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Abstract: A 2-coloring of a hypergraph is a mapping from its vertex set to a set of two colors such that no edge is 

monochromatic. The hypergraph 2- Coloring Problem is the question whether a given hypergraph is 2-colorable. It is known 

that deciding the 2-colorability of hypergraphs is NP-complete even for hypergraphs whose hyperedges have size at most 3. In 

this paper, we present a polynomial time algorithm for deciding if a hypergraph, whose incidence graph is 𝑃8-free and has a 

dominating set isomorphic to 𝐶8, is 2-colorable or not. This algorithm is semi generalization of the 2-colorability algorithm for 

hypergraph, whose incidence graph is 𝑃7-free presented by Camby and Schaudt. 
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1. Introduction 

A pair H = (V, E) is a (finite) hypergraph if V is a finite 

vertex set and 𝐸 is a collection of subsets of V called the 

hyperedges of H. Hypergraphs are a natural 

generalization of undirected graphs; unlike edges, 

hyperedges are not necessarily two-elementary.  

A hypergraph H = (V, E) is 2-colorable if its vertex 

set 𝑉 has a partition 𝑉 =  𝑉1  ∪  𝑉2 such that every 

hyperedge 𝑒 ∈  𝐸 has at least one vertex from each of 

the sets V1 and V2. The hypergraph 2- Coloring Problem 

(also called Bicoloring Problem, Set Splitting Problem 

in [8]) is the question whether a given hypergraph is 2-

colorable. 

The property of 2-colorability was introduced and 

studied by Bernstein [4] in the early 1900s for infinite 

hypergraphs. The 2-colorability of finite hypergraphs 

has been studied for about ninety years due to its 

applications in theoretical computer science, see for 

example [2, 6, 7, 12]), as well as in practical computer 

science, especially in wireless networks [16].  

 If every hyperedge is of size 2, i.e., for graphs, the 

problem is well understood, since graph 2-colorability is 

equivalent to having no odd cycle. Excluding this special 

case, though, much less is known and deciding the 2-

colorability of hypergraphs is NP-complete even for 

hypergraphs whose hyperedges have size at most 3 [11]. 

Another proof of this result is given in [10] using a nice 

reduction from the Satisfiability Problem SAT to the 

Hypergraph 2-Coloring Problem.  

Several fundamental approaches in hypergraph 2-

coloring appeared in the literature. They are related to 

the various types of constraints that are imposed on the 

hyperedges while coloring the vertices. One of these 

approaches is the 2-colarability problem of 𝑘-uniform 

hypergraph, i.e., every hyperedge is of fixed size 𝑘 ≥
2. A line of research (e.g., [12]) has been devoted to 

extremal problems asking for the least number of 

hyperedges that an k-uniform hypergraph can have 

without being 2-colorable. In the same direction, some 

sufficient conditions for the existence of a 2-coloring of 

𝑘-uniform hypergraphs have been found (e.g. [15]). 

The degree of vertices of 𝑘-uniform hypergraph is 

taking into consideration also in studying this problem. 

The degree of a vertex 𝑣 in a hypergraph 𝐻 is the 

number of hyperedges of 𝐻 which contain v. In this 

approache, a study of the complexity of 2-coloring in 

𝑘-uniform hypergraphs of high minimum degree is 

given in [13]. The 2-coloring in 𝑘-regular 𝑘-uniform 

hypergraphs (i.e. the degree of every vertex is k) is 

extensively studied in [1, 9].  

Another direction of investigation is to look to a 

special structure of the incidence graph associated with 

a hypergraph. The incidence graph of a hypergraph 

𝐻 =  (𝑉, 𝐸) is the bipartite graph 𝐺 = (𝑉 ∪ 𝐸, 𝐼) 

where 𝑣 ∈  𝑉 and 𝑒 ∈  𝐸 are adjacent (i.e. 𝑣𝑒 ∈ 𝐼) if 

and only if 𝑣 ∈  𝑒. Recently, van’t Hof and Paulusma 

[14] show that hypergraph 2-colorability is solvable in 

polynomial time for hypergraphs with 𝑃6-free 

incidence graphs. This result is extended in [5] by 

Camby and Schaudt for hypergraphs with 𝑃7-free 

incidence graphs.  

The purpose of this paper is to solve in polynomial 

time the 2-colarability problem for hypergraphs with 

𝑃8-free incidence graphs whose dominated set is 𝐶8 

(see Figure 1).  

The rest of this section contains the notions and tools 

used in our algorithm. Section 2, presents the 

recognition of different cases that can be occurs in our 

treatment for this problem. The complete algorithm and 
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its complexity are discussed in section 3. Section 4 is the 

conclusion and future work. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. The forbidden configuration 𝑃8 and the dominated 

configuration 𝐶8. 

Let Pk be the induced path on 𝑘 vertices and let Ck be 

the induced cycle on 𝑘 vertices. If G and H are two 

graphs, we say that G is 𝐻-free if H does not appear as 

an induced subgraph of G. A dominating set of a graph 

𝐺 is a vertex subset D such that every vertex not in D has 

a neighbor in D. A connected dominating set of a graph 

𝐺 is a dominating set 𝐷 whose induced subgraph, 

henceforth denoted G[D], is connected. A 

characterization of 𝑃𝑘-free graph in term of dominating 

sets is given in the following theorem. 

Theorem 1 [5] Let 𝐺 be a graph and 𝑘 ≥  4. The 

following assertions are equivalent. 

1) 𝐺 is 𝑃𝑘-free. 

2) Every connected induced subgraph 𝐻 of 𝐺 

admits a connected dominating set 𝐷such that 

𝐻[𝐷] is 𝑃𝑘−2-free or 𝐻[𝐷] is isomorphic to 𝐶𝑘.  

Let 𝐺 be a connected 𝑃𝑘-free graph, 𝑘 ≥  4, on 𝑛 

vertices and 𝑚 edges. Camby and Schaudt in [5] show 

that the computation of a connected dominating set 𝐷 

such that 𝐺[𝐷] is 𝑃𝑘−2-free or 𝐺[𝐷] is isomorphic to 𝐶𝑘 

can be done in time 𝑂(𝑛5(𝑛 + 𝑚)). 

Let 𝐻 =  (𝑉, 𝐸) be a hypergraph. We denote by 
(𝐴, 𝐵) to a 2-coloring of 𝐻, that is, 𝐴, 𝐵 are non-empty 

subset of 𝑉, 𝐴 ∪ 𝐵 = 𝑉. 𝐴 ∩ 𝐵 = ∅, and for every 

hyperedge 𝑒 ∈ 𝐸, 𝑒 ∩ 𝐴 ≠ ∅ and 𝑒 ∩ 𝐵 ≠ ∅. Since we 

are searching for a 2-coloring, hyperedges containing 

exactly one vertex are excluded. Moreover, if no 

hyperedge 𝑒 ∈  𝐸 is properly contained in another 

hyperedge 𝑒′ ∈  𝐸 then 𝐻 is called a Sperner family or 

clutter. In the database community (see e.g., [3]), clutters 

are called reduced hypergraphs. The following 

observation was proven in [14] and in [5]. In order to be 

self-contained, we give a quick proof of it. 

 

Lemma 1 𝐻 can be assumed a clutter. 

Proof Let 𝑒, 𝑓 ∈ 𝐸 such that 𝑒 ⊆ 𝑓. We claim that 𝐻 is 

2-colorable if and only if 𝐻′ = (𝑉, 𝐸 − {𝑓}) is 2-

colorable. Clearly, if 𝐻 is 2-colorable then 𝐻′ is 2-

colorable. Let (𝐴, 𝐵) be a 2-coloring of 𝐻′. Since 𝑒 ∩
𝐴 ≠ ∅ and 𝑒 ∩ 𝐵 ≠ ∅ and 𝑒 ⊆ 𝑓 then 𝑓 ∩ 𝐴 ≠ ∅ and 

𝑓 ∩ 𝐵 ≠ ∅, so (𝐴, 𝐵) is a 2-coloring of 𝐻. 

