
40 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

Tabulated Modular Exponentiation (TME)
Algorithm for Enhancing RSA Public Key

 Encryption Speed
Hamza Ali and Hamed Fawareh

Department of Computer Science, Zarka Private University, Jordan

Abstract: Improving software algorithms are not easy task, especially for increasing operating speed, and
reducing complexity. Different algorithms implemented in cryptosystems used the exponentiation modular
arithmetic, however, they suffer very long time complexity. Therefore, faster algorithms are strongly sought. This
paper provides fast algorithms for modular multiplication and exponentiation that are suitable for implementation
in RSA and DSS public key cryptographic schemes. A comparison of the time complexity measurements for various
widely used algorithms is performed with the aim of looking for an efficient combination for the implementation of
RSA cryptosystem. Two such algorithms were proposed in this work. The first is a modified convolution algorithm
for modular multiplication while the second is a Tabulated Modular Exponentiation (TME) algorithm based on the
modified sign-digit algorithm. They are found to give significant overall improvement to modular exponentiation
over that of the fastest algorithms studied.

Keywords: Data security, cryptography, authentication, algorithms, RSA, DSS.

Received February 2, 2003; accepted May 11, 2003

1. Introduction
The last decade of the twentieth century has seen a
rapid increase in the use of cryptographic algorithms
implementation. This trend is expected to continue in
the next millennium in the light of continuing progress
and utilization of the public -key cipher technology
particularly to obtain separate keys for encryption and
decryption. This will lead to provide tremendous
improvement for both data secrecy and digital
signature applications.

Cryptographic algorithms make use of secret keys
known to send and receive information. When the keys
are known the encryption/decryption process is an easy
task, however decryption will be impossible without
knowing the correct key. The essential of such method
is security of sending the secret key to the receiver,
which should be protected from intrusion of
cryptanalyst (i.e. cryptanalysis is the process of
attempting to break the secret communication systems
when the key is unknown). Public key cryptosystem
proposed by Diffie and Hillman [1] provided a mean to
avoid sending secret keys over communication
channels, i.e. reducing the risk of key compromise.
Many algorithms are introduced based on the public
key cipher [2, 3, 4, 5, 6, 7, 8]; the most widely known
and used of them is the RSA crypto-algorithm. These
algorithms are suitable for privacy and authentication
[9].

RSA crypto-algorithm, proposed by Rivest, Shamir
and Adleman [2] is based on performing

exponentiations in modular arithmetic both for
encryption and decryption. It makes use of the fact that
finding large prime number is comparatively easy, but
factoring the product of two such primes is
computationally infeasible with the current known
algorithms and computation speeds. Such property has
made RSA technique very attractive for data security
and authentication. However, the main drawback of the
RSA cryptosystem lies in the slow computation speed
or the time complexity of encryption/decryption
operations.

Many authentication schemes involve computation
of modular exponentiation, achieved by number of
methods that include modular multiplication, such as
RSA, El Gamal and Fiat-Shamir signature schemes.
RSA scheme easily produces signature because it is a
bijection. ElGamal signature scheme [10, 11] is also
based on the difficulty of solving the discrete logarithm
problem, but the size of the signature in this scheme is
double the size of the document. The signing
procedure uses three exponentiations to verify the
signature for the same level of security, while the
public key size and cipher-text will be double that for
the RSA system. This paper deals with RSA scheme
for the same level of security. The size of public key
and digital signature for RSA scheme is shorter than
ElGamal’s scheme [10]. The scheme developed by Fiat
and Shamir [12, 13] for digital signature also uses
modular mathematic. It has shown remarkable
improvement over RSA in terms of computation time
complexity but at the cost of size. The algorithms

 Tabulated Modular Exponentiation (TME) Algorithm for Enhancing RSA Public-Key Encryption Speed 41

considered in this paper aim to arrive at reasonable
speed for security and authenticity application. This is
achieved by having good combination of algorithms
used for RSA scheme, which is briefly outlined in
section 2. In addition, fast algorithms commonly
implemented for the RSA cryptosystems are compared
in section 3. Then two modified algorithms are
suggested in section 4, with the aim of reducing the
execution speed, i.e. reducing the required time for
ciphering and deciphering. The time complexity
measurements are included in section 5, and finally
conclusions are drawn in section 6.

2. RSA Scheme
The system designers of RSA cryptosystem begin with
two large, distinct prime integers, say p and q for each
user. Then an integer N is calculated as N=pq.
Furthermore, another integer e is subsequently chosen
relatively prime to (p-1)(q-1). Then integer d is
computed as the multiplicative inverse of e modulo
(p-1)(q-1). Parameters, N and e are taken as the public
key while d is taken as the private key for the user.
Therefore any user will have his/her own private key
and a published public key.

The major problem in implementing the RSA
system is the long time required for enciphering and
deciphering algorithms. For this reason, RSA system is
found more suitable for digital signature rather than
data security. However, as we are interested in
improving the computation algorithms, we will only
consider encryption and decryption techniques, as
outlined in Figure 1.

Figure 1. RSA cryptosystem.

To encrypt any message, M by RSA scheme, the
public keys e and N are used at the sender end; the
message M is chopped into a sequence of blocks as
M1, M2, …, Mk, where each block is represented by an
integer Mi having values between 0 and N-1. These
blocks are enciphered by the encryption algorithm E
giving the ciphered text as the sequence of
cryptograms C = C1, C2, …, Ck, where

NMMEC e
iii mod)()(== (1)

At the receiver end, using his private decryption key, d
and N, the intended recipient of the message decrypts
the cryptograms by computing

NCCD d
ii mod)()(= (2)

When the whole sequence C1, C2, …, Ck is deciphered,
the results are concatenated together, the message M is
recovered [3].

