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Abstract: Improving software algorithms are not easy task, especially for increasing operating speed, and 
reducing complexity. Different algorithms implemented in cryptosystems used the exponentiation modular 
arithmetic, however, they suffer very long time complexity. Therefore, faster algorithms are strongly sought. This 
paper provides fast algorithms for modular multiplication and exponentiation that are suitable for implementation 
in RSA and DSS public key cryptographic schemes. A comparison of the time complexity measurements for various 
widely used algorithms is performed with the aim of looking for an efficient combination for the implementation of 
RSA cryptosystem. Two such algorithms were proposed in this work. The first is a modified convolution algorithm 
for modular multiplication while the second is a Tabulated Modular Exponentiation (TME) algorithm based on the 
modified sign-digit algorithm. They are found to give significant overall improvement to modular exponentiation 
over that of the fastest algorithms studied. 
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1. Introduction 
The last decade of the twentieth century has seen a 
rapid increase in the use of cryptographic algorithms 
implementation. This trend is expected to continue in 
the next millennium in the light of continuing progress 
and utilization of the public -key cipher technology 
particularly to obtain separate keys for encryption and 
decryption. This will lead to provide tremendous 
improvement for both data secrecy and digital 
signature applications.  

Cryptographic algorithms make use of secret keys 
known to send and receive information. When the keys 
are known the encryption/decryption process is an easy 
task, however decryption will be impossible without 
knowing the correct key. The essential of such method 
is security of sending the secret key to the receiver, 
which should be protected from intrusion of 
cryptanalyst (i.e. cryptanalysis is the process of 
attempting to break the secret communication systems 
when the key is unknown). Public key cryptosystem 
proposed by Diffie and Hillman [1] provided a mean to 
avoid sending secret keys over communication 
channels, i.e. reducing the risk of key compromise. 
Many algorithms are introduced based on the public 
key cipher [2, 3, 4, 5, 6, 7, 8]; the most widely known 
and used of them is the RSA crypto-algorithm. These 
algorithms are suitable for privacy and authentication 
[9]. 

RSA crypto-algorithm, proposed by Rivest, Shamir 
and Adleman [2] is based on performing  

exponentiations in modular arithmetic both for 
encryption and decryption. It makes use of the fact that 
finding large prime number is comparatively easy, but 
factoring the product of two such primes is 
computationally infeasible with the current known 
algorithms and computation speeds. Such property has 
made RSA technique very attractive for data security 
and authentication. However, the main drawback of the 
RSA cryptosystem lies in the slow computation speed 
or the time complexity of encryption/decryption 
operations. 

Many authentication schemes involve computation 
of modular exponentiation, achieved by number of  
methods that include modular multiplication, such as 
RSA, El Gamal and Fiat-Shamir signature schemes. 
RSA scheme easily produces signature because it is a 
bijection. ElGamal signature scheme [10, 11] is also 
based on the difficulty of solving the discrete logarithm 
problem, but the size of the signature in this scheme is 
double the size of the document. The signing 
procedure uses three exponentiations to verify the 
signature for the same level of security, while the 
public key size and cipher-text will be double that for 
the RSA system. This paper deals with RSA scheme 
for the same level of security. The size of public key 
and digital signature for RSA scheme is shorter than 
ElGamal’s scheme [10]. The scheme developed by Fiat 
and Shamir [12, 13] for digital signature also uses 
modular mathematic. It has shown remarkable 
improvement over RSA in terms of computation time 
complexity but at the cost of size. The algorithms 



 Tabulated Modular Exponentiation (TME) Algorithm for Enhancing RSA Public-Key Encryption Speed                            41 

considered in this paper aim to arrive at reasonable 
speed for security and authenticity application. This is 
achieved by having good combination of algorithms 
used for RSA scheme, which is briefly outlined in 
section 2. In addition, fast algorithms commonly 
implemented for the RSA cryptosystems are compared 
in section 3. Then two modified algorithms are 
suggested in section 4, with the aim of reducing the 
execution speed, i.e. reducing the  required time for 
ciphering and deciphering. The time complexity 
measurements are included in section 5, and finally 
conclusions are drawn in section 6. 
 