 

Observe that, if 𝐻 = (𝑉, 𝐸) is a hypergraph whose 

incidence graph is 𝑃8-free and if we delete for every 

pair 𝑒, 𝑓 ∈  𝐸 with 𝑒 ⊆  𝑓 the hyperedge 𝑓 from H, the 

resulting hypergraph is a clutter and its incidence graph 

is still 𝑃8-free. So, from now on, we assume that 𝐻 =
(𝑉, 𝐸) is a clutter whose incidence graph 𝐺 = (𝑉 ∪
𝐸, 𝐼) is 𝑃8-free. Moreover, we may assume that 𝐻 is 

connected, that is, 𝐺 is connected. By Theorem 1, there 

is a connected dominating set 𝐷 of 𝐺 such that 𝐺[𝐷] is 

𝑃6-free or 𝐺[𝐷] ≅ 𝐶8. In this paper, we suppose 

𝐺[𝐷] ≅ 𝐶8 and we leave the discussion of the case 

𝐺[𝐷] is 𝑃6-free for future work. 

2. Hypergraph 2-Colorability Problem with 

Incidence Graph 𝑷𝟖-free Whose 

Dominating set is 𝑪𝟖 

Through this section, the dominating set 𝐷 =
{𝑥1, 𝑓1, 𝑥2, 𝑓2, 𝑥3, 𝑓3, 𝑥4, 𝑓4} where 𝑋 =
{𝑥1, 𝑥2, 𝑥3, 𝑥4 } ⊆ 𝑉, 𝐹 = {𝑓1, 𝑓2, 𝑓3, 𝑓4} ⊆ 𝐸 and 

𝐺[𝐷] = 𝑥1𝑓1𝑥2𝑓2𝑥3 𝑓3𝑥4𝑓4𝑥1 ≅ 𝐶8. Let 𝑅 = 𝑉 − 𝑋. 

For a subset 𝐽 ⊆ {1, 2, 3, 4} we define 𝑉𝐽 = {𝑥 ∈ 𝑅 ∶

𝑥 ∈ 𝑓𝑗 if 𝑗 ∈ 𝐽}. In other words, 𝑉𝐽 is the set of vertices 

of 𝑅 that are dominated only by 𝑓𝑗, 𝑗 ∈ 𝐽. For short, any 

𝐽 ⊆ {1, 2, 3, 4} will be denoted by its elements only. For 

example, if 𝐽 = {1, 2} then we write 𝐽 = 12 and 𝑉12 =
{𝑥 ∈ 𝑅 ∶ 𝑥 ∈ 𝑓1 ∩ 𝑓2 and 𝑥 ∉ 𝑓3 ∪ 𝑓4}. Let 𝑓 ∈ 𝐸, we 

denote to the set of vertices in 𝑋 that dominate 𝑓 by 

𝑑(𝑓), that is 𝑑(𝑓) = {𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝑓}. Note that, for any 

𝑓𝑗 ∈ 𝐹, 𝑑(𝑓𝑗) = {𝑥𝑗, 𝑥𝑗+1) (vertex index arithmetic is 

modulo 4). Let's treat first some trivial cases. 

Observe that if 𝑅 = ∅ then 𝐻 is 2-colorable if and 

only if E = F. In this case ({𝑥1, 𝑥3}, (𝑥2, 𝑥4}) is a 2-

coloring of H.  

Suppose 𝑅 ≠ ∅. If E does not contain a hyperedge 𝑔 

such that 𝑑(𝑔) = {𝑥1, 𝑥3} and every hyperedge ℎ such 

that 𝑑(ℎ) = {𝑥2, 𝑥4} satisfies that 𝑑(ℎ) ≠ ℎ (i.e., ℎ ∩
𝑅 ≠ ∅), then ({𝑥1, 𝑥3} ∪ 𝑅, {𝑥2, 𝑥4}) is a 2-coloring of 

𝐻. Similarly, if 𝐸 does not contain a hyperedge ℎ such 

that 𝑑(ℎ) = {𝑥2, 𝑥4} and every hyperedge 𝑔 such that 

𝑑(𝑔) = {𝑥1, 𝑥3} satisfies that 𝑑(𝑔) ≠ 𝑔, then 

({𝑥1, 𝑥3}, {𝑥2, 𝑥4} ∪ 𝑅) is a 2-coloring of 𝐻. So, we can 

suppose from now on that, 𝑅 ≠ ∅ and 𝐸 contains a 

hyperedge 𝑔 with 𝑑(𝑔) = {𝑥1, 𝑥3} and a hyperedge ℎ 

with d(h)={x2, x4}. 
We solve our 2-coloring problem by discussing the 

following cases:  

1) 𝐸 contains exactly one of the two hyperedges 

𝑔 = {𝑥1, 𝑥3} and ℎ = {𝑥2, 𝑥4}. Figure 2 

illustrates an example of this case. 

 

 

𝑃8 

𝐶8 
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Figure 2. A hypergraph corresponding to case 1. 

 

2) E contains both the two hyperedges 𝑔 = {𝑥1, 𝑥3} 
and ℎ = {𝑥2, 𝑥4}. Figure 3 illustrates an example 

of this case 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. A hypergraph corresponding to case 2. 

 
3) 𝐸 does not contain 𝑔 = {𝑥1, 𝑥3} nor ℎ =

{𝑥2, 𝑥4}. Figure 4 illustrates an example of this 

case 

 

 

 

 

 

 

 

 

 
Figure 4. A hypergraph corresponding to case 3. 

 

For this purpose, we proof a sequence of Lemmas and 

Theorems that discuss all relevant cases.  

 

Lemma 2 For every 𝑥 ∈ 𝑅 there is at least two 

hyperedges 𝑓𝑖, 𝑓𝑗 ∈ 𝐹 such that 𝑥 ∈ 𝑓𝑖 ∩ 𝑓𝑗. 

Proof If there is 𝑥 ∈ 𝑅 such that 𝑥 ∈ 𝑓𝑗, 1 ≤ 𝑗 ≤ 4, and 

𝑥 ∉ 𝑓𝑗+1 ∩ 𝑓𝑗+2 ∩ 𝑓𝑗+3 then 

𝑥𝑓𝑗𝑥𝑗+1𝑓𝑗+1𝑥𝑗+2𝑓𝑗+2𝑥𝑗+3𝑓𝑗+3 ≅ 𝑃8, contradiction. □ 

 

Lemma 2 allows us to partition 𝑅 into: 

𝑅 = 𝑉12 ∪ 𝑉13 ∪ 𝑉14 ∪ 𝑉23 ∪ 𝑉24 ∪ 𝑉34

∪ ⋃ 𝑉𝑗𝑗+1𝑗+2

4

𝑗=1

∪ 𝑉1234 

Lemma 3 Let 𝑥 ∈ 𝑅 and 𝑔, ℎ ∈ 𝐸 such that 𝑑(𝑔) =
{𝑥1, 𝑥3} and 𝑑(ℎ) = {𝑥2, 𝑥4}.  

1) If 𝑥 ∈ 𝑉12 ∪ 𝑉34 then 𝑥 ∈ ℎ and 𝑥 ∉ 𝑔. 

2) If 𝑥 ∈ 𝑉14 ∪ 𝑉23 then 𝑥 ∈ 𝑔 and 𝑥 ∉ ℎ. 

