
208                                                         The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 

Parallelization of Frequent Itemset Mining 

Methods with FP-tree: An Experiment with 

PrePost+ Algorithm 

Olakara Jamsheela1 and Raju Gopalakrishna2 
1EMEA College of Arts and Science, Calicut University, India 

2Computer Science and Engineering, CHRIST (Deemed to be University), India 

Abstract: Parallel processing has turn to be a common programming practice because of its efficiency and thus becomes an 

interesting field for researchers. With the introduction of multi- core processors as well as general purpose graphics 

processing units, parallel programming has become affordable. This leads to the parallelization of many of the complex 

data processing algorithms including algorithms in data mining. In this paper, a study on parallel PrePost+ is presented. 

PrePost+ is an efficient frequent itemset mining algorithm. The algorithm has been modified as a parallel algorithm and the 

obtained result is compared with the result of sequential PrePost+ algorithm.  

Keywords: Data Mining algorithm, parallelization of PrePost+, parallel processing, multicore. 

Received April 6, 2020; accepted August 26, 2020 

https://doi.org/10.34028/iajit/18/2/9 
 

 

1. Introduction 

Parallel and distributed processing are inevitable 

components in big data processing. Parallel versions of 

Association Rule Mining as well as Frequent Itemset 

Mining have been developed in the last decade. A 

parallel version of the Pre- Post+, an FP-tree based 

Frequent Pattern Mining algorithm is presented in this 

paper. When considering the question “what is big 

data?” size is the first thing that comes to mind. 

However, other features of big data have been 

emerged recently [6]. Parallel processing is an 

efficient technique to reduce the processing time of 

big data. 

1.1. Parallel Processing 

Parallel processing is the processing of program 

instructions by dividing them among multiple 

processors with the objective of running a program in 

less time [15]. By using parallel processing, different 

parts of a single program can be run simultaneously. 

The running time can be reduced. Each processor 

works independently and processors communicate each 

other using some specific functions or with shared 

memory. The commonly used hardware platforms for 

parallel processing includes multicore, Graphics 

Processing Unit (GPU) and clusters.  

1.1.1. Multicore 

Recently, integrated circuits are designed to put several 

CPUs on one chip, termed as multicore chip. Dual-core 

chips and quad-core processors are now available at 

affordable cost. As the invention of the integrated 

circuits revolutionized the computer industry by 

making computers affordable to the man, multicore 

chips undoubtedly revolutionized the world of parallel 

programming [17] Parallel programs can run in a 

single machine with a multi-core processor. The 

bottleneck is the size of the main memory and the cost 

associated with memory management. When the 

memory requirement is very high, cluster computing 

is a cheaper and efficient alternative. 

1.1.2. Clusters 

A group of individual PCs with uniprocessor (or 

multiprocessor) are connected together by using a 

network and using parallel-processing software, can 

form very powerful parallel processing system. The 

most common type of cluster is the Beowulf cluster, 

which is implemented on multiple identical 

commercial off-the-shelf computers connected with a 

Transmission Control Protocol and Internet Protocol 

(TCP/IP) Ethernet local area network [8]. The 

majority of the TOP500 supercomputers are clusters 

[8]. 

1.1.3. GPU 

 GPU is a special purpose processor designed for 

calculations required for Computer Graphics. GPU 

contains thousands of smaller and efficient cores 

optimized for handling multiple tasks simultaneously. 

A CPU is a general purpose processor consists of a 

few cores optimized for sequential serial processing. 

CPU can do any computation including Graphics 

https://doi.org/10.34028/iajit/18/2/9


Parallelization of Frequent Itemset Mining Methods with FP-tree: An Experiment ...                                                              209 

processing but not in an optimal fashion and cannot 

produce the result as fast as a GPU. Both can work 

together while GPU is doing calculations for graphics, 

CPU can do other non-graphics calculations 

simultaneously. Parallel programming can be 

implemented with single GPU but multiple GPUs can 

be used for higher levels of parallelism. GPU and CPU 

can be used together in a single system for parallel 

programming or both can be connected together as 

clusters in separate systems. The combination can 

deliver the best performance. an American technology 

company (NVIDIA) has developed the Compute 

Unified Device Architecture (CUDA) language as a 

vehicle for programming on their GPUs. CUDA 

enables to harness the tremendous computational power 

and memory bandwidth of the GPU in a familiar 

programming environment [14].  

