
The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003 11

A Reflective Approach to Improve Learning and

Teaching of Software Engineering in Large Groups
Mohammed Odeh

 Faculty of Computing, University of the West of England, UK

Abstract: This research reports on the synthesis of a reflective approach to improve on teaching and learning of
software engineering in large groups. In addition, observations on the outcomes obtained from examination,
group-project coursework, and informal feedback from students and tutors have been analysed. This resulted in
discovering areas of deficiencies in undertaking group-projects, common areas where students’ performance was
similar in both exam and coursework. This study led to devise specific controls on the management of group
projects and the implementation of tighter links between lectures and both practical sessions and group-work .

Keywords: Software engineering education, reflective learning and teaching.

Received September 4, 2002; accepted May 13, 2003

1. Introduction
Although significant effort is usually exerted in
teaching at higher education institutions, but the
outcomes at the end may not be in-line with the effort
exerted at the first place. In more precise terms, the
quality of the learning outcomes does not compare
favorably to the effort spent in teaching. Is it the
students, lecturers, and/or environment? In this research
I investigate my experience of teaching software
engineering subject in large groups and assess the
outcomes of this experience with the objective to
implement a reflective approach to improve learning
and teaching of software engineering in large groups.
First, I introduce the research method used supported
by a suggested reflective spiral process. Then, I present
observations on the outcomes obtained from
examination, group-project coursework followed by
discussions on the informal evaluation of feedback
from students and tutors, management of group-
projects, and an agenda for a reflective lecturer/tutor.
Finally, a conclusion is presented to summarize the
main outcomes of this research.

2. The Research Method
Before describing the method I used in conducting this
research, I first present the software engineering
module being investigated and its aims. The Software
Engineering module (UQC107S2) is taught at the
University of the West of England (UWE), Bristol, UK.
This a second year module, which I am the module
leader, that contributes to more than award but mainly
to B.Sc. in Software Engineering, Computer Science,
and Computing for Real-Time Systems. The intake in
this module is around 191 students of mixed gender
(168 male and 21 female), full and part-time students.
There are 24 one-hour lectures spread over 24 weeks in

one academic year. And, the practical sessions have
the same schedule. I conduct the lectures, and there
are three tutors including myself. In this module, a
number of key-issues are stressed on including team-
work, the engineering discipline to software
development [12] and software development process
models.

Figure 1. Adapted Spiral Model [1] for a reflective approach to
learning and teaching.

In order to provide the skills and abilities required
to develop software projects within a team working
environment, students work on group-project
coursework where they get exposed to project
management, requirements engineering (where
students gathered, analyzed, and specified
requirements in addition to the use of system models),
architectural design, user-interface design, and testing.
In addition, each student submits an individual report
that relates to the problems faced, lessons learned, and
future enhancements of his/her undertaken project.
Each group-work results were recorded as per
attainments in the areas described above. In addition,

Objective
Analysis of
evidence
gathered.

Implementatio
n

Review

12 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

the exam for this module was set in such a way to
reflect on students’ attainments in different areas as per
the learning outcomes of the module. The exam results
were carefully moderated and the marks obtained in
each section of the exam have been recorded.

The data gathered above have been fed into
worksheets to perform statistical analysis on the results
in group-projects, project’s individual reports, and
exams. In addition, the results of students’ attainment in
the assignment and the exam have been compared, and
particularly in similar subject areas, for example
requirements analysis and software architecture. Also,
students’ and tutors’ feedback have been analyzed.

3. The Reflective Process
The ultimate objective of this study is to use the results
and conclusions obtained (based on the data and facts
gathered above) in a reflective manner, in order to
improve learning and teaching of software engineering
in large groups, and in particular at UWE. It is planned
that this ultimate objective may be achieved by
studying the following concerns:

• What went wrong in group-projects? Are there any
areas of failure and how can they be classified?

• Were there any positive results? If there is any, what
are they? Are they coursework-related, team-related,
or both?

• Were there any special observations on running
group-projects and project management skills?

• Were students at ease with using the software
process model, modelling, and tools?

• Were there common areas where students’
performance was similar in both exam and
coursework? If there are any, could the level of
students’ attainment be related?