3) If 𝑥 ∈ 𝑉𝑗𝑗+1𝑗+2, 1 ≤ 𝑗 ≤ 4, then 𝑥 ∈ ℎ and 𝑥 ∈

𝑔. 

4) If 𝑥 ∈ 𝑉13 ∪ 𝑉24 then either 𝑥 ∈ 𝑔 and 𝑥 ∈ ℎ or 

𝑥 ∉ 𝑔 and 𝑥 ∉ ℎ. 

Proof 1) Let 𝑥 ∈ 𝑉𝑗𝑗+1, 𝑗 = 1 or 𝑗 = 3. If 𝑥 ∉ ℎ then 

ℎ𝑥𝑗+3𝑓𝑗+3𝑥𝑗𝑓𝑗𝑥𝑓𝑗+1𝑥𝑗+2 ≅ 𝑃8, contradiction. If 𝑥 ∈ 𝑔 

then 𝑓𝑗+2𝑥𝑗+3𝑓𝑗+3𝑥𝑗𝑔𝑥𝑓𝑗+1𝑥𝑗+1 ≅ 𝑃8, contradiction.  

2) Similar to 1. 

3) Let 𝑥 ∈ 𝑉𝑗𝑗+1𝑗+2, 1 ≤ 𝑗 ≤ 4. If 𝑥 ∉ 𝑔 then, for 𝑗 = 1 

or 𝑗 = 3, 𝑔𝑥𝑗𝑓𝑗+3𝑥𝑗+3𝑓𝑗+2𝑥𝑓𝑗+1𝑥𝑗+1 ≅ 𝑃8, and for 𝑗 =

2 or 𝑗 = 4, 𝑔𝑥𝑗+3𝑓𝑗+3𝑥𝑗𝑓𝑗𝑥𝑓𝑗+1𝑥𝑗+2 ≅ 𝑃8, 

contradiction. If 𝑥 ∉ ℎ then, for 𝑗 = 1 or 𝑗 = 3, 

ℎ𝑥𝑗+3𝑓𝑗+3𝑥𝑗𝑓𝑗𝑥𝑓𝑗+1𝑥𝑗+2 ≅ 𝑃8, and for 𝑗 = 2 or 𝑗 = 4, 

ℎ𝑥𝑗𝑓𝑗+3𝑥𝑗+3𝑓𝑗+2𝑥𝑓𝑗+1𝑥𝑗+1 ≅ 𝑃8, contradiction.  

4) suppose 𝑥 ∈ 𝑔 and 𝑥 ∉ ℎ. If 𝑥 ∈ 𝑉13then 

𝑥3𝑔𝑥𝑓1𝑥2ℎ𝑥4𝑓4 ≅ 𝑃8. If 𝑥 ∈ 𝑉24 then 

𝑥3𝑔𝑥𝑓4𝑥4ℎ𝑥2𝑓1 ≅ 𝑃8, contradiction. The case when 

𝑥 ∉ 𝑔 and 𝑥 ∈ ℎ is similar. □  

The following Corollaries are immediate results 

from Lemma 3. 

Corollary 1 If 𝐸 contains 𝑔 = {𝑥1, 𝑥3} and does not 

contain ℎ = {𝑥2, 𝑥4} then  

𝑅 = 𝑉12 ∪ 𝑉13 ∪ 𝑉24 ∪ 𝑉34 ∪ 𝑉1234 

Corollary 2 If 𝐸 contains ℎ = {𝑥2, 𝑥4} and does not 

contain 𝑔 = {𝑥1, 𝑥3} then  

𝑅 = 𝑉13 ∪ 𝑉14 ∪ 𝑉23 ∪ 𝑉24 ∪ 𝑉1234 

Corollary 3 If 𝐸 contains both ℎ = {𝑥2, 𝑥4} and 𝑔 =
{𝑥1, 𝑥3} then  

𝑅 = 𝑉13 ∪ 𝑉24 ∪ 𝑉1234 

Corollary 4 Suppose 𝐸 does not contain ℎ = {𝑥2, 𝑥4} 
nor 𝑔 = {𝑥1, 𝑥3}. Let 𝑔1, … , 𝑔𝑘 , ℎ1, … , ℎ𝑟 ∈ 𝐸 such that 

for 1 ≤ 𝑖 ≤ 𝑘 and for 1 ≤ 𝑗 ≤ 𝑟 𝑑(𝑔𝑖) = {𝑥1, 𝑥3} and 

𝑑(ℎ𝑗) = {𝑥2, 𝑥4}.  

1) 𝑉12 ∪ 𝑉34 ⊆ ⋂ ℎ𝑗
𝑟
𝑗=1  and for 1 ≤ 𝑗 ≤ 𝑘 (𝑉12 ∪

𝑉34) ∩ 𝑔𝑗 = ∅. 

2) 𝑉14 ∪ 𝑉23 ⊆ ⋂ 𝑔𝑗
𝑘
𝑖=1  and for 1 ≤ 𝑗 ≤ 𝑟 (𝑉14 ∪

𝑉23) ∩ ℎ𝑗 = ∅. 

3) For 1 ≤ 𝑗 ≤ 4, 𝑉𝑗𝑗+1𝑗+2 ⊆  ⋂ 𝑔𝑗
𝑘
𝑗=1 ∩

 ⋂ ℎ𝑗
𝑟
𝑗=1 . 

4) 𝑉13 (resp. 𝑉24) can be partitioned to �⃖� 13, 𝑉  13 

(resp. �⃖� 24, 𝑉  24) such that:  

a) 𝑉  13 ∪ 𝑉  24 ⊆  ⋂ 𝑔𝑖
𝑘
𝑗=1 ∩ ⋂ ℎ𝑗

𝑟
𝑗=1  and  

ℎ 

𝑥 𝑔 

𝑥4 

𝑓3 

𝑥3 𝑓2 

𝑥2 

𝑓1 

𝑓4 𝑥1 

𝑥 
𝑦 

𝑔 

ℎ 

𝑥4 

𝑓3 

𝑥3 𝑓2 

𝑥2 

𝑓1 

𝑓4 𝑥1 

𝑥 

𝑦 

ℎ 

𝑔 
𝑥4 

𝑓3 

𝑥3 𝑓2 

𝑥2 

𝑓1 

𝑓4 𝑥1 
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b) for 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑟, (�⃖� 13 ∪ �⃖� 24)  ∩

(𝑔𝑖  ∪ ℎ𝑗) = ∅  

 

The following two Lemmas are analogue, so we 

prove them together. 

Lemma 3 Let 𝑓 ∈ 𝐸 such that 𝑑(𝑓) = {𝑥1, 𝑥2, 𝑥4} or 

𝑑(𝑓) = {𝑥3, 𝑥2, 𝑥4}, then 𝑉13 ∪ 𝑉24 ⊆ 𝑓. In addition, if 

𝐸 contains 𝑔 with 𝑑(𝑔) = {𝑥1, 𝑥3} then 𝑉12 ∪ 𝑉34 ⊆ 𝑓. 

Lemma 4 Let 𝑓 ∈ 𝐸 such that 𝑑(𝑓) = {𝑥2, 𝑥1, 𝑥3} or 

𝑑(𝑓) = {𝑥4, 𝑥1, 𝑥3}, then 𝑉13 ∪ 𝑉24 ⊆ 𝑓. In addition, if 

𝐸 contains ℎ with 𝑑(ℎ) = {𝑥2, 𝑥4} then 𝑉14 ∪ 𝑉23 ⊆ 𝑓. 