1.1.4. Parallel Processing with MATLAB 

MATLAB [21] is one of the most widely used 

interactive mathematical computing environments in 

technical computing. It provides high performance 

computational routines and an easy-to-use, C-like 

scripting language [4]. Parallel Computing Toolbox 

(PCT) of Matlab enables to create parallel Matlab 

programs using multicore processors, GPUs, and 

computer clusters. High level constructs- parallel for-

loops, special array types, and parallelized numerical 

algorithms support to parallelize MATLAB 

applications without CUDA or MPI programming [16]. 

If multiple clusters are used, then use PCT functions 

and MATLAB Distributed Computing Server (MDCS) 

software. The method ‘matlabpool’ is used to indicate 

the starting of the parallelization of the program and 

also used to set the number of workers or clusters. 

MATLAB*P [10] provides a user-friendly environment 

to implement parallelism in MATLAB with the use of 

object oriented programming features. Among the most 

notable MATLAB based utilities for parallel 

programming are pMATLAB [22] and MatlabMPI [12] 

from Massachusetts Institute of Technology (MIT) 

Lincoln Laboratory.  

1.1.5. Parallel Programming with Java 

Java Platform, Java SE 5 and Java SE6 introduced a set 

of packages providing powerful concurrency building 

blocks called java.util.concurrent. Java SE 7 further 

enhanced them. Earlier versions of Java support 

multithreaded programming. Many new features such 

as Executors, thread safe queues, rich synchronization 

patterns, a wide range of locks etc. have been 

introduced in this package to improve the performance 

of parallel programming. The fork/join framework is 

added in Java SE 7 to support the parallelization of 

divide- and-conquer algorithms [23]. 

Open source software are also available for parallel 

processing. MPJ Express is an open source Java 

message passing library that allows application 

developers to write and execute parallel applications 

for multicore processors and compute clusters/ clouds 

[20]. Apache Hadoop project develops open-source 

software for reliable, scalable, distributed computing 

[19]. The Apache Hadoop software library allows the 

distributed processing of large data sets across clusters 

of computers using simple programming models. The 

library is designed to detect and handle failures at the 

application layer, on top of a cluster of computers [9] 

1.1.6. The Exact Time to Use Parallel Processing 

The complex and time consuming programs can be 

made easy and fast by using parallel programming. 

Many real time problems are so large to solve them on 

a single computer as a sequential program with limited 

computer memory. In these situations the parallel 

processing is the best solution. But not every task runs 

better in parallel. Parallel processing is much more 

complex than corresponding serial applications. 

Multiple instruction streams have to be separately 

assigned to each processor. The communication 

among the processors should also be well managed. 

Message passing among distributed memory may 

degrade the efficiency of the process. Some programs 

such as short running programs, programs with no 

independent executable units etc. perform better in 

serial implementation than parallel implementation. 

The overhead costs associated with communications, 

setting up the parallel environment, task creation and 

termination can comprise a significant portion of the 

total execution time for such programs. 

2. Literature Review 

Very few research papers have been published 

suggesting the use of parallel processing in Frequent 

Itemset Mining. Researchers finds that, when applying 

parallel processing on Apriori algorithms, it suffer I/O 

and synchronization overhead. But they suggested that 

the problem can be solved by using the FP-growth like 

methods. The authors of International Advance 

Computing (IAC) algorithm, use CR-tree and FP-tree 

to generate hidden rules instead of using the Apriori 

[2]. FP-growth method is faster than Apriori [11], but 

FP-growth algorithm also have some problems with 

parallel processing such as the construction of in-

memory FP-tree. Athavale et al. [3] suggest a tool to 

convert the sequential C programs to parallel code. 

Another method is introduced by Mohemmad and 

Refaat [18] by suggesting to divide the database and 

distributes it over the system nodes. Xia et al. [24] 

suggested a parallel frequent itemset mining algorithm 

called IPFP by using Hadoop MapReduce to handle 

massive small files datasets effectively. A parallel 

association rule mining method based on cloud 

computing is implemented by Yong et al. [27]. A new 

method called Fidoop is proposed for parallel 



210                                                         The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 

processing of frequent itemset mining by using frequent 

ultrametric trees (FIUT) instead of FP-tree. The 

MapReduce programming model is used to develop the 

parallel frequent itemsets mining algorithm [25]. 