• Were the feedback gathered from students during
group and practical sessions in-line with the
outcomes of the above?

Once the outcomes of the above issues have been
obtained, a case would be formulated with suggestions
to enhance teaching and learning of software
engineering.

A reflective process model has been used by
adapting Boehm’ spiral model [1] – as shown in figure
1 - of software development. As a result, each loop of
the spiral has been assigned the following four
activities:

• Objective setting.
• Analysis of evidence gathered as shown in figure2.
• Implementation.
• Review

 It was reassuring to find a similar process suggested
by Kurt Lewin who came up with the phrase “action
research” in 1944, where the research described in this
paper may be considered as an instance of action
research [6]. Furthermore, the following quote from [6]
highlights the resemblance between the process used
here and the one proposed by Lewin: “Lewin
documented the effects of group decision in

facilitating and sustaining changes in social
conduct, and emphasized the value of involving
participants in every phase of the action research
process (planning, acting, observing, and reflecting)”.

Figure 2. Input to, process, and output of the evaluation process.

This research represents the first loop in this
reflective spiral process based on objectives set for
this loop, analysis of evidence gathered based on the
outcomes of running the module in 1999/2000,
suggested implementation in 2000/2001, and then a
review is required based on assessment of the results
of 2000/2001 in order to start a new loop and set
objectives for 2001/2002. Therefore, setting objectives
and starting the second loop (iteration) is the subject
of an extended study of this research. However, it is
anticipated that two loops (in addition to the first one)
are needed to tune the anticipated outcomes in a
reflective manner. In addition, assessment of the need
for a further loop needs to be decided at the end of a
current loop should further iterations be required.

4. Outcomes of Undertaking Coursework
The coursework in this module is a group-work
project. Students are required to be in a group of four
or five. For ease of managing groups by tutors, group
members should be officially timetabled for the same
practical session and they will have to be in the same
group that they sign up with initially for the life-cycle
of the project (Guidelines implemented in 2000/2001).
Though these are the guidelines, but experience tells
us that managing groups of varying capability,
attitude, promptness, etc. is not an easy task and never
without problems. Group leadership is rotational as
per major milestone or as students prefer it to be. The
individual mark of each member in the group is based
on group’s results, his/her contribution to the group,
and self- critical appraisal of the his/her experience in
undertaking the project where students critically
analyse the major problems faced in the project,
lessons learned, and future enhancements to the run of
the project as well as enhancements to the problem
being tackled.

In order to be in-line with the key objectives of this
module, students used a software development process

Module Specs

Course-work

Summer Exam

Resit Exam

Students’ Feedback

Tutors Feedback

Practical
Worksheets

Evaluation
Process

Suggested
Implementati
on Steps

A Reflective Approach to Improve Learning and Teaching of Software Engineering in Large Groups 13

in carrying out the different activities of the
assignment. In addition, they were required to use the
Unified Modelling Language (UML) [2] to document
the requirements and design models. Moreover, state-
of-the-art tools were used to support the process they
used, UML, and developing the system’s prototype. As
per group-work deliverables, students reported on the
following:

• Project management: an initial project plan is
submitted showing phases, deliverables, and tasks’
dependency, if any. Changes to the initial project
plan were required to be shown as per progress
during the project in addition to the minutes of key
meetings in the project. Finally, a Resource
Allocation Table (RAT) showing who worked on
which tasks and for how long. The RAT provides
feedback on individual’s contribution during the

 life of the project.
• Requirements document: with concentration on

functional, non-functional requirements, system
models, evolution of the system, and glossary of
terms used in the project.

• Design document: the “4+1 views” [8] model of the
software architecture are used to document the
solution architecture with logical, implementation,
process, deployment and use-case views. To further
support creative thinking, students were encouraged
to provide more views to describe the architecture of
the system should they see the need for it.

• Prototype: students are required to
develop Graphical User Interface (GUI) of the
system being studied to show the key functionality
of this system as per the requirements document
above.