Proof The reader can check that the two Lemmas can be 

gathered together as following: Let 𝑓 ∈ 𝐸 such that 

𝑑(𝑓) = {𝑥𝑗, 𝑥𝑗+1, 𝑥𝑗+2}, 1 ≤ 𝑗 ≤ 4, then 𝑉𝑗𝑗+2 ∪

𝑉𝑗+1𝑗+3 ⊆ 𝑓 . In addition, if 𝐸 contains ℎ and 𝑔 with 

𝑑(ℎ) = {𝑥2, 𝑥4} and 𝑑(𝑔) = {𝑥1, 𝑥3} then 𝑉𝑗+1𝑗+2  ∪

𝑉𝑗𝑗+3 ⊆ 𝑓. 

Let 𝑥 ∈ 𝑉𝑗𝑗+2, and 𝑥 ∉ 𝑓 then, 

𝑓𝑗+1𝑥𝑗+1𝑓𝑥𝑗𝑓𝑗+3𝑥𝑗+3𝑓𝑗+2𝑥 ≅ 𝑃8, let 𝑥 ∈ 𝑉𝑗+1𝑗+3, and 

𝑥 ∉ 𝑓 then 𝑓𝑗𝑥𝑗+1𝑓𝑥𝑗+2𝑓𝑗+2𝑥𝑗+3𝑓𝑗+3𝑥 ≅ 𝑃8, 

contradiction. Let 𝑥 ∈ 𝑉𝑗+1𝑗+2 ∪ 𝑉𝑗𝑗+3 and 𝑥 ∉ 𝑓. By 

Corollary 4, 𝑥 ∉ ℎ when 𝑗 = 1,3 and 𝑥 ∉ 𝑔 when 𝑗 =
2,4. If 𝑥 ∈ 𝑉𝑗+1𝑗+2 then, 𝑥𝑓𝐽+1𝑥𝑗+2𝑓𝑥𝑗𝑓𝑗+3𝑥𝑗+3𝑒 ≅ 𝑃8, 

where, 𝑒 = ℎ if 𝑗 = 1,3 or 𝑒 = 𝑔 if 𝑗 = 2,4, 

contradiction. If 𝑥 ∈ 𝑉𝑗𝑗+3 then, 𝑥𝑓𝐽𝑥𝑗𝑓𝑥𝑗+2𝑓𝑗+2𝑥𝑗+3𝑒 ≅

𝑃8, where, 𝑒 = ℎ if 𝑗 = 1,3 or 𝑒 = 𝑔 if 𝑗 = 2,4, 

contradiction. □ 

Theorem 2 Suppose 𝐸 contains 𝑔 = {𝑥1, 𝑥3} and does 

not contain ℎ = {𝑥2, 𝑥4}. 𝐻 is 2-colorable if and only if 

the following conditions hold: 

1) 𝑓1 ∩ 𝑅 ≠ ∅ or 𝑓2 ∩ 𝑅 ≠ ∅. 

2) 𝑓3 ∩ 𝑅 ≠ ∅ or 𝑓4 ∩ 𝑅 ≠ ∅. 

3) If 𝑅 = {𝑥} then  

a) {𝑥} = 𝑉1234. 

b) there is at least one 𝑓 ∉ 𝐸 such that |𝑓| =
|𝑑(𝑓)| = 3. 

Proof By Corollary 1, 𝑅 = 𝑉12 ∪ 𝑉13 ∪ 𝑉24 ∪ 𝑉34 ∪
𝑉1234. Let 𝑓 ∈ 𝐸 such that |𝑓| = |𝑑(𝑓)| = 3. Since 𝐻 is 

clutter and 𝑔 ∈ 𝐸, 𝑓 = {𝑥1, 𝑥2, 𝑥4} or 𝑓 = {𝑥3, 𝑥2, 𝑥4}. 
Suppose 𝐻 is 2-colorable, let (𝐴, 𝐵) be a 2-coloring of 

𝐻. Since 𝑔 ∩ 𝑅 = ∅, we can suppose without loss of 

generality that 𝑥1 ∈ 𝐴, 𝑥3 ∈ 𝐵.  

If 𝑓1 ∩ 𝑅 = ∅ then 𝑥2 ∈ 𝐵. If 𝑓2 ∩ 𝑅 = ∅ then 𝑓2 ∩
𝐴 = ∅, contradiction. So, 𝑓2 ∩ 𝑅 must be non-empty. 

Similarly, 𝑓3 ∩ 𝑅 and 𝑓4 ∩ 𝑅 cannot be both empty. 

Let 𝑅 = {𝑥} and {𝑥} ≠ 𝑉1234. By conditions 1 and 2, 
{𝑥} = 𝑉13 or {𝑥} = 𝑉24. Without loss of generality 

suppose that {𝑥} = 𝑉13. Then 𝑥 ∉ 𝑓2 and 𝑥 ∉ 𝑓4. So 𝑥2 ∈
𝐴 and 𝑥4 ∈ 𝐵, therefore 𝑥 ∈ 𝐵. But now 𝑓3 ∩ 𝐴 = ∅, 

contradiction, so {𝑥} = 𝑉1234. Suppose that 𝑓 =
{𝑥1, 𝑥2, 𝑥4} ∈ 𝐸 and 𝑓′ = {𝑥3, 𝑥2, 𝑥4} ∈ 𝐸. Without loss 

of generality suppose that 𝑥 ∈ 𝐴. Since 𝑥 ∉ 𝑓, 𝑥2 ∈ 𝐵 or 

𝑥4 ∈ 𝐵. If 𝑥2 ∈ 𝐵 and 𝑥4 ∈ 𝐴 then 𝑓4 ∩ 𝐵 = ∅, if 𝑥2 ∈

𝐴 and 𝑥4 ∈ 𝐵 then 𝑓1 ∩ 𝐵 = ∅, contradiction. So, 𝑥2 ∈
𝐵 and 𝑥4 ∈ 𝐵. Now, 𝑓′ ∩ 𝐴 = ∅, contradiction. 

Suppose conditions 1, 2 and 3 are hold. We will 

construct a 2-coloring of 𝐻. Note that, by conditions 1 

and 2, 𝑅 cannot be equal to 𝑉12 or 𝑉34. If 𝑅 is equal to 

one of the sets 𝑉13, 𝑉24 or 𝑉1234 then, since 𝐻 is clutter, 

any hyperedge 𝑒 ∈ 𝐸 such that |𝑑(𝑒)| = 2,either 𝑒 = 𝑔 

or 𝑒 = ℎ where 𝑑(ℎ) = {𝑥2, 𝑥4} or 𝑒 = 𝑓𝑗, 1 ≤ 𝑗 ≤ 4.  

Suppose first 𝑅 = {𝑥} and 𝐸 contains at most the 

hyperedge 𝑓 = {𝑥1, 𝑥2, 𝑥4}. Since {𝑥} = 𝑉1234 and 

𝑓′ = {𝑥3, 𝑥2, 𝑥4} ∉ 𝐸 then ({𝑥3, 𝑥2, 𝑥4}, {𝑥3, 𝑥}) is a 2-

coloring of 𝐻. 

Suppose now |𝑅| ≥ 2. If 𝑅 = 𝑉13 then for any 𝑥 ∈
𝑅, 𝐶 = ({𝑥1, 𝑥2, 𝑥}, {𝑥3, 𝑥4} ∪ 𝑅 − {𝑥}) is a 2-coloring 

of 𝐻. If 𝑅 = 𝑉24 then for any 𝑥 ∈ 𝑅, 𝐶′ =
({𝑥1, 𝑥4, 𝑥}, {𝑥2, 𝑥3} ∪ 𝑅 − {𝑥}) is a 2-coloring of 𝐻. If 

𝑅 = 𝑉1234 then 𝐶 or 𝐶′ is a 2-coloring of 𝐻. 

