
 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003 33

Arabic Font Recognition Based on Templates

Ibrahim Abuhaiba

Department of Electrical and Computer Engineering, Islamic University of Gaza, Palestine

Abstract: We present an algorithm for a priori Arabic optical Font Recognition (AFR). First, words in the training
set of documents for each font are segmented into symbols that are rescaled. Next, templates are constructed,
where every new training symbol that is not similar to existing templates is a new template. Templates are sharable
between fonts. To classify the font of a word, its symbols are matched to the templates and the fonts of the best
matching templates are retained. The most frequent font is the word font.

Keywords: Optical character recognition, optical font recognition, vertical normalization, template matching.

Received January 29, 2003; accepted May 4, 2003

1. Introduction
OCR systems of machine-printed documents can be
divided into three groups: Mono-font, Multi-font, and
Omni-font. Mono-font OCR systems deal with
documents written with one specific font; their
accuracy is very high but they need a specific module
for each font. Omni-font OCR systems allow the
recognition of characters of any font, and for this
reason their accuracy is typically lower. Finally,
Multi-font OCR systems handle a subset of the
existing fonts. Their accuracy is related to the number
and the similarity of the fonts under consideration.
Character recognition accuracy can be improved
using an Optical Font Recognizer (OFR) to detect the
font type and subsequently convert the multi-font
problem into mono-font character recognition
problem.

Optical font recognition can be addressed through
two complementary approaches: the a priori
approach, in which characters of the analyzed text are
not yet known, and the a posteriori approach, where
the content of the given text is used to recognize the
font. To our knowledge, there has been no study of
the Arabic Font Recognition (AFR) problem.
Available studies deal with Latin fonts, which have
different characteristics than Arabic fonts. Therefore,
in this paper, we present a novel solution to the a
priori AFR problem.
 Often, the font style is not the same for a whole
document; it is a word feature, rather than a
document feature, and its detection can be used to
discriminate between different regions of the
document, such as title, figure caption, or normal
text. Hence, in our approach, we try to find the font
per word. The detection of the font style of a word
can also be used to improve character recognition: we
know that Mono-font OCR systems achieve better
results that Multi-font ones, so the recognition of
document can be done using first an OFR, and then a

Mono-font OCR.
 In [4], font recognition is developed to enhance the
recognition accuracy of a text recognition system. Font
information is extracted from two sources: one is the
global page properties and the other is the graph
matching result of recognized short words such as a, it,
and of.
 In [3], a multi-font OCR system to be used for
document processing is presented. The system performs,
at the same time, both character recognition and font-
style detection of the digits belonging to a subset of the
existing fonts. The detection of the font-style of the
document words can guide a rough automatic
classification of documents, and can also be used to
improve character recognition. The system uses the
tangent distance as a classification function in a nearest
neighbor approach. The nearest neighbor approach is
always able to recognize the digit, but the performance
in font detection is not optimal. To improve the
performance, they used a discriminate model, the TD-
Neuron that is used to discriminate between two similar
classes.
 In [5], a texture analysis based approach is used for
font recognition. Existing methods are typically based
on local features that often require connected
components analysis. In this work, the document is
taken as an image containing some special textures, and
font recognition as texture identification. The method is
content independent and involves no local feature
analysis. The well-established 2-D Gabor filtering
technique is applied to extract such features and a
weighted Euclidean distance classifier is used in the
recognition task. The reported average recognition
accuracy of 24 fonts consisting of over 6,000 samples is
98.6%.
 In [6], a study of image degradations effects on the
performance of a font recognition system is presented.
The evaluation that has been carried out shows that the
system is robust against natural degradations such as
those introduced by scanning and photocopying, but its

34 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

performance decreases with very degraded document
images. In order to avoid this weakness, a
degradation modeling strategy has been adapted,
allowing an automatic adaptation of the system to
these degradations. The adaptation is derived from
statistical analysis of features behavior against
degradations and is performed by specific
transformations applied to the system knowledge
base.
 In [7], a statistical approach based on global
typographical features is proposed for font
recognition. It aims at the identification of the
typeface, weight, slope, and size of the text from an
image block without any knowledge of the content of
that text. The recognition is based on a multivariate
Bayesian classifier and operates on a given set of
known fonts. The effectiveness of the adopted
approach has been experimented on a set of 280
fonts. Font recognition accuracies of about 97% are
reached on high-quality images. Rates higher that
99.9% were obtained for weight and slope detection.
Experiments have also shown the system robustness
document language and text content and its
sensitivity to text length.
 All previous OFR studies deal with Latin fonts
and there has been no similar studies on Arabic fonts,
which have different characteristics than Latin fonts.
The most impeding characteristic of Arabic OCR
systems is the cursive nature of Arabic script, which
makes basic symbols not ready for direct OCR or
OFR. Instead, there should be a segmentation stage to
extract some kind of basic symbols. In this paper, we
present a novel contribution to the a priori Arabic
Font Recognition (AFR) approach where we try to
find the font per word.