• Software test specification document: the test
approaches and strategies are to be specified in
addition to functional and non-functional
requirements to be tested and included in this
document.
Table 1 presents the outcomes of group-projects

assessment with respect to project management,
system models, requirements documents, architectural
design, system prototype, and testing. Though
students’ performance in project management was not
high, it may be considered acceptable given that this
was related to second year students who were not
involved in group project before except for some who
(scored high marks) were part-time students and had
the chance to work in teams before attempting this
project. Furthermore, students had low performance in
both system models and architectural design in
particular with 36.64% on average. These two areas
require practicing a number of new concepts and more
creativity compared to other types of areas in the
group-project. In order to improve on the performance
of students in these two areas, one may think of
enhancing the way practical sessions are run, increase
the number of sessions in these areas, use techniques
such as debates [13]. Furthermore, students had low
performance in both system models and architectural
design in particular with 36.64% on average.

Table 1. Outcomes of group-projects coursework

Table 2. Outcomes of the exam assessment (Software Engineering Definition, Unified Process Model, Actors, Use-Cases, Non-
Functional Requirements, Software Cost Estimation).

 SE-Def. UPM Actors Use-Cases NFR SW Cost
Estimation

 Max 8 11 4 6 5 10
 Min 0 0 0.5 0 0 0
 Average 3.09 2.66 2.40 2.57 0.99 3.20
 StDev 1.98 3.08 0.69 1.16 1.18 3.27
 %Total Mark 38.63 24.16 59.90 42.86 19.75 32.00

Table 3. Outcomes of the exam assessment (Software Architecture, Object-Oriented Design, User Interface Design, Design
Process, Configuration Management, Software Testing).

Table 4. Comparison of coursework to exam results

 Requirements SW Architecture System Models & Design User Interface Testing
Coursework 47.79 % 36.64 % 43.83 % 50.88 % 53.77 %
Exam 34.44 % 6.13 % 27.45 % 46.46 % 28.22 %
Ratio Coursework/Exam 1.39 5.97 1.6 1.1 % 1.9

 Project
Management

Requirements
Document

System
Models

Architectural
Design

System
Prototype

Testing

Average % 47.28 % 47.79 % 43.83 % 36.64 % 50.88 % 53.77 %
St. Dev. 22.21 31.39 15.3 26.13 13.02 26.68
Minimum 0 % 14.29 % 17 % 0 % 8.33 % 0 %
Maximum 90 % 75.71 % 75 % 79.17 % 90 % 90 %

 SW
Arch

OO Design
Concepts UI Design Design Process Configuration Management SW

Testing
Assign
Related

 Max 5.5 8 10 9 10 8 13
 Min 0 0 0 0 0 0 1
 Average 0.49 3.06 4.65 2.43 4.84 2.26 6.44
 StDev 1.06 2.02 2.58 2.83 2.18 2.28 2.64
 %Total _Mark 6.13 30.57 46.46 24.32 48.37 28.22 27.98

14 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

 These two areas require practicing a number of new
concepts and more creativity compared to other types
of areas in the group-project. In order to improve on the
performance of students in these two areas, one may
think of enhancing the way practical sessions are run,
increase the number of sessions in these areas, use
techniques such as debates [13]. As a result, these
proposals were implemented in the second run
(2000/2001) of this module (except for debates which
were done informally and not part of the assessment of
the coursework) in the form of increasing the number
of lectures and practical sessions in both subjects by
extra two in each of these two areas. In addition, new
worksheets were written to guide students on what is
required as per specific milestones of the group project
in addition to the instructions in the initial assignment
distributed to students in the first term.

Students’ performance in the other areas such as the
identification and specification of requirements, system
prototype, and testing ranged from 47.79 % to 53.77%
on average. Though these results were below
expectations, there was evidence that students had
better results and confidence achieving the objectives
of these areas compared to design-related one. This
may lead us to say that students may have received
better lectures and tutorials in these areas; furthermore,
students were not faced with many concepts to practice
compared to design-related ones. In addition, working
on requirements is usually in the beginning of the
project and working on the prototype and testing are
towards the end of it. In these periods, attendance was
observed higher in between these two periods
compared to the design-related period. Thus, this may
make low attendance an additional contributing factor
to this low performance in general.