Suppose that 𝑅 ≠ 𝑉1234, 𝑅 ≠ 𝑉13 and 𝑅 ≠ 𝑉24. We 

claim that 𝐶 = ({𝑥1, 𝑥2, 𝑥4}, {𝑥3} ∪ 𝑅) or 𝐶′ =
({𝑥3, 𝑥2, 𝑥4}, {𝑥1} ∪ 𝑅) is a 2-coloring of 𝐻. 

Note that, since 𝐻 is clutter, 𝐸 does not contain a 

hyperedge 𝑓′𝑖 = {𝑥𝑖, 𝑥𝑖+1}, 1 ≤ 𝑖 ≤ 4, distinct of 𝑓𝑖. 

Since 𝑅 ≠ 𝑉1234, by Lemma 3, if 𝐸 contains the 

hyperedge 𝑓 with 𝑑(𝑓) = {𝑥1, 𝑥2, 𝑥4} or the hyperedge 

𝑓′ with 𝑑(𝑓) = {𝑥3, 𝑥2, 𝑥4} then 𝑓 ∩ 𝑅 ≠ ∅ and 𝑓′ ∩
𝑅 ≠ ∅. By supposition, if 𝐸 contains the hyperedge ℎ 

with 𝑑(ℎ) = {𝑥2, 𝑥4} then ℎ ∩ 𝑅 ≠ ∅.  

If for every 1 ≤ 𝑗 ≤ 4, 𝑓𝑗 ∩ 𝑅 ≠ ∅ then 𝐶 or 𝐶′ is a 

2-coloring of 𝐻.  

Suppose 𝑓1 ∩ 𝑅 = ∅ (resp. 𝑓4 ∩ 𝑅 = ∅). By 

condition 1, 𝑓2 ∩ 𝑅 ≠ ∅ (resp. by condition 2, 𝑓3 ∩ 𝑅 ≠
∅), since 𝑅 ≠ 𝑉24 (resp 𝑅 ≠ 𝑉13), 𝑓3 ∩ 𝑅 ≠ ∅ (resp. 

𝑓1 ∩ 𝑅 ≠ ∅), So 𝐶′ is a 2-coloring of 𝐻. In analogue 

argument, if 𝑓2 ∩ 𝑅 = ∅ or 𝑓3 ∩ 𝑅 = ∅ then 𝐶 is a 2-

coloring of 𝐻. □ 

In analogue way, the following theorem is hold. 

Theorem 3 Suppose 𝐸 contains ℎ = {𝑥2, 𝑥4} and does 

not contain 𝑔 = {𝑥1, 𝑥3}. 𝐻 is 2-colorable if and only if 

the following conditions hold: 

1) 𝑓2 ∩ 𝑅 ≠ ∅ or 𝑓3 ∩ 𝑅 ≠ ∅. 

2) 𝑓1 ∩ 𝑅 ≠ ∅ or 𝑓4 ∩ 𝑅 ≠ ∅. 

3) If 𝑅 = {𝑥} then  

a) {𝑥} = 𝑉1234. 

b) there is at least one 𝑓 ∉ 𝐸 such that 
|𝑓| = |𝑑(𝑓)| = 3. 

Theorem 4 Suppose 𝐸 contains both 𝑔 = {𝑥1, 𝑥3} and 

ℎ = {𝑥2, 𝑥4}. 𝐻 is 2-colorable if and only if one of the 

following conditions holds: 

1) |𝑉13| + |𝑉1234| ≥ 2 

2) |𝑉24| + |𝑉1234| ≥ 2 

Proof By Corollary 3, 𝑅 = 𝑉13 ∪ 𝑉24 ∪ 𝑉1234. Let 

(𝐴, 𝐵) be a 2-coloring of 𝐻. Since 𝑔 = {𝑥1, 𝑥3}, ℎ =
{𝑥2, 𝑥4} ∈ 𝐸, we can suppose without loss of generality 
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that 𝑥1, 𝑥2 ∈ 𝐴 and 𝑥3, 𝑥4 ∈ 𝐵. If conditions 1 and 2 are 

not hold then either |𝑅| = 1 or |𝑉13| = |𝑉24| = 1. In all 

cases, either 𝑓1 ∩ 𝐵 = ∅ or 𝑓3 ∩ 𝐴 = ∅, contradiction. 

Suppose condition 1 or 2 is hold. We claim that if 𝑓 ∈
𝐸 such that |𝑑(𝑓)| = 2 then 𝑓 ∈ {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑔, ℎ}. 

Let 𝑓 ∈ 𝐸 such that |𝑑(𝑓)| = 2 and 𝑓 ∉
{𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑔, ℎ}. Since 𝐻 is clutter and 𝑔, ℎ ∈ 𝐸, 

𝑑(𝑓) ≠ {𝑥1, 𝑥3} and 𝑑(𝑓) ≠ {𝑥2, 𝑥4}. So 𝑑(𝑓) =

𝑑(𝑓𝑗) = {𝑥𝑗, 𝑥𝑗+1}, 1 ≤ 𝑗 ≤ 4. Suppose 𝑗 = 1 or 3. Since 

𝐻 is clutter, there are 𝑥 ∈ 𝑓 − 𝑓𝑗 and 𝑦 ∈ 𝑓𝑗 − 𝑓. As 𝑗 =

1 or 3 and 𝑥 ∉ 𝑓𝑗 then 𝑥 ∈ 𝑉24. As 𝑦 ∈ 𝑓𝑗 and 𝑗 = 1 or 3 

then 𝑦 ∈ 𝑉13 ∪ 𝑉1234. Now, 𝑥𝑓𝑥𝑗+1𝑓𝑗𝑦𝑓𝑗+2𝑥𝑗+2𝑔 ≅ 𝑃8, 

contradiction. Similarly, if 𝑗 = 2 or 4, we could find a 

𝑃8. 

By this claim, if condition 1 is hold then, for any 𝑥 ∈
𝑉13 ∪ 𝑉1234 ({𝑥1, 𝑥2, 𝑥}, {𝑥3, 𝑥4} ∪ 𝑅 − {𝑥}) is a 2-

coloring of 𝐻. If condition 2 is hold then, for any 𝑥 ∈
𝑉24 ∪ 𝑉1234, ({𝑥1, 𝑥4, 𝑥}, {𝑥2, 𝑥3} ∪ 𝑅 − {𝑥}) is a 2-

coloring of 𝐻. □  

 

Theorem 5 Suppose 𝐸 does not contain ℎ = {𝑥2, 𝑥4} nor 

𝑔 = {𝑥1, 𝑥3}. Let 𝑔1, … , 𝑔𝑘 , ℎ1, … , ℎ𝑟 ∈ 𝐸 such that for 

1 ≤ 𝑖 ≤ 𝑘 and for 1 ≤ 𝑗 ≤ 𝑟 𝑑(𝑔𝑖) = {𝑥1, 𝑥3} and 

𝑑(ℎ𝑗) = {𝑥2, 𝑥4}. 𝐻 is 2-colorable if and only if one of 

the following conditions holds: 

1) |𝑅| ≥ 2. 

2) If 𝑅 = {𝑥} then  

a) for some 1 ≤ 𝑗 ≤ 4, {𝑥} = 𝑉𝑗𝑗+1𝑗+2 or 

{𝑥} = 𝑉1234. 

b) There is at least one 𝑓 ∉ 𝐸 such that 

|𝑓| = |𝑑(𝑓)| = 3. 