 The basic idea in our method to recognize fonts is to
segment words into symbols that act as representatives
of these fonts. These symbols are not necessarily
characters and are connected with short parts. The
information about font characteristics that such parts
bear is too low that they can be cleared out. Clearing
these parts divides the word into segments or symbols
that are usually smaller than characters. At this stage of
font recognition we don’t care to successfully segment
the word into characters. Figure 1 shows one line of
Arabic text followed by the same line segmented into
symbols and written in three different fonts, from top to
bottom: Simplified Arabic, Traditional Arabic, and
Tahoma. Clearing some irrelevant connecting parts
produces the symbols shown in the figure. The
remaining parts are the required symbols to distinguish
between the fonts of the three lines.
 Our approach is summarized in the following steps.
First, a training set of documents is assembled for each
font. Second, symbols in the training set are found and
rescaled. Third, templates are constructed. Every new
training symbol that is not similar to existing templates
is a new template. Templates are sharable between fonts.
To classify the font of a word, its symbols are matched
to the templates and the fonts of the best matching
templates are retained. The most frequent font is the
word font.
 In our AFR system, a font is identified by four
attributes: typeface (Simplified Arabic, Traditional
Arabic, and Tahoma), size expressed in typographic
points, slant (Roman, Italic), and weight (regular, bold).
 The rest of the paper is organized as follows. Font
learning and recognition stages are described in Sections
2 and 3, respectively. Experimental results are reported
in Section 4. Finally, the paper is concluded in Section 5.

 (a)

 (b)

 (c)

Figure 1. One line of Arabic text followed by the same line segmented into symbols and written in three different
fonts, from top to bottom: (a) Simplified Arabic, (b) Traditional Arabic, and (c) Tahoma.

 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003 35

2. Learning
In our approach of font recognition, some image
preprocessing is required in both the learning and
testing stages. First, an image is skew-corrected using
the algorithm of [1]. Next, horizontal and vertical
solid lines are removed. Third, pepper noise is
removed. The image is segmented into lines using
horizontal white cuts, where each line consists of a
sequence of words. Then, every line is segmented
into words using vertical white cuts.
 Every word is segmented into symbols as follows.
We find all horizontal and vertical runs of 1’s,
assuming that pixels belonging to a word are
assigned the value 1. The average, runave of these
runs is calculated. Then, the word is scanned from
right to left, where we sum the pixels along every
column. If this sum is less than runave, then that
column is cleared, i.e. all its pixels are changed to
zero. The idea behind this step is that columns having
a number of white pixels less than runave most
probably belong to parts that connect adjacent
characters in a word. We consider that the
information about font characteristics that such parts
bear is too low that they can be cleared out. Clearing
these columns divides the word into segments that
are not necessarily characters. At this stage of font
recognition we don’t care to successfully segment the
word into characters.
 All symbols in the training set are extracted.
Symbols that don’t satisfy certain size constraints are
filtered out. For example, if the height or width of the
symbol is less than some specified thresholds or is
greater than some other thresholds, then the symbol
is discarded, see Section 4 for values of these
thresholds.
 After all symbols in the training images are
extracted, they are vertically normalized. In the
context of document understanding, the
normalization operation almost means to normalize
in two directions: x and y. Actually, this can be
problematic since information is lost due to this kind
of two-dimensional normalization. However,
performing a one-dimensional normalization
preserves the height/width ratio. In Arabic, a word
consists of characters some of which can be
connected. The direction of writing follows
horizontally from right to left. There is no limit to the
number of characters that can be connected. Thus, for
a specific font the word height has a limited
variability while the word width is so variable that it
is more informative to normalize in the vertical
direction such that the height/width ratio is preserved,
which results in normalized words that retain the
relative geometrical attributes of the original un-
normalized words. For more details on vertical
normalization, see [2].
 Let S represent the set of vertically normalized
symbols. Every symbol s ∈ S consists of the 2-tuple
(Is, fs) where Is is the normalized symbol image,
and fs is the symbol font. In our system, a font , f, is