Parallel Association Rules Extractor from SNPs 

(PARES) is introduced as a novel parallel algorithm for 

the efficient extraction of association rules from omics 

datasets [1]. Another paper proposed a search strategy 

for Frequent Itemset Mining (FIM), based on 

equivalence classes partitioning which allows dividing 

the search space into disjoint sets and enables parallel 

processing [13]. A Parallel Particle swarm optimization 

for Quantitative Association Rule mining (PPQAR) is 

proposed with two methods, particle-oriented and data-

oriented parallelization [26]. 

 It can be noticed that most of the papers used the 

parallel technology to apply in a specific field and 

proved as efficient. The data sets are also specific and 

the algorithms applied in specific fields. The authors 

did not mention the common steps to follow while 

converting into parallel algorithm. These are the major 

issues detected in the related works. In this paper we 

have mentioned the detailed procedure and steps to 

convert a sequential algorithm into a parallel one which 

can be applied on any algorithm and experimentally 

applied the method on a popular FP-tree based 

association rule mining algorithm, PrePost+. The 

experimental results show that the proposed method is 

efficient than sequential algorithm.  

3. FP-Tree Based Parallel Algorithm For 

Frequent Itemset Mining  

When converting a sequential program to parallel pro- 

gram, the programmer has to think how to break the 

programming instructions into pieces, and has to figure 

out how the pieces relate to each other. The efficiency 

of the method greatly depends on the structuring of the 

program in each processor. In this paper the recent 

frequent itemset mining algorithm, PrePost+ [5], is 

selected to introduce the efficiency of the 

parallelization. The implementation details are 

described below. 

3.1. Parallel PrePost+ 

The FP-growth algorithm have mainly three phases. 

1. The pre-processing step: the processes applied on the 

transactions before inserting into the FP-tree. 

2. Tree construction. The processed transactions have 

to be inserted to the FP-tree data structure. 

3. The mining phase. The frequent itemsets are mined 

from the FP-tree. 

The above three steps are processed sequentially. The 

tree construction starts only after completing the first 

phase and the mining process starts only after the 

completion of tree construction. It is not desirable to 

assign each phase to each processor as each processor 

have to wait for the output of the other processor. To 

get the maximum efficiency of parallel processing the 

set of programming instructions within these three 

phases can be split and allotted to different processors. 

In the proposed approach, only the first phase is 

converted to a parallel code. 

The algorithm PrePost+suggested by Deng at el., 

[5] which is an efficient Frequent Itemset mining 

algorithm, is chosen for parallelizing. The algorithm 

starts by scanning the database to find the frequent 1-

itemsets. Next step is the transaction processing. To 

process each transaction, scan the database again, 

remove the infrequent items from the transaction and 

sort the frequent items. The tree construction is carried 

out by taking each processed transaction. 

The steps in the design of parallel PrePost+ are: 

1. Split the database based on the number of cores 

(processors). If n cores are used, split database into 

n. 

2. Each core is assigned function segment to find 

frequent 1-itemsets. 

3. Load code segment for transaction processing into 

the n cores. Processes other than (2) and (3) are 

assigned to the main core Cm 

4. Each core count the frequent 1-itemset by scanning 

the chunk of database allocated to it. 

5. Each core forwards the frequent 1-itemsets with 

support count to a designated core, Cd. Cd merge 

the output of different cores and send the merged 

itemset with support count to all other cores. 

6. After receiving the frequent 1-itemsets of the entire 

database, transaction processing is carried out in 

each core simultaneously. 

7. Each core send the reduced transactions to the main 

core, Cm. 

8. After completing all the transactions processing, 

the core Cm starts the tree construction. 

9. The remaining procedures are done sequentially by 

Cm. 

The block diagram in Figure 1 shows the complete 

procedure. We have carried out experiments with 3, 5 

and 6 cores. Because of the overhead associated with 

splitting and merging, it is observed that the time 

required to complete the task is minimum when 3 

cores are employed. Of the three, any one can be set as 

main core. 



Parallelization of Frequent Itemset Mining Methods with FP-tree: An Experiment ...                                                              211 

 
Figure 1. The procedure of parallel PrePost+. 

3.2. Problems with Parallelization of the 

Algorithm 

Here, only the pre-processing phase is parallelized. The 

time consuming part of the suggested parallel process is 

the message passing. Each core uses its own local 

memory. To send each processed transaction a ‘send 

function’ should be invoked. The tree creation is done 

only in main core Cm. The Cm invoke the ‘receive 

method’ to receive all the processed transactions. To 

avoid this overhead a portion of the transaction can be 

assigned to Cm. The Cm simultaneously inserts the 

processed transactions into the Tree. 