Proof Suppose 𝐻 is 2-colorable, let (𝐴, 𝐵) be a 2-

coloring of 𝐻 and 𝑅 = {𝑥}, then 𝑘 = 𝑟 = 1. By 

Corollary 4, either {𝑥} = 𝑉  13 or {𝑥} =  𝑉  24 or for some 

1 ≤ 𝑗 ≤ 4, {𝑥} = 𝑉𝑗𝑗+1𝑗+2 or {𝑥} = 𝑉1234. If {𝑥} = 𝑉  13 

then 𝑥 ∉ 𝑓2 and 𝑥 ∉ 𝑓4. So, we can suppose without less 

of generality that 𝑥2 ∈ 𝐴, 𝑥3 ∈ 𝐵 and 𝑥1 ∈ 𝐴, 𝑥4 ∈ 𝐵. If 

𝑥 ∈ 𝐴 then 𝑓1 ∩ 𝐵 = ∅, if 𝑥 ∈ 𝐵 then 𝑓3 ∩ 𝐴 = ∅, 

contradiction. Similarly, {𝑥} ≠  𝑉  24. So, either for some 

1 ≤ 𝑗 ≤ 4, {𝑥} = 𝑉𝑗𝑗+1𝑗+2 or {𝑥} = 𝑉1234. 

Suppose that for some 1 ≤ 𝑗 ≤ 4, {𝑥} = 𝑉𝑗𝑗+1𝑗+2 and 

𝑥 ∈ 𝐴. Since 𝑥 ∉ 𝑓𝑗+3, we can suppose that 𝑥𝑗+3 ∈ 𝐴 and 

𝑥𝑗 ∈ 𝐵. Let 𝑓 ∈ 𝐸 such that |𝑓| = |𝑑(𝑓)| = 3. Since 𝐻 

is clutter and 𝑥 ∉ 𝑓𝑗+3, 𝑓 = {𝑥𝑗+3, 𝑥𝑗+1, 𝑥𝑗+2} or 𝑓 =

{𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2}. Suppose 𝐸 contains both 𝑓 =

{𝑥𝑗+3, 𝑥𝑗+1, 𝑥𝑗+2} and 𝑓′ = {𝑥𝑗, 𝑥𝑗+1, 𝑥𝑗+2}. Since 𝑥 ∉ 𝑓, 

𝑥𝑗+1 ∈ 𝐴 or 𝑥𝑗+2 ∈ 𝐵. If 𝑥𝑗+1 ∈ 𝐵 and 𝑥𝑗+2 ∈ 𝐴 then 

𝑓𝑗+2 ∩ 𝐵 = ∅, if 𝑥𝑗+1 ∈ 𝐴 and 𝑥𝑗+2 ∈ 𝐵 then 𝑒 ∩ 𝐵 = ∅ 

where 𝑒 = 𝑔 or 𝑒 = ℎ, contradiction. So, 𝑥𝑗+1, 𝑥𝑗+2 ∈ 𝐵. 

Now, 𝑓′ ∩ 𝐴 = ∅, Contradiction.  

Suppose {𝑥} = 𝑉1234 and 𝑥 ∈ 𝐴. Note that, 𝐴 

contains at most one dominated vertex 𝑥𝑗, 1 ≤ 𝑗 ≤ 4, 

otherwise , 𝐴 contains a dominated hyperedge 𝑓𝑗, 1 ≤

𝑗 ≤ 4 or the hyperedge 𝑔 or ℎ that cannot intersects 

with 𝐵. If for some 1 ≤ 𝑗 ≤ 4, 𝑥𝑗 ∈ 𝐴 then 𝐵 =

{𝑥𝑗+1, 𝑥𝑗+2, 𝑥𝑗+3}. In this case, 𝑓 = {𝑥𝑗+1, 𝑥𝑗+2, 𝑥𝑗+3} ∉

𝐸. If 𝐴 = {𝑥} then 𝐵 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}. In this case 𝐸 

cannot contain any hyperedge 𝑓 with |𝑓| = |𝑑(𝑓)| = 3.  

The inverse. If 𝑅 = {𝑥} = 𝑉1234 then, by condition 

3 there is at most one hyperedge 𝑓 = {𝑥𝑗, 𝑥𝑗+1, 𝑥𝑗+2} ∉

𝐸, so, ({𝑥𝑗, 𝑥𝑗+1, 𝑥𝑗+2}, {𝑥𝑗+3, 𝑥}) is a 2-coloring of 𝐻. 

If {𝑥} = 𝑉𝑗𝑗+1𝑗+2 then 𝑥 ∉ 𝑓𝑗+3. Since 𝐻 is clutter and 

by condition 3, 𝐸 contains at most one of the two 

hyperedges 𝑓 = {𝑥𝑗+3, 𝑥𝑗+1, 𝑥𝑗+2} or 𝑓 =

{𝑥𝑗, 𝑥𝑗+1, 𝑥𝑗+2}. So, ({𝑥𝑗, 𝑥𝑗+1, 𝑥𝑗+2}, {𝑥𝑗+3, 𝑥}) or 

({𝑥𝑗+3, 𝑥𝑗+1, 𝑥𝑗+2}, {𝑥𝑗, 𝑥}) is a 2-coloring of 𝐻.  

Suppose |𝑅| ≥ 2. We will construct a 2-coloring of 

𝐻. Let 𝑅1 = ⋃ 𝑔𝑖
𝑘
𝑖=1 − {𝑥1, 𝑥3} and 𝑅2 = ⋃ ℎ𝑗

𝑟
𝑗=1 −

{𝑥2, 𝑥4}. For our purpose, we distinguish two cases: 

Case 1 There is 𝑥 ∈ 𝑅1 ∪ 𝑅2 such that for some 1 ≤

𝑖, 𝑗 ≤ 4, , 𝑥 ∈ 𝑉𝑖𝑗. By Corollary 4, 𝑥 ∈ ⋂ 𝑔𝑖
𝑘
𝑖=1 −

{𝑥1, 𝑥3} or 𝑥 ∈ ⋂ ℎ𝑗 − {𝑥2, 𝑥4}𝑟
𝑗=1 . Without loss of 

generality, suppose that 𝑥 ∈ ⋂ 𝑔𝑖 − {𝑥1, 𝑥3}𝑘
𝑖=1 , then 

𝑥 ∈ 𝑉  13 ∪ 𝑉  24 ∪ 𝑉23 ∪ 𝑉14. Since |𝑅| ≥ 2, there is 𝑦 ∈
𝑅, 𝑦 ≠ 𝑥. We distinguish two sub-cases: 

1.1 There is 𝑦 ∈ 𝑅 such that 𝑦 ∉ 𝑉𝑖𝑗. By Corollary 4, 

𝑦 ∈ 𝑉𝑠𝑡 ∪ 𝑉𝑙𝑙+1𝑙+2 ∪ 𝑉1234, for some 1 ≤ 𝑠, 𝑡, 𝑙 ≤
4 and 𝑠 ≠ 𝑖 or 𝑡 ≠ 𝑗. So, there is at most one 

dominated hyperedge 𝑓𝑗, 1 ≤ 𝑗 ≤ 4 with 𝑓𝑗 ∩ 𝑅 =

∅. We claim that 𝐶 = ({𝑥1, 𝑥2, 𝑥3}, {𝑥4} ∪ 𝑅) or 

𝐶′ = ({𝑥1, 𝑥3, 𝑥4}, {𝑥2} ∪ 𝑅) is a 2-coloring of 𝐻. 

By Lemma 4, if 𝑓 ∈ 𝐸 with 𝑑(𝑓) = {𝑥1, 𝑥2, 𝑥3} or 

𝑑(𝑓) = {𝑥1, 𝑥3, 𝑥4} then, 𝑥 ∈ 𝑓, so 𝑓 ∩ 𝐵 ≠ ∅. 