characterized by the 6- tuple (h, a, p, z, s, w), where h is
the symbol height before normalization, a is the symbol
area before normalization, p, z, s, w are the typeface,
size, slant, and weight, respectively. Then, the set of
global templates, T, is constructed as follows. Initially, T
is empty. Every template t ∈ T is a 2-tuple (It, F), where
It is the vertically normalized template binary image,
and F is the set of fonts that this template represents.
Given a new training symbol s = (Is, fs) = (Is, (hs, as,
ps, zs, ss, ws)) ∈ S, the similarity, s(s, t) between this
symbol and every template t ∈ T is calculated, where T
is the current set of templates. If the most similar
template, t* = (It*, F*), yielded a similarity not less than
a certain threshold, SMIN, then the symbol font fs is
added to the list F* of t* such that there is no font f =
(ht, at, pt, zt, st, wt) ∈ F* that has |ht – hs| =
HeightTolerance, |at – as| = AreaTolerance, pt = ps, zt =
zs, st = ss, and wt = ws. Otherwise, the new symbol, s
= (Is, fs), is added as a new template, t = (It = Is, F = {
fs}), to the set of templates, T.

 The symbols that are used early in the training phase
don’t see the templates constructed from later symbols,
i.e., they aren’t matched against each other. Thus, there
can be a possibility that a symbol is matched to some
template with certain similarity; then, later, a new
template is generated which if matched against that
symbol yields better similarity. Thus, after finding the
templates, the sets of fonts, F’s that templates represent
are emptied and another scan is performed over the
training set to match every symbol against the best
template. The font of the symbol is added to the set of
fonts that the best template represents. In this last phase,
no new templates are generated.
 The way we calculate the similarity between symbols
follows. Let s = (Is, f) be a vertically normalized
symbol and t = (It, F) be a template. The template image,
It, is already normalized since this is a task of the
learning algorithm. Thus, both the symbol and the
template have the same height. Let wmin and wmax be
equal to the minimum and maximum of the widths of the
symbol image, Is, and the template image, It,
respectively. Let area be equal to wmax î normalized
height. Initially, the similarity, s(s, t) = 1.0 – (wmax –
wmin)� � normalized height / area. If this similarity is
less than a specified threshold, SMIN, then there is no
match between the symbol and the template. If the width
of the symbol is less than or equal to that of the template
then the Hamming distance, dH, between the symbol
image, Is, and every consecutive wmin columns of the
template image, It, is calculated. Or, if the width of
template image is less than that of the symbol then the
Hamming distance, dH, between the template image, It,
and every consecutive wmin columns of the symbol
image, Is, is calculated. The minimum distance, dHmin,
is retained. A value equal to dHmin / area is subtracted
from the remaining similarity to obtain the final
similarity. If this similarity is not less than SMIN then
the symbol is accepted, otherwise it is considered
unmatched.

In our approach, it is worth mentioning that when a
new template is created its image is set to that of a single

36 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

symbol. This means that extra symbols matched to
the template are not used to modify the template’s
image. This is in contrast with some clustering
algorithms that create clusters of symbols and
calculates the cluster’s centroid to form templates.
We found out that our algorithm works very well
without that averaging step. Algorithm 1, in the
following text, is a formal description of the font
learning algorithm.

Algorithm 1

Step 1: Preprocessing

a. Correct the skew of the input image.
b. Remove horizontal and vertical solid lines.
c. Remove pepper noise.
d. Segment the image into lines using horizontal

white cuts, where each line consists of a sequence
of words.

e. Every line is segmented into words using vertical
white cuts. At the end of Step 1 a set of words, W,
is obtained.

Step 2: Segmenting words into symbols

Assuming that pixels belonging to a word are
assigned the value 1, for every word w ∈W do

a. Find all horizontal and vertical runs of 1’s.
Calculate the average, runave of these runs.

b. Scan the word from right to left to sum the pixels
along every column. For any column, if this sum is
less than runave, then that column is cleared.

c. Segment the word into symbols using vertical
white cuts. Each symbol is defined by its minimum
bounding rectangle.

d. Vertically, normalize the symbols that pass some
tests. Here, only the image, Is, of every symbol is
normalized, i.e., other values don’t change. At the
end of Step 2, a set of symbols, S, is obtained,
where each symbol s ∈ S is a 2 tuple (Is, fs) and
fs = (hs, as, ps, zs, ss, ws), where hs, as, ps, zs,
ss, and ws are as defined before.