2. RSA Scheme 
The system designers of RSA cryptosystem begin with 
two large, distinct prime integers, say p and q for each 
user. Then an integer N is calculated as N=pq. 
Furthermore, another integer e is subsequently chosen 
relatively prime to (p-1)(q-1). Then integer d is 
computed as the multiplicative inverse of e modulo   
(p-1)(q-1). Parameters, N and e are taken as the public 
key while d is taken as the private key for the user. 
Therefore any user will have his/her own private key 
and a published public key. 

The major problem in implementing the RSA 
system is the long time required for enciphering and 
deciphering algorithms. For this reason, RSA system is 
found more suitable for digital signature rather than 
data security. However, as we are interested in 
improving the computation algorithms, we will only 
consider encryption and decryption techniques, as 
outlined in Figure 1.  
 

   
 

Figure 1. RSA cryptosystem. 
 

To encrypt any message, M by RSA scheme, the 
public keys e and N are used at the sender end; the 
message M is chopped into a sequence of blocks as 
M1, M2, …, Mk, where each block is represented by an 
integer Mi having values between 0 and N-1. These 
blocks are enciphered by the encryption algorithm E 
giving the ciphered text as the sequence of 
cryptograms C = C1, C2, …, Ck, where  
 

NMMEC e
iii mod)()( ==    (1) 

At the receiver end, using his private decryption key, d 
and N, the intended recipient of the message decrypts 
the cryptograms by computing  

NCCD d
ii mod)()( =    (2) 

When the whole sequence C1, C2, …, Ck is deciphered, 
the results are concatenated together, the message M is 
recovered [3]. 

Obviously after generating the public and private 
keys e, N and d, basically the RSA scheme involves 
computations of the modular multiplication and 
exponentiation, which will be outlined in the next 
section. 

 
3. Modular Exponentiation 

Two algorithms that facilitate the software 
implementation of RSA scheme are described here. 
Both algorithms are concerned essentially with 
modular exponentiation of very large integers. They 
are the Repeated Square and Multiply  (RSM) 
algorithm and the Modified Signed-Digit (MSD) 
algorithm [9]. They are both based on modular 
multiplication algorithms described in the following 
subsections.  
 
3.1. Modular Multiplication Algorithms  
Various ways are available for performing the modular 
multiplication. However, two widely used methods are 
considered here.  

1. The Combination Method, which combines         
two algorithms one for multiplication and one for 
the remainder.  

2. The Synthesis Method, which, employs   one 
algorithm for both the multiplication the remainder.  

 
Combination Method 

The Combination Method performs modular 
multiplication of integers by combining two 
algorithms, one for multiplying the numbers and the 
other for reducing the resulting product. These 
algorithms are outlined in the following.  
 
a. Multiplication Algorithms  

To obtain the product of two large integers, several fast 
algorithms are available [4, 14, 18]. In this paper, two 
such algorithms are chosen, namely (1) Convolution 
and (2) Divide and Conquer. As for the convolution 
algorithm, the product P of two n-word integers x & y 
(for example, each word is of 16-bit length) can be 
calculated by: 
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Where x[0], x[1], x[2],…,x[n-1] and y[0], y[1], 
y[2],…, y[n-1] are the individual words of the two 
numbers. Hence, words x and y are: 
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The number of multiplication operations in equation 3 
is n2. 

However, for the Divide and Conquer algorithm, the 
problem is partitioned into smaller parts, solved and 
then recombined. For example if x and y are two n-
word numbers (n is a power of 2), then they can be 
partitioned into two equal halves each, i.e. xo, x1, y0 
and y1 of n/2 word length each, as follows: 
 

1*2 2/16
0 xxx n+=  

       1*2 2/16
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Then, the product P of x and y of equation 5, results 
into equation 6 
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This algorithm reduces the number of 
multiplications required by 25%, because only three 
products of n/2 numbers are required instead of four. 
However, there is an extra time for the carry bits and 
overhead divisions and additions, which may not be 
ignored.  
 
b. Modulus Algorithm  

Two algorithms are also studied here [2]. They are (1) 
Iterative division and (2) Modular reduction. For the 
iterative division algorithm [14, 15], a 2n-word number 
x is reduced to n-word number x’ by iteratively 
dividing by N and computing the remainder Ri until no 
remainder is left. i.e. 
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Where N is an n-word number and R0, R1, … , Ri are 
the remainders after division by N.  
The speed of running this algorithm depends on the 
property of the modulus N.  