Since 𝐻 is clutter, there is no hyperedge 𝑒 ∈ 𝐸 with 

𝑒 = 𝑑(𝑓𝑗), 1 ≤ 𝑗 ≤ 4. Now, if for every 1 ≤ 𝑗 ≤ 4, 

𝑓𝑗 ∩ 𝑅 ≠ ∅ then, 𝐶 or 𝐶′ is a 2-coloring of 𝐻. If 

𝑓1 ∩ 𝑅 = ∅ then 𝑥 ∈ 𝑉  24 ∪ 𝑉23, so 𝐶′ is a 2-

coloring of 𝐻. If 𝑓2 ∩ 𝑅 = ∅ then, 𝑥 ∈ 𝑉  13 ∪ 𝑉14, 

so 𝐶′ also is a 2-coloring of 𝐻. If 𝑓3 ∩ 𝑅 = ∅ then 

𝑥 ∈ 𝑉  24 ∪ 𝑉14, so 𝐶 is a 2-coloring of 𝐻. If 𝑓4 ∩

𝑅 = ∅ then 𝑥 ∈ 𝑉  13 ∪ 𝑉23, so 𝐶 also is a 2-coloring 

of 𝐻.  

1.2 If for every 𝑦 ∈ 𝑅, 𝑦 ∈ 𝑉𝑖𝑗, that is 𝑅 = 𝑉𝑖𝑗. Since 

𝑟, 𝑘 ≥ 1, then by Corollary 4, 𝑖 = 1, 𝑗 = 3 or 𝑖 =

2, 𝑗 = 4 and 𝑅1 = ⋂ 𝑔𝑖
𝑘
𝑖=1 − {𝑥1, 𝑥3}) = 𝑅2 =

(⋂ ℎ𝑗 − {𝑥2, 𝑥4}𝑟
𝑗=1 ). Since|𝑅| ≥ 2, for every 𝑥 ∈

𝑅, ({𝑥1, 𝑥2, 𝑥}), {𝑥3, 𝑥4} ∪ 𝑅 − {𝑥}) is a 2-coloring 

of 𝐻 if 𝑖 = 1, 𝑗 = 3 and ({𝑥2, 𝑥3, 𝑥}), {𝑥1, 𝑥4} ∪
𝑅 − {𝑥}) is a 2-coloring of 𝐻 if 𝑖 = 2, 𝑗 = 4.  

Case 2 For every 𝑥 ∈ 𝑅1 ∪ 𝑅2, 𝑥 ∉ 𝑉𝑖𝑗 for any 1 ≤

𝑖, 𝑗 ≤ 4. By Corollary 4, 𝑅1 ∪ 𝑅2 ⊆ ⋃ 𝑉𝑗𝑗+1𝑗+2
4
𝑗=1 ∪

𝑉1234, and 𝑅 = �⃖� 13 ∪ �⃖� 24 ∪ ⋃ 𝑉𝑗𝑗+1𝑗+2
4
𝑗=1 ∪ 𝑉1234. 

We distinguish two sub-cases: 

1.1 There is 𝑥 ∈ 𝑅1 ∪ 𝑅2 such that 𝑥 ∈ 𝑉𝑗𝑗+1𝑗+2 for 

some 1 ≤ 𝑗 ≤ 4. We claim that 𝑉𝑗𝑗+1𝑗+2 ⊆ 𝑓 
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where 𝑑(𝑓) = {𝑥𝑗, 𝑥𝑗+1, 𝑥𝑗+3}. Otherwise, if 𝑥 ∈

𝑉𝑗𝑗+1𝑗+2 and 𝑥 ∉ 𝑓 then, 𝑓𝑗+3𝑥𝑗+3𝑓𝑥𝑗+1𝑓𝑗𝑥𝑒𝑥𝑗+2 ≅

𝑃8 where 𝑒 = 𝑔1 if 𝑗 = 1,3 or 𝑒 = ℎ1 if 𝑗 = 2,4, 

contradiction.  

Since |𝑅| ≥ 2, there is 𝑦 ∈ 𝑅, 𝑦 ≠ 𝑥. If there is 𝑦 ∈

𝑅 and 𝑦 ∉ 𝑉𝑗𝑗+1𝑗+2 then, 𝑦 ∈ �⃖� 13 ∪ �⃖� 24 ∪

⋃ 𝑉𝑗𝑗+1𝑗+2
4
𝑗=1 ∪ 𝑉1234. If 𝑦 ∈ 𝑉1234 then, for any 

1 ≤ 𝑗 ≤ 4, 𝑓𝑗 ∩ 𝑅 ≠ ∅. By the above claim and 

since 𝐻 is clutter, ({𝑥𝑗, 𝑥𝑗+1, 𝑥𝑗+3}, {𝑥𝑗+4} ∪ 𝑅) is a 

2-coloring of 𝐻. If 𝑦 ∈ �⃖� 13 ∪ �⃖� 24 then there is at 

most one dominated hyperedge 𝑓𝑗, 1 ≤ 𝑗 ≤ 4 with 

𝑓𝑗 ∩ 𝑅 = ∅. By Lemma 3 and Lemma 4, 𝑉13 ∪

𝑉24 ⊆ 𝑓, where 𝑑(𝑓) = {𝑥𝑗, 𝑥𝑗+2, 𝑥𝑗+3}. So, since 𝐻 

is clutter, ({𝑥𝑗, 𝑥𝑗+2, 𝑥𝑗+3}, {𝑥𝑗+1} ∪ 𝑅) is a 2-

coloring of 𝐻. 

If for every 𝑦 ∈ 𝑅, 𝑦 ∈ 𝑉𝑗𝑗+1𝑗+2 then, by Corollary 

4, 𝑅 = 𝑅1 = 𝑅2 = 𝑉𝑗𝑗+1𝑗+2  

So, for every 𝑥 ∈ 𝑅, ({𝑥1, 𝑥3, 𝑥}, {𝑥2, 𝑥4} ∪ 𝑅 −
{𝑥}) is a 2-coloring of 𝐻. 

2.2 𝑉𝑗𝑗+1𝑗+2 = ∅ for any 1 ≤ 𝑗 ≤ 4. In this case 𝑅 =

�⃖� 13 ∪ �⃖� 24 ∪ 𝑉1234. Since 𝑟, 𝑘 ≥ 1 then, 𝑉1234 ≠ ∅. 

If �⃖� 13 ∪ �⃖� 24 ≠ ∅ then by Lemma 3 and Lemma 4, 

�⃖� 13 ∪ �⃖� 24 ⊆ 𝑓 where 𝑑(𝑓) = {𝑥𝑗, 𝑥𝑗+1, 𝑥𝑗+2}, 1 ≤

𝑗 ≤ 4. So, since 𝐻 is clutter, 

({𝑥𝑗, 𝑥𝑗+2, 𝑥𝑗+3}, {𝑥𝑗+1}} ∪ 𝑅) is a 2-coloring of 𝐻. 

If �⃖� 13 ∪ �⃖� 24 = ∅ then 𝑅 = 𝑉1234. Since 𝐻 is clutter, 

for every 𝑥 ∈ 𝑅, ({𝑥1, 𝑥2, 𝑥}, {𝑥3, 𝑥4} ∪ 𝑅 − {𝑥}) is 

a 2-coloring of 𝐻. □ 

3. Algorithmic Aspects 

The discussion in previous section can be summarized 

algorithmically as following: Given a hypergraph 𝐻 =
(𝑉, 𝐸) whose incidence graph 𝐺 = (𝑉 ∪ 𝐸, 𝐼) is 𝑃8-free. 

Let |𝑉| = 𝑛 and |𝐸| = 𝑚. The following algorithm 

convert 𝐻 to a clutter hypergraph, that is, it deletes for 

every pair 𝑒, 𝑓 ∈  𝐸 with 𝑒 ⊆  𝑓 the hyperedge 𝑓 from 

𝐻. 