Step 3: Global template construction

a. Let the set of templates be T =φ , the empty set.
b. For every training symbol s = (Is, fs = (hs, as,

ps, zs, ss, ws)) ∈ S do {
For every template t = (It, F) ∈ T do {

 Find the similarity, s(s, t)

 }

From the earlier computed similarities, let the
most similar template be tbest = (It*, F*) with
similarity sbest;

If sbest ≥ SMIN then{

If there is no font f = (ht, at, pt, zt, st, wt)
∈ F* such that |ht – hs| =
HeightTolerance, |at – as| =
AreaTolerance, pt = ps, zt = zs, st = ss,

and wt = ws, then update tbest by letting F*

= F* U fs

 }

 else {

Create a new template t = (It = Is, F = {
fs}),;

 Let T = T U t

 }
}

Step 4: Template tuning

a. For every template t = (It, F) ∈ T let F = φ , the
empty set;

b. For every training symbol s = (Is, fs = (hs, as, ps,
zs, ss, ws)) ∈ S do {

For every template t = (It, F) ∈ T do {

Find the similarity, s(s, t)

 }
Let the template tbest = (It*, F*) be the one that
has the best similarity sbest among all
similarities computed in the previous loop;

If sbest ≥ SMIN then{

If there is no font f = (ht, at, pt, zt, st, wt) ∈
F* such that |ht – hs| = HeightTolerance,
|at – as| = AreaTolerance, pt = ps, zt = zs,
st = ss, and wt = ws, then update tbest by

letting F* = F* U fs

 }

 }

3. Recognition

The same preprocessing operations used in the learning
stage are also used in the recognition stage. To identify
the font of a new word, it is segmented into symbols.
Symbols passing some tests are matched against
templates. The template that yields the best similarity is
recorded. If the final similarity is not less than a certain
threshold, SMIN, then the symbol is considered
accepted. For every accepted symbol, s = (Is, fs), where
fs is unknown, the set of fonts associated with the
template that best matched the symbol, such that the
absolute differences between the heights of the symbol
and the font and areas of the symbol and the font are not
greater than certain thresholds, is retained. Thus, for
every symbol, there will be a set of candidate fonts each
represented by the 4 tuple (p, z, s, w), i.e., h and a are
dropped. Now, for the set of accepted symbols in the
word, we count how many times each font appears. The
font that achieves the maximum count is the output font
for the whole word. If no symbols of the word are
accepted, then the word font is unknown. Algorithm 2,
in the following text, is a formal description of the font
recognition algorithm.

Arabic Font Recognition Based on Templates 37
Algorithm 2

Steps 1 & 2: Preprocessing and segmenting a word
into symbols
These are the same as Steps 1 & 2 of Algorithm 2,
where, at the end, a set of vertically normalized
symbols, S, is obtained.

Step 3: Symbol acceptance

a. For every symbol s = (Is, fs = (hs, as, ps, zs, ss,
ws)) ∈ S, define Qs to be its set of candidate
fonts. Initially, Qs is empty.

b. Find the best matching template, t* = (I*, F*) with
similarity s*. If s* < SMIN then the symbol font is
unknown, otherwise, add every font f = (ht, at, pt,
zt, st, wt) ∈ F* such that |ht – hs| =
HeightTolerance, |at – as| = AreaTolerance to the
list of fonts, Qs. If no such font is found, then the
symbol font is unknown.

Step 4: Word font selection

a. For every word, w, consisting of a sequence of
symbols s1, s2, …, sm, with corresponding
sequence of sets of fonts Q1, Q2, …, Qm,
concatenate these sets to form a list of fonts L.

b. The most frequent font appearing in L is selected
as the recognized font of the word. If L is empty
then the word font is unknown.

4. Results
In the fonts used in the experimentation, we have
three typefaces: Simplified Arabic, Traditional
Arabic, and Tahoma. The slant is either Roman or
italic. The weight is either regular or bold. The size is
12, 13, or 14 points. Thus, a total of 36 fonts were
investigated. Table 1 summarizes the fonts used in
our AFR system. Two files with different content
were compiled to represent the learning and testing
data sets. These files were printed using a laser jet
printer once for every font in Table 1. The total
number of printed pages is 380 and 390 A4 pages for
the learning and testing data sets, respectively.

Table1. Arabic fonts used in our AFR system.