3.3. Parallelization of the Other Two Phases  

The proposed method is implemented only on the 

transaction preprocessing phase. The tree creation 

phase and the mining phase can also be parallelized. 

Each core constructs its own local FP-tree and sends it 

to the main process. So the message passing can be 

reduced. But the local tree should be combined before 

starting the mining process and the global frequent 

itemset list should be prepared and broadcast. The 

mining phase can efficiently be converted to parallel 

code because mining of each item can be done 

independently with each other. A set of frequent items 

can be allocated to each core to mine its frequent 

itemsets. But the full FP-tree should be loaded to the 

local memory of each core. 

4. Experimental Evaluation 

In the experimental evaluation 5 datasets have been 

used. These datasets are publicly available datasets 

downloaded from FIMI repository (http://fimi.ua.ac.be) 

[7]. Retail is sparse data sets. The Mushroom, Connect, 

Pumsb, accidents etc. are dense data sets. The details 

of the datasets are shown in Table 1. The datasets 

accidents double is the double sized dataset of original 

accidents dataset. All other datasets have been used as 

its original form without losing any data. The data sets 

are real datasets. 

Table I. Datasets. 

 Data sets Transactions Items 

1 Accidents 340183 468 

2 Accidentsdouble 680366 468 

3 Mushroom 8124 119 

4 Pumsb 49046 2113 

5 Retail 88162 16470 

4.1. PrePost+ Algorithm 

PrePost+ algorithm is a modification of PrePost. In 

PrePost+ the N-list data structure and N-list 

intersection of PrePost method to find frequent k-

itemsets have been applied. The set enumeration tree 

is used in PrePost+ to speed up the mining process. 

The authors tried to bring together the advantages of 

PrePost and the advantages of FIN in PrePost+ to 

introduce a more efficient algorithm to mine frequent 

itemsets. The runtime of PrePost+ is compared with 

other 3 efficient algorithms and proved that PrePost+ 

is the fastest one among all algorithms for different 

minimum supports [5].  

4.2. PRL-PrePost+ Algorithm 

The PrePost+ algorithm is converted as Parallel 

PrePost+ by using the MPJ Express software library. 

The performance of the proposed method is evaluated 

by comparing with the sequential PrePost+ algorithm. 

The parallel PrePost+ is denoted as PRL-PrePost+ in 

the experimental results. The results are shown in 

Figures 2 to 6. From the experimental result it is 

observed that, when minimum support reduces the 

runtime of the parallel PrePost+ is less than the 

runtime of PrePost+ algorithm. The runtime of both of 

the algorithms with each dataset are displayed in 

Tables 2 to 6. Runtime is calculated in seconds. All 

the minimum support value of used during the 

execution of the algorithm with the dataset accidents 

double could not be included in the table. The 

algorithm is most effective with the dataset pumsb, 

which is a dense datasets. Other datasets are sparse 

datasets.  
 

 
Figure 2. The runtime evaluation with dataset accidents. 

0

5

10

15

60 50 40 30 20

ti
m

e 
(s

ec
)

minimum support(%)

PrePost+

PRL-PrePost+



212                                                         The International Arab Journal of Information Technology, Vol. 18, No. 2, March 2021 

 
Figure 3. The runtime evaluation with dataset accidents double. 

 
Figure 4. The runtime evaluation with dataset mushroom. 

Figure 5. The runtime evaluation of Parallel PrePost+ with dataset 

pumsb. 

 
Figure 6. The runtime evaluation with dataset retail. 

Table 2. Runtime with accidents dataset. 

Min_support% 60 50 40 30 20 

PrePost+ 6 6 7 8 13 

PRL-PrePost+ 8 8 8 9 10 

Table 3. Runtime with accidents double. 

MinSupport% 55 50 45 40 35 30 20 

PrePost+ 15 16 14 14 17 18 21 

PRL-PrePost+ 15 15 14 14 12 13 18 

Table 4. Runtime with mushroom dataset. 

MinSupport% 7 6 5 4 3 2 

PrePost+ 3 3 9 9 18 37 

PRL-PrePost+ 3 3 8 9 19 37 

Table 5. Runtime with pumsb dataset. 