On the other side, to speed up the computation of 
modular reduction algorithm, “local” and ‘global” 
fixed values are utilized to pre-compute “look up” 
table. The local fixed values depend upon a, in the 
form of as mod N, where a is fixed for the duration of 
the encryption computation and s is the number of bits 
in the modulus N, which depends on the key and 
therefore is fixed for a number of encryption operation. 
The table atab[i] consists of 512 entries; each consists 

of an (n+1)-words. The computation of this table may 
be achieved by simple combination of additions and 
comparisons. The idea of the algorithm is to reduce the 
length of 32n-bit number, x by 8 bits at a time to obtain 
16n-bit number x’. This is done according to the 
following: 

The table elements are 
 
 atab[0] = 0 

atab[i] = g * N , (for i=1 to 511)  
{where g is unique integer satisfying, int 
(g*N/T) = i-1, and int ((g+1)*N/T) = i, T = 2s, 
s is number of bits in N or g = int (T*i/N)} 
 

Then the individual computation  records as follows: 
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The table computed only at the time of modulus 
change. The time complexity for these algorithms will 
be computed later. 

  
Synthesis Method 

The modular multiplication is obtained by using one 
algorithm for both multiplication and modulus. Two 
algorithms where tested and their time complexity is 
compared. They are (1) Repeated Shift and Add 
algorithm and (2) Combined algorithm. The first, is 
suggested by Sloan [6], used to obtain modular 
multiplication by multiplying two n-word numbers a & 
b, then reduce the result modulo an n-word number N 
to obtain an n-word number C, by successive shifting 
and addition. The second Combines both convolution 
and modular reduction algorithms described earlier. 
The obtained time complexity for both techniques were 
compared and reported in later sections.    

 
3.2. Modular Exponentiation Algorithms  

RAS algorithms use a large integer number N 
exponential modulo to performed the encryption and 
decryption tasks. Two of the widely used algorithms 
that facilitate the software implementation of RSA 
cryptosystem are also compared here. They are: (1) 
The Repeated Square and Multiply, (RSM) algorithm 
[6] and (2) The Modified Sign Digit, (MSD) algorithm 
[7, 19].  

For the RSM algorithm, if one is required to 
compute ae mod N, where a, e and N are n-word input 
numbers, x is an n-word output number. Each word is 
s-bits long. X is computed by the following: 

  
             x =1; 
            For x = s-1 down to 0 do 

     x = x2 mod N           (9) 
    If ei = 1 then 
    x = x * a mod N;     (10) 
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Therefore, the number of multiplications in this 

algorithm depends on the number of 1’s in e. However, 
for   MSD algorithm, the number representation of the 
entries consists of –1, 0 and 1. i.e. any number may 
have many MSD representations as compared with the 
fixed binary system. Since the number of modular 
multiplications in the algorithm depends upon the 
number of non-zero entries in the MSD representation 
of e, which can be made less than binary by using 
weight minimization technique [7]. This has speeded 
up the process, as will be seen later in the comparison 
computation listed in section 5. 
 