 The minimum similarity, SMIN, used in the
learning and testing phases was set to 0.90. In Steps 1
and 2 of Algorithms 1 and 2, a symbol that does not
satisfy any of the following constraints is filtered out:
the symbol width and height are at least 3 pixels
each, the maximum width and maximum height are
600 and 200 pixels, respectively. These values were

empirically determined and proved adequate to eliminate
flecks and some non-textual content.
 The learning phase produced 41,662 global templates.
Some of these templates are shown in Figure 2. Notice
that the template height is constant; i.e., only the
template width varies, which is due to vertical
normalization.

Figure 2. 24 sample template images extracted from the three Arabic
fonts under study.

 Table 2 shows font recognition results. The overall
error, rejection, and success rates are 15.0%, 7.6%, and
77.4%, respectively. The high error rate is mainly due to
errors in size recognition. Also, a high typeface error
rate is noticed in some fonts. The rejection rate is high in
some fonts, which can be reduced by learning more
sample pages. The success rate can be increased by
doing more learning and incorporating more
discriminative features other than templates.
 The algorithm was implemented and run on a
Pentium III 866MHz PC with 128 MB RAM. The
average time required to recognize the word font is
approximately one second. The time can be reduced by
using some programming optimization techniques and
more powerful computers.

5. Conclusion
To our knowledge, there has been no study of the Arabic
Font Recognition (AFR) problem. Available studies deal
with Latin fonts, which have different characteristics
than Arabic fonts. Therefore, in this paper, we presented
a novel solution to the a priori AFR problem.
 Often, the font style is not the same for a whole
document; it is a word feature, rather than a document
feature, and its detection can be used to discriminate
between different regions of the document, such as title,
figure caption, or normal text. Hence, in our approach,
we find the font per word. The detection of the font style
of a word can also be used to improve character
recognition.
 The overall font recognition rate was low, which can
be increased by doing more learning and incorporating
more discriminative features other than templates. The
recognition time was high, however, it can be reduced
by using some programming optimization techniques
and more powerful computers.

Acknowledgment
The author would like to thank the referees for their
valuable comments.

Typeface Size Slant Weight

Simplified
Arabic

12, 13, 14 Roman, Italic Regular, Bold

Traditional
Arabic

12, 13, 14 Roman, Italic Regular, Bold

Tahoma 12, 13, 14 Roman, Italic Regular, Bold

 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003 38

Table 2. Results of Arabic Font Recognition. In Slant column: R = Roman, I = Italic. In Weight column: R = Regular, B = Bold. Et =
typeface error, Ez = size error, Es = slant error, Ew = weight error, ET = total error, Rej = rejection rate, Succ = success rate.