MinSupport% 80 75 70 65 60 

PRL-PrePost+ 4 5 10 15 30 

PrePost+ 4 6 12 29 56 

 

 

Table 6. Runtime with retail dataset. 

MinSupport% 80 75 70 65 60 

PRL-PrePost+ 4 5 10 15 30 

PrePost+ 4 6 12 29 56 

 

The major limitations of the proposed method are 

the selection of the number of cores and the extra 

effort for the division of the dataset. Sequential 

algorithm is better if the minimum support value is 

very high. 

5.  Conclusions 

With the recent developments in hardware and 

software, parallel processing has become essential 

component in computationally intensive tasks. Any 

sequential program code can be modified in to parallel 

programming code if it has independent program 

units. Here, parallel processing is explained in detail 

and the steps to design a parallel code has been 

introduced by using an example. The example is 

included to simplify and to clear the method in a 

practical approach. A parallel frame work for Frequent 

Itemset mining is proposed, where processing step of 

PrePost
+
 is parallelized. The results obtained are 

encouraging. 

References 

[1] Agapito G., Guzzi P., and Cannataro M., 

“Parallel Extraction of Association Rules from 

Genomics Data,” Applied Mathematics and 

Computation, vol. 350, pp. 434-446, 2019.  

[2] Al-Fayoumi M., Alwidian J., and Abusaif M., 

“Intelligent Association Classification 

Technique for Phishing Website Detection,” The 

International Arab Journal of Information 

Technology, vol. 17, no. 4, pp. 488-496, 2019. 

[3] Athavale A., Randive P., and Kambale A., 

“Automatic Parallelization of Sequential Codes 

Using S2p Tool and Benchmarking of The 

Generated Parallel Codes,” URL http://www. 

kpit. com/downloads/research-papers/automatic-

parallelization-sequential-codes. pdf. Last 

Visited, 2020. 

[4] Choy R. and Edelman A., “Parallel MATLAB: 

Doing it RIght,” Proceedings of the IEEE, vol. 

93, no. 2, pp. 331-341, 2005. 

[5] Deng Z. and Lv S.,” PrePost+: An Efficient N-

Lists-Based Algorithm for Mining Frequent 

Itemsets via Children-Parent Equivalence 

Pruning,” Expert Systems with Applications, vol. 

42, no. 13, pp.5424-5432, 2015. 

[6] Gandomi A. and Haider M., “Beyond The Hype: 

Big Data Concepts, Methods, and Analytics,” 

International Journal of Information 

Management, vol. 35, no. 2, pp. 137-144, 2015. 

0

5

10

15

20

25

90 80 75 70 65 60 55 50 45 40 35 30 20

ti
m

e 
(s

ec
)

minimum support(%)

PrePost+

PRL-PrePost+

0

10

20

30

40

7 6 5 4 3 2

ti
m

e 
(s

ec
)

minimum support(%)

PrePost+
PRL-PrePost+

0

20

40

60

80 75 70 65 60

ti
m

e 
(s

ec
)

minimum support(%)

PrePost+

PRL-PrePost+

0

5

10

15

0.02 0.04 0.06 0.08 0.1 0.2

ti
m

e(
se

c)

minimum support(%)

PrePost+

PRL-PrePost+



Parallelization of Frequent Itemset Mining Methods with FP-tree: An Experiment ...                                                              213 

[7] Goethals B., Fimi repository website. 

http://fimi.ua.ac.be/data/., Last Visited, 2020. 

[8] Guo R., “Variance-Covariance Matrix Estimation 

with LSQR in A Parallel Programming Environ- 

Ment,” Master's Thesis, 2008. 

[9] Hadoop A., Welcome to Apache TM Hadoop®. 

URL http://hadoop.apache.org/, Last Visited, 

2020. 

[10] Husbands P., Isbell C., and Edelman A., 

“MITMatlab: A Tool for Interactive 

Supercomputing, in Proceedings the 9th SIAM 

Confrence, San Antonio, 1999. 

[11] Jamsheela O. and Gopalakrishna R., “Frequent 

Itemset Mining Algorithms: A Literature Survey,” 

in Proceedings of IEEE International Advance 

Computing Conference Banglore, pp. 1099-1104, 

2015. 

[12] Kepner J. and Ahalt S., “MatlabMPI,” Journal of 

Parallel and Distributed Computing, vol. 64, no. 

8, pp. 997-1005, 2004. 