4. The Proposed Algorithms 
To improve the modular exponentiation execution 
speed, two algorithms were suggested in this section. 
The first one is a Modified Convolution Algorithm 
which is suitable for modular multiplication, while the 
second one is a Tabulated Modular Exponentiation 
which is a modified version of Selby algorithm found 
suitable for the modular exponentiation computation 
[14]. Both algorithms, together with the pseudo-code 
description are outlined below. 
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Modified Convolution Algorithm 
begin 
let a(an n-words number) as input 
n = size; 
let p= procedure1 (n, a[])+procedure2 

(2*n+2, a[], size); 
output: p (a (2n-1)-words number) 
end 
 
double procedure1 (an n-words number, a[]) 
begin 
if n is less than zero then 
return zero 
else 
let s= return call procedure3 (an n-words 

number, a[])*power(2, 16*n+1) 
return s+ power (a[n], 2) * power (2, 2*16*n) 

+ return call procedure1(n-1, 
a[]); 

end 
 

double procedure3 (an n-words number, a[]) 
begin 
loop from i = 0 to number/2 
s=a[i] * a[number -i] 
end loop 
return s 
end 
 
double procedure2 (i, a[], size) 
begin 
if n is greater than  (2*size+2) 
return zero 
else 
begin 
let s = 0; 
loop from j=size +1 to  j<=(i-1)/2 steps 1 
let s = s+ a[j]*a[i-j]; 
end 
let s=s+ pow(2, 16*i+1); 
return s + return call procedure2 (i-1, a[], 

size); 
end 
 
4.1. Modified Convolution Algorithm 
This algorithm is based on the utilization of a 
symmetric property found in squaring a function. It 
applies the convolution principle; the square of any 
binary function follows a symmetric property that 
would reduce the number of multiplication operations 
as follows: 
Suppose a is an n-bits binary number, whose decimal 
value is given by  
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Finding the square of a, results into 
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Notice that the number of multiplication operations 
for this convolution algorithm is n2. By applying the 
commutative theorem to equation 12, we arrive at 
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Where n is an even number and shl1 means shift left 
by 1 digit. 

Suppose X be the required number of multiplication 
operations for equation 13, then,  
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But (1 + 2 + 3 + . . . + n/2) = (n/2 * n/4 + n/4) 
 
Therfore 

2/)( 2 nnX +=    (15) 

 
for i = 1 to n-1 do begin                                                   

btab[i]  = btab [i-1] Shl 16 
 

btab [i] = btab [i] mod N;  
(using the modular reduction algorithm) 
 

The size of this table is n2-words. 
end  
 

Using the table algorithm, the  TME_algorithm is 
computed as follows: 
 
double TME_Algorithm(n, a[], btab[][], size) 
begin 
      if (n ==0) 
          return 0; 
 

Form equations 13, 14, and 15, we managed to 
reduce the number of multiplications by applying 
commutative theorem from n2 to   (n2 + n)/2, i.e. it is 
half the number of multiplication operations required 
convolution algorithm as well as for Blakley 
multiplication algorithm [16]. Furthermore, the same 
result will be obtained for  
odd numbers. 
 
4.2. Tabulated Modular Exponentiation  
       Algorithm 
This algorithm utilizes a tabulation technique in order 
to improve the computation speed of modular 
exponentiation. We will refer to it as Tabulated 
Modular Exponentiation, (TME) algorithm. It is 
achieved by implementing tables within the acceptable 
range of the microcomputer. The main idea in this 
algorithm is to reduce the size of multiplication results 
for n-word numbers from (2n-1)-word in convolution 
algorithm to (n+2)-word in our proposed algorithm. 
Since the modulus of (n+2)-word number is faster than 
the modulus of (2n-1)-word number, the TME 
algorithm is more efficient to use instead of 
convolution algorithm for multiplication. The table 
entries of this algorithm are of the form: 
 

btab [i] [j], 0<= i <= n-1,   0<= j <= n-1  (16) 

The pseudo-code and recursive representation for 
this algorithm are described below. 

 
/* n represents the words number 
    btab[][] represent the tabulated value */ 
 
let b (an n-words number ), a (an n-words number ),  

N (an n-words number) as input. 
output: p (an (n+2)-words number ). 
 
The table of this algorithm is computed by the 
following procedure: 
 

table() 
begin 
btab [0] = b; 
      else 

{ 
         s = 0; 
      for(j=0; j<m; j++) 
            s = s+a[n]*btab[n][j]* pow(2, j*16); 
} 
      return s+TME_Algorithm(n-1, a[], btab[][], size); 
end 

The correctness of this algorithm can be proven as 
follows: 
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5. Results 

The various algorithms outlined in this paper were 
studied and compared with each other by writing 
computer programs for each, with the aim of 
measuring the time required for their execution (the 
time complexity).  