 
Algorithm Convert 𝐻 to a clutter 

for 𝑖 = 1 to 𝑚 do 

     if 𝑒𝑖 ≠ ∅ then 

         𝑗 = 1 

         while 𝑗 ≤ 𝑚 do 

               if 𝑒𝑗 ≠ ∅ and 𝑖 ≠ 𝑗 then 

                  if 𝑒𝑖 ⊆ 𝑒𝑗 then 

                      𝐸 = 𝐸 − {𝑒𝑗}, 𝑒𝑗 = ∅ 

                j=j+1 

Obviously, the worst case occurs when 𝐻 is already 

clutter and the running time in this case is 𝑂(𝑛𝑚2). 

Suppose now 𝐻 is clutter and its incidence graph 𝐺 is 

𝑃8-free. Moreover, we may assume that 𝐻 is connected, 

that is, 𝐺 is connected, otherwise, we just proceed 

component-wise. Let 𝐷 be a dominating set of 𝐺 such 

that 𝐺[𝐷] ≅ 𝐶8. Camby and Schaudt in [16] show that 

the computation of such connected dominating set can 

be done in time 𝑂(𝑛5(𝑛 + 𝑚)). Let 𝐷 =
{𝑥1, 𝑓1, 𝑥2, 𝑓2, 𝑥3, 𝑓3, 𝑥4, 𝑓4} where 𝑋 =
{𝑥1, 𝑥2, 𝑥3, 𝑥4, } ⊆ 𝑉, 𝐹 = {𝑓1, 𝑓2, 𝑓3, 𝑓4} ⊆ 𝐸 and 

𝐺[𝐷] = 𝑥1𝑓1𝑥2𝑓2𝑥3 𝑓3𝑥4𝑓4𝑥1 ≅ 𝐶8.  

The following algorithm test weather 𝐻 is 2-

colorable or not. 

Algorithm 2-colorability 

𝐸13 = ∅, 𝐸24 = ∅, 𝐸3 = ∅, 𝑅 = 𝑉 − 𝑋 

for 𝑖 = 1 to 𝑚 do 

   if 𝑑(𝑒𝑖) = {𝑥1, 𝑥3} then 𝐸13 = 𝐸13 ∪ {𝑒𝑖} 
   if 𝑑(𝑒𝑖) = {𝑥2, 𝑥4} then 𝐸24 = 𝐸24 ∪ {𝑒𝑖} 

   if 𝑑(𝑒𝑖) = 𝑒𝑖 and |𝑒𝑖| = 3 then 𝐸3 = 𝐸3 ∪ {𝑒𝑖} 
if 𝐸13 = {𝑒} = {𝑥1, 𝑥3} and 𝐸24 = {𝑒} = {𝑥2, 𝑥4} then  

     return 2-colorability type 1 

else if 𝐸13 = {𝑒} = {𝑥1, 𝑥3} then  

     return 2-colorability type 2 

else if 𝐸24 = {𝑒} = {𝑥2, 𝑥4} then 

     return 2-colorability type 3 

else return 2-colorability type 4 

Remark that, if 𝐻 is of type 2 or 3 then |𝐸3| ≤ 2, and 

if 𝐻 is of type 4 then |𝐸3| ≤ 4. 

 

 
Procedure 2-colorability type 1 

𝑉13 = 𝑓1 ∩ 𝑓3 ∩ 𝑅 − (𝑓2 ∩ 𝑓4)  

𝑉24 = 𝑓2 ∩ 𝑓4 ∩ 𝑅 − (𝑓1 ∩ 𝑓3)  

𝑉1234 = 𝑓1 ∩ 𝑓2 ∩ 𝑓3 ∩ 𝑓4 ∩ 𝑅 

if |𝑉13| + |𝑉1234| ≥ 2 or |𝑉24| + |𝑉1234| ≥ 2 then 

      return 𝐻 is 2-colorable 

else return 𝐻 is not 2-colorable 

Procedure 2-colorability type 2 

If |𝑅| ≥ 2 then 

if (𝑓1 ∩ 𝑅 ≠ ∅ or 𝑓2 ∩ 𝑅 ≠ ∅) and (𝑓3 ∩ 𝑅 ≠ ∅ or f4 ∩
R ≠ ∅) then  

 return 𝐻 is 2-colorable 

    else return 𝐻 is not 2-colorable 

 else let 𝑅 = {𝑥} 
     if 𝑥 ∈ 𝑓1 ∩ 𝑓2 ∩ 𝑓3 ∩ 𝑓4 and |𝐸3| ≤ 1 then 

         return 𝐻 is 2-colorable 

     else return 𝐻 is not 2-colorable 

Procedure 2-colorability type 3 

If |𝑅| ≥ 2 then 

if (𝑓1 ∩ 𝑅 ≠ ∅ or 𝑓4 ∩ 𝑅 ≠ ∅) and (𝑓2 ∩ 𝑅 ≠ ∅ 

 or 𝑓3 ∩ 𝑅 ≠ ∅) then  

 return 𝐻 is 2-colorable 

     else return 𝐻 is not 2-colorable 

else let 𝑅 = {𝑥} 

     if 𝑥 ∈ 𝑓1 ∩ 𝑓2 ∩ 𝑓3 ∩ 𝑓4 and |𝐸3| ≤ 1 then  

    return 𝐻 is 2-colorable 

     else return 𝐻 is not 2-colorable  

Procedure 2-colorability type 4 

if 𝑅 = ∅ then  

   if 𝐸 = 𝐹 then return 𝐻 is 2-colorable 

   else return 𝐻 is not 2-colorable 
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else if 𝐸13 = ∅ or 𝐸24 = ∅ then  

         return 𝐻 is 2-colorable 

       else if |𝑅| ≥ 2 return 𝐻 is 2-colorable 

              else let 𝑅 = {𝑥} 

                if 𝑥 ∈ 𝑓1 ∩ 𝑓2 ∩ 𝑓3 ∩ 𝑓4 or 𝑥 ∈ 𝑓𝑗 ∩  𝑓𝑗+1 ∩ 𝑓𝑗+2 −

                                                             𝑓𝑗+3, 1 ≤ 𝑗 ≤ 4 then 

                   if |𝐸3| ≤ 3 then 

                              return 𝐻 is 2-colorable  

                  else return 𝐻 is not 2-colorable 

                else return 𝐻 is not 2-colorable 

Obviously, Procedure 2-colorability type 𝑖, 1 ≤ 𝑖 ≤
4, run within 𝑂(𝑛) time, and Algorithm 2-colorability 

run within 𝑂(𝑛 + 𝑚) time. As Algorithm Convert 𝐻 to 

a clutter run within 𝑂(𝑛𝑚2) time and 𝑛 + 𝑚 ≤ 𝑛𝑚2 

then, the running time of testing weather 𝐻 is 2-colorable 

or not is 𝑂(𝑛𝑚2). 

4. Conclusions 

In this paper we solved hypergraph 2-colorability 

problem when the incidence graph is 𝑃8-free and having 

a dominating set isomorphic to 𝐶8. By Theorem 1, such 

incidence graph may have a dominating set 𝐷 such that 

𝐺[𝐷] is 𝑃6-free. So, in order to be this problem solvable 

completely, one should study this last case. From other 

part, it seems possible that, with more work, one could 

push our approach to hypergraphs with 𝑃𝑘-free incidence 

graphs and a dominated set isomorphic to 𝐶𝑘 (𝑘 is even). 

However, more interesting would be to know whether 

there is any 𝑘 for which hypergraph 2-colorability for 

hypergraphs with 𝑃𝑘-free incidence graphs is not 

solvable in polynomial time. 
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