
The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016 1039

Generating a Language-Independent Graphical

User Interfaces from UML Models

Amany Shatnawi
1

and Raed Shatnawi
2

1
Department of Computer Science, Jordan University of science and Technology, Jordan

2
Department of Software Engineering, Jordan University of science and Technology, Jordan

Abstract: The cost of the software development is high and there is a need to automate parts or all activities of the software

development to reduce the development costs. In this work, the User Interface (UI) design is automated and UIs are generated

for language-independent code from Unified Modeling Language (UML) diagrams. These diagrams are used to generate both

the content of the UIs and the navigation through the use interfaces. Based on end-user feedback, the UML diagrams and the

UI prototype can be iteratively refined. To demonstrate this work, a tool that automates the generation of UI prototype is built.

The tool generates a prototype that is coded using an eXtensable Markup Language (XML) called the UI Markup Language

(UIML). The proposed approach is validated and UIs are generated for two case studies.

Keywords: UI prototyping, UIML, UML, language-independent UI.

Received September 20, 2013; accepted May 6, 2014; published online June 11, 2015

1. Introduction

Software systems are becoming larger and more

complex and the cost of software development is a

success factor. There is a need to have a set of

Computer Aided Software Engineering (CASE) tools

that automate software development and reduce the

software development cost. Various tools already exist

to automate software development activities such as

software design, automatic code generation and testing

automation. Software engineers use iterative methods

to build quick prototypes to represent the stakeholder

needs. They usually build prototypes to gather the

feedback from customers and end-users at early stages

of the software development cycle. A prototype is an

initial version of a software system that can be used to

help find more about the software requirements. In

addition, creating a prototype helps developers to

control the software development costs and allows the

stakeholders to experiment the software in early stages

of the development process [23]. The software

prototype can serve many purposes. In the requirement

engineering process, prototypes can help the

developers in the elicitation and the validation of the

system requirements, allow users to see how a system

supports their work and propose new or modify system

requirements. Furthermore, as the prototype is

developed, it may reveal errors and omissions in the

proposed requirements. A functional description of the

software specifications may seem well-defined and

useful. However, when specifications are reviewed, the

users may find incorrect and incomplete requirements.

In the system design process, developers build a

prototype to check the feasibility of a proposed design

and to support User Interface (UI) design. Prototyping

can also, serve as an early input to produce the user

documentations and to train end users even before the

release of the software. In human-computer interaction,

prototypes are built to provide early hands-on

experience to users and to assess various usage

environments [24].
Several papers have discussed different methods for

generating UI prototypes from Unified Modeling
Language (UML) diagrams [4, 5, 10, 11, 12].
However, in these studies the UIs were generated for a
particular language (e.g., Java, eXtensable Markup
Language (XML), HTML and C++) and a particular
platform (e.g., Windows or Linux). Each language has
its own syntax, abstractions and applications. For
example, HTML is used to develop web pages
(document style), while JavaScript is used to handle
user events. These languages are not necessarily
platform-independent. Using a specific language to
implement UIs may cause many problems with
peripherals of different screen sizes such as handheld
devices [2]. Therefore, software developers need to
design and build a completely separate UI prototype
for each platform. The aim of this research is to
propose a new approach to generate a language-
independent UI from UML diagrams. We propose to
use UML because it is easier to understand and
communicate using graphical notations [8, 22]. We
aim to build a tool that implements the underlying
approach and then exercise it on real software models.
The tool generates the UI prototype in an XML-based
language called the UI Markup Language (UIML). The
research objectives are summarized as follows:
Identify the necessary UML diagrams that could be
used in the process to develop Graphical User
Interfaces (GUI) without the need to add any extended
diagrams; build a tool (UI-gen), as a result of the

1040 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

proposed approach, that automates the generation of
UIs. The tool produces UIs represented in an XML-
based language called UIML, which provides a
general-purpose presentation of UIs that is
implementation-independent from operating systems
and platforms [1, 19] and demonstrate the feasibility of
our approach by running the generated UI prototypes
for some target platforms. In the rest of this paper, we
discuss the related work in section 2, we provide the
details of the research approach in section 3 and we
discuss the results and the case studies in section 4 and
finally we conclude our work in section 5.