In order to insure fair comparison of the 
computation time between various algorithms 
considered in this work, the same software and 
hardware environment  were used, namely, all 
calculations were performed by programs written in 
Turbo Pascal language that were  
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running on a Pentium II PC. The results are displayed 
in Figures 2-5 and briefly described in the following. 
The time complexity for modular multiplication of two 
32-bit integer numbers using convolution algorithm 
and divide and conquer algorithm are shown in Figure 
2. It shows that the convolution algorithm is superior 
to divide and conquer algorithm by a factor of 5, 
despite the fact that the number of multiplications in 
the latter is 25% less than the former. This is mainly 
attributed to the time needed for processing the carry 
bit in the divide and conquer algorithm. 

 

Figure 2.  Time complexity for multiplication algorithm multip-
lication algorithm. 

The time complexity for modulus algorithms used to 
reduce 2n-bits number to n-bits number by iterative 
division and modular reduction techniques are shown 
in Figure 3. It shows that the modular reduction 
algorithm is faster than the iterative division 
algorithm. For example, the time required to reduce 
64-bits number to 32-bits number is 2.8 seconds and 
0.11 seconds, respectively. 
 

 

Figure 3. Time complexity for modulus  algorithm. 
 

The second method for modular multiplication 
considered here involves combined techniques for 
multiplication and modulus. It included two 
algorithms, namely: (1) Combined convolution and 
modular reduction algorithm and (2) Repeated shift 
and add algorithm.  
Figure 4 shows that the time complexity measurements 
for these two techniques. It points out that convolution 

and modular reduction algorithm is much faster than 
repeated shift and add algorithm, for example the time 
required for one modular multiplication of 32-bits 
numbers is 0.16 seconds and 1.6 seconds for the two 
algorithms, respectively. 
 

 
Figure 4. Time complexity of modular multiplication. 

 
Therefore, the combined convolution and modular 

reduction algorithm is selected to be used in the 
modular exponentiation of the proposed algorithms. 

Figure 5 shows the time complexity for the modular 
exponentiation algorithm outlined in section 3.2. It 
shows that the Modified Signed-Digit (MSD) 
algorithm is slightly faster than the Repeated Square 
and Multiply (RSM) algorithm. This can be attributed 
to the more efficient digit representation of MSD. 

 

 
 

Figure 5. Time complexity for modular exponentiation. 
 

When the suggested algorithm is implemented, the 
time complexity is calculated and plotted as curve 
marked 3 in Figure 2. In comparison with both divide 
and conquer algorithm and convolution algorithm, it 
shows an improvement of 16.4% in time complexity 
over the more efficient algorithm of the two, which is 
the convolution algorithm.   

When the TME algorithm suggested in this paper is 
used for multiplication in the modified sign-digit 
algorithm, the execution time for one modular 
exponentiation became shorter, for example, it was 
77.56 seconds instead of 88.85 seconds, using the 
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same computation environment. This improvement 
was of the order of 12.7%.  

Finally, the total improvement in speed (or 
reduction in execution time) for the modular 
exponentiation when using both of the suggested 
algorithms together is 25.9%. This will obviously lead 
to a considerable improvement in the overall 
computation time required for any data security 
system.  
 
6. Conclusion 
Comparison study of the time complexity for fast 
algorithms suitable for RSA cryptosystem 
implementation is conducted. Two modified 
algorithms were suggested. The first is a modified 
convolution algorithm used for multiplication and the 
second is a modified Selby algorithm for modular 
exponentiation. The overall improvement obtained by 
using the suggested TME algorithm over the fastest 
studied algorithms was 25.9 %, which may be 
considered of great benefit.  

However, the implementation of RSA cryptosystem 
is still slow which makes it more suitable for use in 
hybrid encryption schemes, where RSA can be used in 
conjunction with other algorithms. The best choice 
seams to be that RSA is used for key distribution and 
other schemes like DES, AES or IDEA are used for 
data security [10, 11, 17]. 
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