5. Analysis of Exam Results
There was one exam (a comprehensive one) that took
place at the end of academic the year 1999/2000 and it
constituted 60% of the final mark. The exam had
compulsory sections and optional ones. The
concentration in the exam was on assessing the learning
outcomes in a number of areas including software
development process models, requirements analysis,
object-oriented analysis and design, software
architecture, user-interface design, configuration
management, software cost estimation, and testing.
Tables 2 and 3 present the outcomes of assessing this
exam in these areas. The data in these tables confirmed
the same views obtained from analysing coursework
results. Furthermore, there were other areas which were
not part of the coursework and the students had variable
performance, for example configuration management
and software testing. It is worth mentioning that the low
performance areas have been considered for
improvements in the lectures and practical sessions
with concentration on key issues (and less
concentration on minor issues) that students need to
learn at this particular level of the module.

In order to have a comparative analysis of the
outcomes of both coursework and the exam, Table 4
was constructed to consolidate the figures in Tables 2
and 3 in the exam areas, which relate to the same areas
examined in group-projects. Table 4 shows that the
ratio of attainment in coursework to exam with respect
to software architecture is the highest among other
areas, which is an indication of very low attainment in
this area. In addition, the figures in Table 4 confirm
that students’ performance in the coursework was
better in all areas compared to the exam. This is
attributed to the fact that coursework is a group-work
and thus performance of students in the same areas in
the exam varied as per individual’s performance. I
suggest to call the ratio of attainment in coursework to
exam as the average degree of variance in attainment
between group-project (coursework) and exam. Thus,
this gives us an indication that although we encourage
team-work as per the nature of software development
in practice, there still remains the question whether
this always leads to better attainment in the subject
area on the individual level. On the on hand one may
argue that this is the responsibility of the individual or
the student. On the other hand, there this necessitates
the need for the adoption of mechanisms to probe the
individual attainment within a group. One technique,
which I found useful and used in subsequent teaching
of this module in 2000/2001, was the use of meetings
with groups as per scheduled milestones during the
execution of group-projects. It would be valuable to
see the feedback on this approach in a further
evaluation of this approach in the following few
months.

6. Discussion

6.1. Analysis and Assessment of Evidence

Gathered
While running practical sessions during 1999-2000, it
became very apparent to me that some students were
not at ease when solving exercises in the pre-set
worksheets, which were linked to previously taught
lectures. Moreover, this was even more severe when
those students were working on group-project related
issues during practical sessions. A similar observation1
was even found by Quintin Cutss while teaching first-
year computer programming module at Glasgow
University2:
“Observation of tutorial and laboratory performance
indicated to me that many students had difficulty
bridging the gap from relatively passive lecture
material to active engagement in practical work,
either on their own or at a machine.” [3].

1 In addition, I had a similar observation to this one while
teaching a practical session in another module (Software
Design using Java), which I did not lead.

2 It is worth noting that both Cutts and I were experimenting
this observation in different institutions and possibly
overlapped in time.

A Reflective Approach to Improve Learning and Teaching of Software Engineering in Large Groups 15

To understand the reasons behind this observation, I
had to make informal discussions with students and
tutors in addition to my own analysis, which led me to
identify this as phenomena instead of an observation. I
would like to call this phenomenon as “low
achievements in practical sessions”. I summarise below
the main outcomes of studying this phenomenon:

1. Absenteeism: this was evident in practical sessions
and lectures as confirmed from taking register in
practical sessions, and observations on the number
of students in the lecture theatre. Students who
confirmed their absence in lectures (in addition to
their absence in some practical sessions) had
variable reasons as to why they did not attend
teaching sessions regularly. Some attributed this to
working late shifts in jobs to support their study and
living. Others had reasons such as illness, working
on other assignments, commitments, placement
interviews, simply “could not do it”, etc. While this
has impacted attainment on the individual level
during practical sessions and the module as a whole,
this had significantly (in a negative way) affected
group work related to coursework. This is because
attendance of group members undertaking a group
project was vital to the coordination,
communication, allocation of work, and achievement
of pre-set milestones as per project plan.