[13] Letras M., Bustio-Martínez L., Cumplido R., 

Hernández-León R., and Feregrino-Uribe C., “On 

the Design of Hardware Architectures for Parallel 

Frequent Itemsets Mining,” Expert Systems with 

Applications, vol. 157, 2020. 

[14] Luebke D., “CUDA: Scalable Parallel 

Programming for High-Performance Scientific 

Computing,” in Proceedings of 5th IEEE 

International Symposium on Biomedical Imaging: 

From Nano to Macro, Paris, pp. 836-838, 2008. 

[15] Lutke bohle I., Search Data Center, 

http://searchdatacenter.techtarget.com/definition/p

arallelprocessing/, Last Visited, 2020. 

[16] Mathworks.Com: Parallel Computing Toolbox, 

MATLAB, MathWorks India, 

http://in.mathworks.com/products/parallel-

computing/ Last Visited, 2020. 

[17] Matloff N., Programming on Parallel Machines. 

University of California, 2011. 

[18] Mohamed M. and Refaat H., “A Fast Parallel 

Association Rule Mining Algorithm Based on the 

Probability of Frequent Itemsets,” International 

Journal of Computer Science and Network 

Security, vol. 11, no. 5, pp. 152-162, 2011. 

[19] Patel A., Birl M., and Nair U., “Addressing Big 

Data Problem Using Hadoop and Map Reduce,” 

in Proceedings of Nirma University International 

Conference on Engineerings, Ahmedabad, pp. 1-

5, 2012. 

[20] Shafi A., Carpenter B., and Baker M., “Nested 

Parallelism for Multi-Core HPC Systems Using 

Java,” Journal of Parallel and Distributed 

Computing, vol. 69, no. 6, pp. 532-545, 2009. 

[21] TECH, OF: MATLAB* P 2.0: Interactive 

Supercomputing, Massachusetts Institute of 

Technology, Dissertation, 2002. 

[22] Travinin B. and Kepner J., “pMATLAB Parallel 

MATLAB Librar,” The International Journal of 

High Performance Computing Applications, vol. 

vol. 21, no. 3, pp. 336-359, 2007. 

[23] Tsagkli S., Ilias:Java Fork/Join for Parallel 

Programming Java Code Geeks-2016, 

https://www.javacodegeeks.com/2011/02/ java-

forkjoin-parallel-programming.html, Last 

Visited, 2020. 

[24] Xia D., Zhou Y., Rong Z., and Zhang Z., “IPFP: 

An Improved Parallel FP-Growth Algorithm for 

Frequent Itemsets Mining,” in Proceedings 59th 

ISI World Statistics Congress, Hong Kong, pp. 

4034-4039, 2013. 

[25] Xun Y., Zhang J., and Qin X., “Fidoop: Parallel 

Mining of Frequent Itemsets Using Mapreduce,” 

IEEE Transactions on Systems, Man, and 

Cybernetics: Systems, vol. 46, no. 3, pp. 313-

325, 2015. 

[26] Yan D., Zhao X., Lin R., and Bai D., “PPQAR: 

Parallel PSO for Quantitative Association 

Rulemining,” Peer-to-Peer Networking and 

Applications, vol. 12, no. 5, pp.1433-1444, 2019. 

[27] Yong W., Zhe Z., and Fang W., “A Parallel 

Algorithm of Association Rules Based on Cloud 

Computing,” in Proceedings 8th International 

Conference on Communications and Networking 

in China, Guilin, pp. 415-419, 2013. 

Olakara Jamsheela received the 

M.Sc and Ph.D. in computer 

science and L.L.B(law) from the 

University of Kannur, Kerala,India 

in 2005,2016, 2002 respectively. 

She is currently working as 

Assistant Professor with the dept of 

Computer Science, EMEA College of Arts and 

Science, Kondotty affiliated to University of Calicut, 

Kerala, India. Her research interests include 

association rule mining and frequent itemset mining 

algorithms and also interested in the application of the 

data mining methods in different fields like health, 

medical field, users’ behavior in social media etc. 

Raju Gopalakrishna received the 

MCA and Ph.D. in computer 

science from the University of 

Kerala, Kerala,India in 1992, 2003 

respectively. He is currently 

working as Professor with the dept 

of Computer Science and 

Engineering, Christ University, Bangalore, India. His 

research interests include Data mining, web mining 

and Image Processing. 

 

https://ieeexplore.ieee.org/xpl/conhome/6479746/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6479746/proceeding

