enterprise XML

Architecture,” in Proceeding of the ACM

SIGMOD International Conference on

Management of Data, Baltimore, pp. 953-957,

2005.

[14] Schmidt A., Keysten M., Windhouwer M., and

Wass F., “Efficient Relational Storage and

Retrieval of XML Documents,” in Proceeding of

the Third International Workshop on the Web

and Databases, Dallas, pp. 137-150, 2000.

[15] Software AG., http://www1.softwareag.com/

corporate/products/tamino/default.asp, Last

Visited 2014.

[16] Sonic Software Corporation. http://

www.sonicsoftware.com/products/sonic_xml_ser

ver/index.ssp, Last Visited 2014.

[17] Tatarinov I., Viglas S., Beyer K.,

Shanmugasundaram J., Shekita E., and Zhang C.,

“Storing and Querying Ordered XML Using a

Relational Database System,” in Proceeding of

the ACM SIGMOD International Conference On

Management of Data, Madison, pp. 204-215,

2002.

[18] Teng L., Ning G., and Ping Y., “Normal Forms

for XML Documents,” Information and Software

Technology, vol. 46, no. 12, pp. 839-846, 2004.

[19] Yu C. and Jagadish H., “XML Schema

Refinement through Redundancy Detection and

Normalization,” The VLDB Journal, vol. 17, no.

2, pp. 203-223, 2008.

Teng Lv received his PhD degree

from Fudan University, China. His

research interests include database

and data management. He is the

author or coauthor of more than 70

journal papers or reviewed

conference papers. He is the

reviewers or PC members of several journals and

conferences both at home and abroad.

Ping Yan received her PhD degree

from Fudan University, China. Her

research interests include partial

differential equations and their

applications in neural network and

epidemic diseases, and data

management.

Weimin He revieved his PhD degree

from University of Texas at

Arlington, USA. His research

interests include XML data

management, information retrieval

and Peer-to-Peer computing data

management.

http://www.sciencedirect.com/science/article/pii/S0950584904000291
http://www.sciencedirect.com/science/article/pii/S0950584904000291
http://www.sciencedirect.com/science/article/pii/S0950584904000291