2. Related Works

Different methods have been suggested for deriving
the UI from the specification of the application
domain. Nichols has suggested a new system (personal
universal controller) for automatic generation of two
types of UIs, graphical and speech interfaces for
Personal Digital Assistants (PDAs) or mobile phones
using the abstract specification [19, 20]. Almendros
and Iribarne [5] have proposed a new method for
mapping use case models into graphical UI design and
they used the use case model to identify the
requirements of the system and used the activity
diagrams to describe use cases. In another study,
Almendros and Iribarne [4] described how they
modeled UIs by using specialized UML diagrams.
They defined a new kind of UML diagrams for
modeling UIs based on use case diagrams. Elkoutbi et
al. [11] have suggested a new requirement engineering
process to generate a UI prototype from the scenarios
and formal specifications of an application under
development. In another study, Elkoutbi and Keller
[10] suggested another process that generates a UI
prototype from scenarios and yields a formal
specification of the system as high-level Petri nets. Xia
and Zhang [25] introduced the generation of UIs only
from use cases that combine both the concept of
modeling using a use case model and the concept of
the data flow diagram. The previous approaches have
many limitations. First, some approaches assume
changes in UML language which is a standard
language for modeling software systems and
developers may not be aware of these changes. Second,
the portability of the generated UIs is very weak; they
assume a language dependent UIs on specific
platforms which limits the work to few languages. On
the other hand, the proposed approach in this work
generates the UI prototype in an XML-based language
which provides a general-purpose presentation of UIs
that are implementation-independent of operating
systems and platforms. We do not define any extended
UML diagrams, so our approach can be integrated with
existing CASE tools without further modifications.

3. Research Methodology

In this section, we propose an iterative prototyping
process. The process starts with analyzing and

designing UML models. Figure 1 shows the activities
of the UI development process. The process starts with
the developers designing UML diagrams that represent
the requirements of the system under development.
The UML diagrams then are used as input to generate
the prototype throughout a series of transformations
that produces the UIML code. The UIML code
represents the UI in two perspectives: Content and
structure (user navigation). We use special tools to
render the UIML code. The resulting UIs can be
evaluated and refined for the next iteration if needed.
In the following, we describe the main activities in this
process.

Figure 1. The process of generating UI prototype.

3.1. Designing UML Diagrams

The system analysis and design is composed of a set of
UML diagrams that are annotated with UI objects.
UML is considered simultaneously with graphical UI
design [17, 21]. In this work, the use case diagram is
used to visualize the interactions between users and the
system. The details of a particular use case are
visualized using a collaboration diagram, which also,
depicts the relationship between a use case and the
elements of the class diagram. The class diagram and
the state transition diagrams are vital to discover the
static (interface contents) and dynamic (navigation
map) aspects of the prototype. A UI is composed of
many interface objects that are derived through multi-
step process. The users interact with the system using
different interface objects, for example inserting or
receiving data. The system analyst draws the use case
diagram that represents the different interactions
between the actors and the system. For each actor, the
analyst draws the collaboration diagrams for all use
cases based on objects in the class diagram. To ease
prototyping, we assume that the system analyst should
add a stereotype <<enduser>> to the actors that
represent a personal end user; otherwise an actor can
be a device or an external system. The analyst should
draw the class diagram for the system to show data and
functions of the system. The system analyst should add
a stereotype <<UI>> for each class that is related to
interface objects. The analyst should model all
interactions with interface objects using one or many
State Diagrams (SD). The system analyst should show
the link between a state and a use case by adding the
name of the use case as a stereotype for its relevant
state. A state transition consists of action, guard and
event. The analyst should add to each state an action
that is composed of a name and a list of parameters.
The analyst can describe user interactions by adding
one of the stereotypes <<inputdata>>, <<outputdata>>

Designing UML

Diagrams

UI Prototype

Generation
UI Prototype in

UIML

Renders
UI Prototype in

High Level

Language

UI Prototype

Evaluation

Generating a Language-Independent Graphical User Interfaces from UML Models 1041

and <<useraction>>. An event is used when triggered
by a specified guard condition. These UML diagrams
are visualized using ArgoUML. ArgoUML provides
the building blocks for serializing UML data textually,
by exporting the UML model to an XML-based
language, i.e., XMI. XMI is an open industry standard
that applies XML to abstract systems such as UML
models. It is used to capture and express the
relationships in UML models, while discarding most of
the visual details of a particular UML diagram.

3.2. UI Prototype Generation

After completing the UI modeling, the analyst exports
the XMI file for all models and uses it as an input to
generate a prototype. A prototype has two different
components, static (interface content) and dynamic
(navigation between UIs).

3.2.1. UI Content

Interface content is generated from information in state
transitions based on rules which are adapted from [7,
14, 16]. There are three steps to generate interface
contents from state transitions. First, generating a
Directed Graph of Transitions (DGT). Second,
masking interactive transitions. Third, generating
prototype screens from the interactive transitions
signals.