Font

Typeface Size Slant Weight

Words

Et

%

Ez

%

Es

%

Ew

%

ET

%

Rej

%

Succ

%

Simplified Arabic 12 R R 6242 0.7 0.6 0.3 0.4 1.3 4.7 94.0

Simplified Arabic 12 R B 5249 0.3 0.3 0.3 15.4 15.8 5.8 78.4

Simplified Arabic 12 I R 3756 0.7 0.6 1.4 0.6 2.4 4.2 93.3

Simplified Arabic 12 I B 3410 0.7 0.8 1.4 4.6 5.8 4.5 89.7

Simplified Arabic 13 R R 6119 0.4 3.4 0.6 2.0 3.6 5.4 91.0

Simplified Arabic 13 R B 5459 0.3 2.3 0.6 10.2 12.1 4.7 83.1

Simplified Arabic 13 I R 3874 0.4 4.2 1.1 1.7 4.7 3.8 91.5

Simplified Arabic 13 I B 3600 0.6 3.4 1.4 3.4 6.4 5.4 88.2

Simplified Arabic 14 R R 6542 0.1 21.1 0.4 8.1 21.2 3.3 75.5

Simplified Arabic 14 R B 5153 0.3 7.3 0.6 6.4 13.4 4.2 82.4

Simplified Arabic 14 I R 3948 0.2 11.3 1.6 2.8 11.7 3.4 84.9

Simplified Arabic 14 I B 3477 0.8 11.2 1.2 2.4 12.6 4.1 83.3

Traditional Arabic 12 R R 7056 2.5 3.4 1.0 1.3 6.4 8.3 85.4

Traditional Arabic 12 R B 6792 4.8 2.5 0.9 12.4 14.3 6.8 78.8

Traditional Arabic 12 I R 4523 6.9 7.7 2.7 1.9 13.1 5.5 81.4

Traditional Arabic 12 I B 4405 5.5 4.4 1.8 6.9 11.1 5.1 83.8

Traditional Arabic 13 R R 7043 4.6 22.6 0.9 2.3 23.2 5.3 71.5

Traditional Arabic 13 R B 6845 6.0 25.7 0.9 10.2 31.1 6.5 62.3

Traditional Arabic 13 I R 4498 6.8 22.7 2.6 5.0 23.8 4.5 71.7

Traditional Arabic 13 I B 4378 12.1 23.3 1.2 7.1 28.0 3.9 68.1

Traditional Arabic 14 R R 7065 11.1 31.9 1.2 2.6 32.3 6.5 61.2

Traditional Arabic 14 R B 6889 14.6 24.6 0.8 14.8 29.2 7.9 63.0

Traditional Arabic 14 I R 4516 10.0 29.1 2.4 4.9 29.9 5.5 64.6

Traditional Arabic 14 I B 4415 14.7 23.1 1.6 10.6 26.9 5.1 68.0

Tahoma 12 R R 5790 7.5 29.2 3.2 5.3 32.4 22.8 44.9

Tahoma 12 R B 6660 1.0 21.5 2.4 0.6 22.8 39.2 38.0

Tahoma 12 I R 3955 7.7 19.4 6.9 5.2 26.2 22.9 50.8

Tahoma 12 I B 3957 2.4 19.9 8.4 1.2 27.3 31.4 41.2

Tahoma 13 R R 5651 1.2 4.1 0.6 0.8 4.5 3.2 92.4

Tahoma 13 R B 6469 0.1 0.6 0.2 0.0 0.7 2.6 96.7

Tahoma 13 I R 3957 2.6 3.9 1.9 1.7 4.7 3.3 92.0

Tahoma 13 I B 3884 0.9 2.3 1.3 0.7 2.7 2.4 94.9

Tahoma 14 R R 5815 1.2 4.7 0.6 1.1 5.1 4.2 90.8

Tahoma 14 R B 6600 0.0 5.1 0.0 0.1 5.1 2.5 92.4

Tahoma 14 I R 3962 2.7 5.8 2.4 2.4 6.2 3.3 90.4

Tahoma 14 I B 3885 0.2 3.4 1.9 0.2 4.0 4.1 91.9

All All All All 185,839 3.8 11.9 1.5 4.6 15.0 7.6 77.4

 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003 39

References
[1] Abuhaiba I., “Skew Correction of Textual

Documents,” accepted in King Saud University
Journal, Computer and Information Sciences
Division.

[2] Abuhaiba I., “Discrete Script or Cursive
Language Identification from Document
Images,” accepted in Journal of King Saud
University, Engineering Sciences Division.

[3] Manna S. L., Colla A. M., and Sperduti A.,
“Optical Font Recognition for Multi-Font OCR
and Document Processing,” 10th International
Workshop on Database & Expert Systems
Applications, Florence, Italy, pp. 549-553, 1999.

[4] Shi H. and Pavlidis T., “Font Recognition and
Contextual Processing for More Accurate Text
Recognition,” 4th International Conference on
Document Analysis and Recognition:
(ICDAR’97), Germany, pp. 39-44, 1997.

[5] Zhu Y., Tan T., and Wang Y., “Font Recognition
Based on Global Texture Analysis,” Fifth
International Conference on Document Analysis
and Recognition: (ICDAR’99), Bangalore, India,
pp. 349-352, 1999.

[6] Zramdini A. and Ingold R., “A Study of
Document Image Degradation Effects on Font
Recognition,” (ICDAR’95), Montreal, Canada,
pp. 740-743, 1995.

[7] Zramdini A. and Ingold R., “Optical Font
Recognition Using Typographical Features,”
IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 8, pp. 877-882,
1998.

Ibrahim Abuhaiba is an assistant professor at the
Department of Electrical and Computer Engineering,
Islamic University of Gaza, Palestine. He obtained his
Master of Philosophy and Doctorate of Philosophy
from Britain in the field of document understanding
and pattern recognition. His research interests include
computer vision, image processing, document analysis
and understanding, pattern recognition, artificial
intelligence, and many other fields. Dr. Abuhaiba
presented important theorems and more than twenty-
five algorithms in text recognition. He published many
original contributions in the field of document
understanding in well-reputed international journals
and conferences.