2. Lack of follow-up between lecture and practical
session: Though this may be considered as by
product of absenteeism, there were still students who
attended lectures and practical sessions regularly but
had low performance in practical sessions. This was
mainly attributed to the lack of follow-up by
students between lectures and practical sessions.

3. Low commitment to achieve objectives of pre-set
exercises in practical sessions: Unfortunately, this
was evident in some students who showed lack of
motivation. And, instead they were involved in other
things during practical sessions such as replying to
e-mail messages. Though tutors approached students
to help raise their motivation and drag their attention
back to the session, there were few cases whose
behaviour were tolerated with difficulty.

4. Conflicting views between lecturer and tutors: This
was evident while working on issues related to the
group-project assignment as the software
development process, the tools, modelling language
were almost new in addition to being used the first
time by tutors. This had led in some occasions that
students got conflicting feedback from the lecturer
compared to what they had from their tutor in the
practical session. The use of informal meetings for
discussion between the lecturer and tutors, the
updates on subject coverage in lectures using e-mail
messages to tutors, and the provision of photo and
electronic copies of material covered helped to
minimize this conflict. In addition, I believe that this
has been minimized to a greater extent now as this is
the second time the module has been taught.

6.2. Project Management

Reading the individual reports of students, it was clear
to me that there was at least one problem related to
communication, coordination, team-leadership,
missing project meetings, some members had no
deliverables as per scheduled milestones, one or two
persons dropping from the team, and/or one new
person joining the team after few weeks have elapsed.
These problems were of less impact in groups where
students had better attitude towards working in a team,
and the presence of mature students who had earlier
experience in running projects in practice, for example
part-time students. To help reduce the impact of these
problems, the following were proposed for
implementation in 2000/2001:

• Students were asked to submit an initial project
proposal after 4 weeks from start of the project. A
similar approach was found to be used in [4] and
was useful in achieving a framework in the first few
weeks of the project. This proposal represents a
slim version of the vision document as per the
inception phase of the Unified Process Model [7]
which includes the team and its structure,
description of the product features, actors, use-
cases, project schedule, resource allocation table,
resources required including hardware and
software, and risks and risk minimization strategies.
In addition, students were supposed to receive
feedback from their tutors two weeks from the
submission date.

• A number of worksheets were devised to guide
students in running the project as per major
milestones with a suggested duration span for each
of these milestones.

• A number of pre-scheduled sign-off meetings
between the tutor and each group were organised
based on major deliverables. Although these
milestones were announced ahead of tasks to be
achieved, some very keen students suggested that
this schedule should be incorporated as part of the
coursework paper released initially. This had been
taken into consideration for implementation in
2001/2002.

• The tutor participates in four key meetings during
the life cycle of the project and he/she should sign
off the minutes of these meetings in addition to
signing off other four ones which he/she does not
attend.

• Attendance of sessions to be recorded and any
absent students to be contacted by their colleagues
and informed of work progress so far. In addition,
the faculty’s administrator is to be informed of
more than 3 consecutive (for 2001/2002
implementation).

• Although it was not formally announced to all
students, students who were advised (or did it
without being told) to create a shared repository of
information about the project benefited a lot. This
will be suggested to students and incorporated in
the coursework script for 2001/2002.

16 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

Despite these suggested measures, I have to say that
I agree with Quints’s observation: “There is an
indication here that the attitude and previous
experience of students will shape their ability to access
new knowledge and their success on the course.” and
found it a reality.

6.3. Agenda for Higher Education Lecturer
In general there is variety of methods in which lecturers
can conduct their lectures or practical sessions, for
example the utilization of students’ interaction, good
pace, presentation of an agenda of the lecture/practical,
making a summary or recap of subjects covered at the
end of the session [10]. But, the management of
students’ interaction is subject to group-size, subjects to
be covered, and time management. In addition, there
are characteristics (which are personal attributes) such
as charisma and voice, which may not be easily
changed, but they contribute to the achievement of an
effective lecturer. Also, the lecturer should possess
strong subject knowledge in order to make his/her
lecture more effective, especially when practical and
real-life examples are easily presented.