 Generating a DGT: This operation derives a DGT in
a SD. Nodes in the DGT represent the transitions of
the SD. If the target state of a transition T1 is the
source state of transition T2, then there is an edge
between node t1 and node t2 in DGT. In addition, a
list of initial nodes (initialNodeList) is generated
that contains the entry nodes of each DGT, for
example, t1 in Figure 3 represents the entry node.
The entry nodes are the transitions that come from
the initial state of the SD. Figures 2 and 3 show a
SD of login operation and their representation in the
DGT.

Figure 2. Login state transition diagram for three states (s1, s2, s3).

Figure 3. DGT of login SD.

 Masking Interactive Transitions: Transitions in the
SD can be divided into two types. Interactive

transitions and non-interactive transitions based on
the transition signals. the non-interactive transitions
have no effect on the UI contents, therefore all
nodes that comes from non-interactive transitions
are removed from the DGT, as well as the incoming
and outgoing edges of this node.

 Generating Prototype Screens from Masked DGT:
Figure 2 shows an example of how a structured SD
looks like. Each node in the DGT is converted to a
user screen based on its signal (action, event and
guard). To produce UI contents, if the signal is a
<<useraction>> then the parameter type is not
important and a button widget is generated for all
user interactions. if the signal is an <<inputdata>>
or <<outputdata>> then the content depends on the
parameter type as shown in Table 1.

Table 1. The mapping of parameter types to graphical widgets.

Signal Parameter Type Graphical Widget

<<useraction>> Not Important A Button

<<inputdata>>

A Primitive or a String An Enabled Text Field

Enumeration Values <= 6* A Group of Radio Buttons

Multiple Values (e.g., array) An Enabled List

A Boolean An Enabled Check Box

<<OutputData>>

No Data
A Label Widget and the

Caption is the Action Name

A Primitive Data Type or a String A Disabled Text Field

Multiple Values (e.g., array) A Disabled List

*6 radio buttons are arbitrary choice of the authors

3.2.2. UI Navigation

The dynamic aspects of a UI are modeled in a masked
DGT. The navigation has two types: Intra-navigation
(within a masked DGT) and inter-navigation (between
several masked DGT). For intra-navigation, each node
in the masked DGT represents a screen. Navigations
between screens are specified based on three
conditions starting from the initial node: If the node
has one outgoing edge then navigation goes directly to
the next screen; if the node has more than one outgoing
edge then a menu screen is generated to switch
between different screens and if there is no an outgoing
edge, then there are two choices either the navigation
reached the last possible screen (leaf screen) or the
system navigates to another masked DGT (inter-
navigation).

For inter-navigation, we integrate the masked
DGT’s using the use case diagram. The integration is
done based on the following rules:

 Rule 1: If there is an end-user actor connected to
more than one use case, a screen is generated that
has a menu providing as options the different
navigations for each associated use case.

 Rule 2: If there is a generalization/specialization
relationship between two actors p and q (p is special
kind of q), then all prototypes that are generated for
the q actor will be inherited by the actor p.

 Rule 3: If there is a generalization/specialization
relationship between use cases, then an interface for
each special uses case is generated. The parent has a
menu that navigates to all special ones.

 Rule 4: If there is an include relationship between
two use cases and both of them are associated with

t1

t2 t3

t5

t4

1042 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

the actor, then the prototype of the included use case
will be inherited by the other use case.

 Rule 5: If there is more than one actor then a new
screen will be generated. This screen has a menu
providing, as options, the different navigations for
each actor.

 Rule 6: Finally, the main screen of each actor can be
derived in two ways: First, if the actor is associated
with multiple use cases, then the screen that is
generated by using the (rule 1) is considered the
main screen. Second, if the actor is associated with
only one use case, then the screen that is derived
from this use case is considered the main screen.

3.3. UIML Prototyping and Rendering

We use a tool to render the generated platform-
independent UI prototype into high level languages
like C#, Java and C++. We use open-source software,
liveview

1
, to render the UIML documents of the

generated UI prototype into C# language [18]. UIML
can have several renderings into several programming
languages [3, 13, 15]. We use the .NET framework, C#
language to build the UI-gen tool which automates the
generation of UIs. UI-gen takes UML diagrams that
are presented in an XMI file as an input and produces
UIs in a UIML. In the appendix we show examples of
both the XMI for a UML diagram and the XMI that
represents UIML language.

4. UI Prototype Evaluation

Two case studies are evalutated, the Automatic Teller
Machine (ATM) and the Wheel system.