In addition to the above issues and in order to be
more effective lecturer in higher education, one has to
have the following as part of his/her internal agenda.

1. The lecturer has to build coherence between learning
and teaching processes. This theme was supported
by a number of theories from [11]. In a number of
occasions we (as lecturers/tutors) place the blame on
the student as why he/she did not follow instructions,
achieve what was required in an assignment, exam,
practical, etc. Though there are some obvious
occasions where some students take the blame (e.g.
unexcused absences), but we need to recognize that
teaching is part of the subject’s knowledge and how
it is to be learned by students as implied by
Ramsden’s 3rd theory of teaching “Teaching as
making learning possible”. For example, when I
wrote the worksheets for practical sessions of the
software engineering module, I planned to make
what was conveyed in the lecture be well-understood
and practiced in those practical sessions.

2. Lecturers needed to be facilitators and developers of
critical thinkers so that we develop individuals who
can develop themselves and the world around them
[13]. In other words, we as lecturers need to be
facilitators of critical thinking rather than doing
critical thinking on behalf of students. The run of
this module in 2000/2001 was improved to stress on
team-work when attempting exercises in practical
sessions followed by presentations and interactive
discussion between the group presenting, other
groups, and the lecturer. This shows that we have the
soil watered (the infra-structure including the way
the module has been organized, tutors, and tools)
practically and we need to grow up the seeds (the
individuals) right.

3. The lecturer needs to be a reflective teacher using

 his/her previous experience when he/she was a
student and later becoming a lecturer.

4. The lecturer needs to be adaptive teacher in terms
of being responsive to changes in the surrounding
environments, emergence of new tools and
techniques, and the special needs and diversity of
students.

5. One needs to be aware of techniques/methods to
enhance the learning process. For example, Kolb’s
experimental learning cycle: experience, reflection,
conceptualization, and experiment. Although this
happens in some incidents while teaching, but it is
useful to highlight some examples in practice. For
example, applying Kolb’s cycle [9] to teaching and
application of concepts studied in software
engineering, one may build on the previous
experience or background in undertaking a certain
software engineering project, make a reflection on
the software development experience, then
conceptualize by developing new concepts,
methods, notations, models, etc. Then, he/she needs
to experiment with these with respect to a software
product to result in a new experience - which is full
of concepts, models, notations, management
experience, etc. - to apply when undertaking similar
software engineering projects.

7. Conclusion
The ultimate objective of this study was to use the
results and conclusions obtained from group projects
in a reflective manner, in order to improve learning
and teaching of software engineering in large groups,
and in particular at UWE. This study has led me to
devise more controls on the management of group
projects. For example, students were asked to submit
an initial project proposal four weeks after the
assignment was released, with emphasis on initial
understanding of the problem domain, team’s
structure, and initial project plan. In addition, tighter
links between lectures and both practical sessions and
group-work were implemented.

In general, I wish to have a tighter policy with
respect to attendance in practical sessions (at least) as
this had impacted group-work and attainment in
practical sessions. Records of students’ attendance
were kept, but because there is no link between
sessions attended and passing/failing the module, it
makes controlling students attendance a tall objective
to achieve.

The use of debates as a mechanism by which the
skills of creative and critical thinking are developed is
of paramount importance to the individual, society,
and employers. Nevertheless, the great returns of this
approach could be hampered by the high absence of
students in practical sessions given the nature of
working in a team and the activities involved in
software engineering.

In addition, tutors and IT support staff need training
on the use of tools. Also, tutors need extra time and
budget to attend seminars presented by tool vendors in

A Reflective Approach to Improve Learning and Teaching of Software Engineering in Large Groups 17

order to update themselves with new features provided
by the tools for later enhancements to students’
projects.

Team work and the development of team skills are
vital not only for the accomplishment of the group
coursework of the software engineering module but
also for preparing software engineers who are ready to
work within teams as it is the case in the industry. In
addition, this will cultivate team spirits in individuals.
Not only this will have impact on the individual, but the
society as a whole. And, hence this facilitates the
achievement of one of the key objectives of educational
research.