4.1. The ATM Case Study

The ATM provides many services that are specified in
UML diagrams [6]. Figure 4 represents the ATM use
case diagram. The main use cases in the ATM are: A
session is started when a customer inserts an ATM
card number. Then, ask the customer to enter his/her
password. If the card number or the password is invalid
an error screen is displayed. A transaction use case is
started within a session when the customer chooses a
transaction type from a menu of options. A withdrawal
transaction asks the customer to insert account number
to withdraw from and to insert the amount of money. A
deposit transaction asks the customer to insert the
account number to deposit to and to insert the amount
of money. A transfer transaction asks the customer to
insert two account numbers (from and to) and the
amount of money. An inquiry transaction asks the
customer to insert the account number to inquire about.
Figure 5 describes part of the basic structure of the
class diagram. Figure 6 describes the SD of the session
class. These diagrams are saved as XMI files which are
exported into UI-gen. The tool transforms these files
into UIML files using the proposed approach. A UIML
renderer is then used to generate platform-specific

1 http://research.edm.uhasselt.be/~gummy/#info

interfaces. The results of the renderer are shown in
Figures 7 and 8. Figure 7 shows the main screen
welcome screen, the login screen which asks the end-
user to insert a card number. After clicking next, a
password screen appears. After the log in screen, the
menu options screen appears. The next screen asks the
user to choose one among several use cases. In Figure
8, we show the screens related to the withdrawal use
case.

Figure 4. ATM use case diagram.

Figure 5. ATM class diagram.

Figure 6. Session SD.

 a) Welcome screen. b) Login screens. c) Menu options.

Figure 7. the main transaction

a) Insert account number. b) Insert money amount. c) Completion confirmation.

Figure 8. The scenario of withdrawal (three screens).

Generating a Language-Independent Graphical User Interfaces from UML Models 1043

4.2. The Wheel System Case Study

The requirement specifications of the Wheel system

were proposed originally in [9]. The specifications of

this system are described using UML diagrams. Figure

9 show the main use case in the Wheel system. The

tool transforms UML diagrams to UIML files. We

used the .NET renderer again to generate C# interfaces.

The results of the renderer are shown in Figures 10 and

11.

Figure 9. Wheel system use case diagram.

Figure 10. Select customer type screen in wheel system.

Figure 11. Receptionist choice screen in wheel system.

5. Conclusions and Future Work

In this research, we provided an underlying approach

to generate UIs from UML diagrams. The approach

analyzed the UML diagrams that represent an initial

understanding of the system under development. To

validate this approach, we built a tool UI-gen to

transform UML diagrams specified in XML-based

language into a UI language UIML. This tool provides

a general-purpose presentation of UIs that are

implementation-independent from operating systems

and platforms. The resulting prototype is generated

from UML diagrams. The process of generating these

UIs should help developers in producing a rapid

prototype that can help analysts in their negotiation

with customers. The generation of the UIs requires no

considerable efforts from the analysts and designers of

the system under development. We successfully

evaluated the tool on two case studies, the ATM and

Wheel systems.

Limitations and Future Work: User prototypes can

be used as a means of facilitating discussion about an

existing or to propose a new system. Therefore, the

models need not to be complete or correct for the

purpose of prototyping. Finally, The case studies under

consideration are from academia and may not represent

all software application domains. In the future, we will

define new UIML generic vocabulary and a renderer

for many computer languages.

References

[1] Abrams M. and Helms J., “User Interface

Markup Language (UIML) Specification Version

3.1,” Technical Report, Oasis UIML Technical

Committee, 2004.

[2] Ali M., “A Transformation-based Approach to

Building Multi-Platform User Interfaces using a

Task Model and the User Interface Markup

Language,” PhD Dissertation, Virginia

Polytechnic Institute and State University,

Virginia, USA, 2004.

[3] Ali M., Pérez-Quiñones M., Abrams M., and

Shell E., “Building Multi-Platform User

Interfaces with UIML,” in Proceedings of the 4
th

International Conference of Computer-Aided

Design of User Interfaces, Valenciennes, pp.

255-266, 2002.

[4] Almendros J. and Iribarne L., “An Extension of

UML for the Modeling of WIMP User

Interfaces,” the Journal of Visual Languages and

Computing, vol. 19, no. 6, pp. 695-720, 2008.

[5] Almendros J. and Iribarne L., “Designing GUI

Components from UML Use Cases,” in

Proceeding of the 12
th
 IEEE International

Conference and Workshops on the Engineering

of Computer-Based Systems, pp. 210-217, 2005.

[6] ATM., available at: http://www.math-cs.gordon.

edu/courses/cs211/ATMExample, last visited

2011.

[7] Bodart F., Hennebert A., Leheureux J., Provot I.,

and Vanderdonckt J., “A Model-based Approach

to Presentation: A Continuum from Task

Analysis to Prototype,” in Proceedings of the 1
st

Eurographics Workshop on Design,

Specification, Verification of Interactive Systems,

Carrara, Italy, pp. 77-94, 1994.

[8] Bouabana T. and Belmesk M. “Integration of the

Association Ends within UML State Diagrams,”

the International Arab Journal of Information

Technology, vol. 5, no. 1, pp. 7-15, 2008.

[9] Britton C. and Doake J., A Student Guide to

Object-Oriented Development, Elsevier

Butterworth–Heinemann, 2005.

1044 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

[10] Elkoutbi M. and Keller R., “User Interface

Prototyping based on UML Scenarios and High-

Level Petri Nets,” in Proceedings of 21
st

International Conference, ICATPN 2000 Aarhus,

Denmark, pp. 166-186, 2000.

[11] Elkoutbi M., Khriss I., and Keller R., “User

Interface Prototyping using UML

Specifications,” available at:

http://www.iro.umontreal.ca/~keller/Suip/bookC

hapter.pdf, last visited 2000.

[12] Huzarr Z. and Loniewskil G., “Deriving

Prototypes from UML 2.0 Sequence Diagrams,”

available at: http://ceur-ws.org/Vol-

252/paper09.pdf, last visited 2007.

[13] Luyten K., Thys K., Vermeulen J., and Coninx

K., “A Generic Approach for Multi-Device User

Interface Rendering with UIML,” Computer-

Aided Design of User Interfaces V, pp. 175-182,

2007.

[14] IBM. Systems Application Architecture:

Common User Access-Guide to User Interface

Design-Advanced Interface Design Reference,

1991.

[15] Luyten K. and Coninx K., “Uiml.net: An Open

UIML Renderer for the .Net Framework,” in

Proceedings of the 5
th
 International Conference

of Computer-Aided Design of User Interfaces,

Dordrecht, pp. 259-270, 2004.

[16] Maher T., “Automated Generation of the User

Interfaces,” Department of Computer Science

and Computer Engineering, La Trobe University,

Melbourne, Australia, 1994.

[17] Martinez A., Estrada H., Sanchez J., and Pastor

O., “From Early Requirements to User Interface

Prototyping: A Methodological Approach,” in

Proceedings of the 17
th
 IEEE International

Conference on Automated Software Engineering,

pp. 257-260, 2002.

[18] Meskens J., Vermeulen J., Luyten K., and

Coninx K., “Gummy for Multi-Platform User

Interface Designs: Shape Me, Multiply Me, Fix

Me, Use Me,” in Proceedings of the

International Working Conference on Advanced

Visual Interfaces, Napoli, Italy, 2008.

[19] Nichols J., “Automatically Generating User

Interfaces for Appliances,” available at:

http://www.cs.cmu.edu/~jeffreyn/papers/doccon_

paper.pdf, last visited 2004.

[20] Phanouriou C., “UIML: A Device-Independent

User Interface Markup Language,” PhD

Dissertation, Virginia Polytechnic Institute and

State University, 2000.

[21] Pinheiro P. and Paton N., “A UML-based Design

Environment for Interactive Applications,”

available at: http://www.cs.man.ac.uk/

~norm/papers/uidis01.pdf, last visited 2001.

[22] Rajabi B. and Lee S., “Consistent Integration

between Object Oriented and Coloured Petri Nets

Models,” the International Arab Journal of

Information Technology, vol. 11, no. 4, pp. 406-

415, 2014.

[23] Sommerville L., “Software engineering.

Professional Computing Series,” available at:

http://www.acm.org/about/se-code, last visited

2007.

[24] Stangl H., “Script: A Framework for Scenario-

Driven Prototyping,” PhD Dissertation,

Technische Universität München, 2012.

[25] Xia B. and Zhang Y., “A Mapping Method of

using the Compound Use Cases to Generate User

Interface,” Open Journal of Applied Sciences,

vol. 2, no. 3, pp. 180-183, 2012.

Amani Shatnawi received her BSc

and MSc degrees in computer

science from Jordan University of

Science and Technology. Currently,

she is a PhD student and a research

assistant in Computer Science

Department at Utah State

University, USA. She is interested in software

modeling, search engines of temporal XML data.

Raed Shatnawi is currently

associate professor in Jordan

University of Science and

Technology. He received PhD and

MSc from University of Alabama,

USA. He has published many ISI

Journals in the software engineering field.

http://www.acm.org/about/se-code