This research may be considered as generic model
for other modules where attainment in exams,
coursework, and feedback from lecturers, tutors, and
students are studied in a reflective manner to improve
on learning and teaching of a particular subject. Thus,
this research could be classified as a generic one from
one can instantiate from to create instances of reflective
models to improve teaching and learning of different
subjects in particular computing and other subjects in
general.

Finally, I believe that this study is a step forward
towards educational research that critically improves
educational action as per Griffiths’s definition
“Educational research aims critically to inform
educational judgements and decisions in order to
improve educational action.” [5]. In addition, the
outcomes of the first loop of this reflective spiral
process in 2000/2001 will evaluated further and the
outcomes will put forward for implementation in
2001/2002 in a reflective manner.

Acknowledgements
I would like to thank Prof. Melanie Walker for
providing support and material related to educational
research. Also, I am grateful to my colleagues Mrs.
Chandriak Lakhani and Mr. Robert Storey-Day for their
support in teaching practical sessions of the software
engineering module in addition to their valuable
feedback as tutors. Thanks are also extended to Dr.
David Coward, Mr. Peter Maines, and Dr. Paul Raynor
for their valuable support in implementing changes to
the run of this module in 2000/2001. Last, but not least,
I am grateful to King Fahd University of Petroleum and
Minerals for the early experience in teaching this
subject, and especially to Dr. JaraAllah AlGhamdi for
the fruitful discussions about this type of research
though it was in small groups.

References
[1] Boehm B., “A spiral model of software

development and enhancement,” IEEE
Computers, vol. 21, no. 5, pp. 61-72, 1988.

[2] Booch G., Rumbaugh J., and Jacobson I., The
Unified Modeling Language, Addison-
Wesley, 1999.

[3] Cutts Q., “Fostering engagement, covering
content: reflecting on large, mixed ability, first
year computer programming module ,” in Walker
M. (Ed), Reconstructing Professionalism in
University Teaching, Open University Press, pp.
168-189, 2001.

[4] Favela J., and Pena-Mora F. , “An Experience in
Collaborative Software Engineering Education,”
IEEE Software, pp. 47-52, March/April 2001.

[5] Griffiths M., Educational Research for Social
Justice, Open University Press, pp. 38-39, 1998.

[6] Kermmis S. , “Action Research,” in Hammersley
M. (Ed), Educational Research – Current Issues,
Open University Press, vol. 1, 1993.

[7] Krutchen P., The Rational Unified Process
Model: An Introduction, 2nd ed, Addison-
Wesley, 2000.

[8] Krutchen P., “The 4+1 View Model of
Architecture,” IEEE Software, vol. 12, no. 6,
1995.

[9] Kolb D. A., Experiential Learning: Experience
as the source of learning and development,
Prentice-Hall, New Jeresy, 1984.

[10] Newble D., and Cannon R., A Handbook for
Teachers in Universities and Colleges, Kogan
Page, 1991.

[11] Ramsden P., Learning to Teach in Higher
Education, Routledge, London , 1992.

[12] Sommerville I., Software Engineering, 6th ed,
Addison-Wesley, 2001.

[13] Warhurst C., “Developing Students’ Critical
Thinking: the Use of Debates” in Walker M.
(Ed), Reconstructing Professionalism in
University Teaching, Open University Press,
2001.

Mohammed Odeh is senior lecturer in software
engineering and associate of the Complex Cooperative
Systems Centre at the University of West of England,
Bristol, UK. He holds PhD degree in computer science
from the University of Bath, 1993 in addition to
PGCert in Higher Education and membership of ACM
and ILT. Dr. Odeh has more than 18 years of
experience including extensive project management
experience in planning and leading a range of IT-
related projects in addition to management posts. He
led the second work-package (the User-Requirements
Specifications) of the MammoGrid project, an EU-
funded project with collaboration from European
partners such as Oxford University, Cambridge
University Hospital, CERN, Udine University
Hospital in Italy, and Mirada Solutions Limited. Dr.
Odeh supervises five PhD students in bioinformatics,
information management and integration, process
modeling, and knowledge management. He also leads
and teaches modules at both BSc and MSc levels in
computer science and software engineering.