Obviously after generating the public and private
keys e, N and d, basically the RSA scheme involves
computations of the modular multiplication and
exponentiation, which will be outlined in the next
section.

3. Modular Exponentiation

Two algorithms that facilitate the software
implementation of RSA scheme are described here.
Both algorithms are concerned essentially with
modular exponentiation of very large integers. They
are the Repeated Square and Multiply (RSM)
algorithm and the Modified Signed-Digit (MSD)
algorithm [9]. They are both based on modular
multiplication algorithms described in the following
subsections.

3.1. Modular Multiplication Algorithms
Various ways are available for performing the modular
multiplication. However, two widely used methods are
considered here.

1. The Combination Method, which combines
two algorithms one for multiplication and one for
the remainder.

2. The Synthesis Method, which, employs one
algorithm for both the multiplication the remainder.

Combination Method

The Combination Method performs modular
multiplication of integers by combining two
algorithms, one for multiplying the numbers and the
other for reducing the resulting product. These
algorithms are outlined in the following.

a. Multiplication Algorithms

To obtain the product of two large integers, several fast
algorithms are available [4, 14, 18]. In this paper, two
such algorithms are chosen, namely (1) Convolution
and (2) Divide and Conquer. As for the convolution
algorithm, the product P of two n-word integers x & y
(for example, each word is of 16-bit length) can be
calculated by:

∑∑
=

=

=

−+=
i

j

j
n

i

jiyixyxP
0

16
1

1

2*][*][]0[*]0[(3)

Where x[0], x[1], x[2],…,x[n-1] and y[0], y[1],
y[2],…, y[n-1] are the individual words of the two
numbers. Hence, words x and y are:

42 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

)1(163216 2*]1[...2*]2[2*]1[]0[−−++++= nnxxxxx
)1(163216 2*]1[...2*]2[2*]1[]0[−−++++= nnyyyyy (4)

The number of multiplication operations in equation 3
is n2.

However, for the Divide and Conquer algorithm, the
problem is partitioned into smaller parts, solved and
then recombined. For example if x and y are two n-
word numbers (n is a power of 2), then they can be
partitioned into two equal halves each, i.e. xo, x1, y0
and y1 of n/2 word length each, as follows:

1*2 2/16
0 xxx n+=

 1*2 2/16
0 yyy n+= (5)

Then, the product P of x and y of equation 5, results
into equation 6

nn yxyxyxyxP 16
11

2/16
011000 2*2*)(+++= (6)

This algorithm reduces the number of
multiplications required by 25%, because only three
products of n/2 numbers are required instead of four.
However, there is an extra time for the carry bits and
overhead divisions and additions, which may not be
ignored.

b. Modulus Algorithm

Two algorithms are also studied here [2]. They are (1)
Iterative division and (2) Modular reduction. For the
iterative division algorithm [14, 15], a 2n-word number
x is reduced to n-word number x’ by iteratively
dividing by N and computing the remainder Ri until no
remainder is left. i.e.

NRRRx
or

Nxx

i mod)...(

mod

10 +++=′

=′

 (7)

Where N is an n-word number and R0, R1, … , Ri are
the remainders after division by N.
The speed of running this algorithm depends on the
property of the modulus N.

On the other side, to speed up the computation of
modular reduction algorithm, “local” and ‘global”
fixed values are utilized to pre-compute “look up”
table. The local fixed values depend upon a, in the
form of as mod N, where a is fixed for the duration of
the encryption computation and s is the number of bits
in the modulus N, which depends on the key and
therefore is fixed for a number of encryption operation.
The table atab[i] consists of 512 entries; each consists

of an (n+1)-words. The computation of this table may
be achieved by simple combination of additions and
comparisons. The idea of the algorithm is to reduce the
length of 32n-bit number, x by 8 bits at a time to obtain
16n-bit number x’. This is done according to the
following:

The table elements are

 atab[0] = 0

atab[i] = g * N , (for i=1 to 511)
{where g is unique integer satisfying, int
(g*N/T) = i-1, and int ((g+1)*N/T) = i, T = 2s,
s is number of bits in N or g = int (T*i/N)}

Then the individual computation records as follows:

][2

)*2/int(
8

8

jatabxx

Txj
i

i

−=′

=
 (8)

The table computed only at the time of modulus
change. The time complexity for these algorithms will
be computed later.

Synthesis Method

The modular multiplication is obtained by using one
algorithm for both multiplication and modulus. Two
algorithms where tested and their time complexity is
compared. They are (1) Repeated Shift and Add
algorithm and (2) Combined algorithm. The first, is
suggested by Sloan [6], used to obtain modular
multiplication by multiplying two n-word numbers a &
b, then reduce the result modulo an n-word number N
to obtain an n-word number C, by successive shifting
and addition. The second Combines both convolution
and modular reduction algorithms described earlier.
The obtained time complexity for both techniques were
compared and reported in later sections.

3.2. Modular Exponentiation Algorithms

RAS algorithms use a large integer number N
exponential modulo to performed the encryption and
decryption tasks. Two of the widely used algorithms
that facilitate the software implementation of RSA
cryptosystem are also compared here. They are: (1)
The Repeated Square and Multiply, (RSM) algorithm
[6] and (2) The Modified Sign Digit, (MSD) algorithm
[7, 19].

For the RSM algorithm, if one is required to
compute ae mod N, where a, e and N are n-word input
numbers, x is an n-word output number. Each word is
s-bits long. X is computed by the following:

 x =1;
 For x = s-1 down to 0 do

 x = x2 mod N (9)
 If ei = 1 then
 x = x * a mod N; (10)

 Tabulated Modular Exponentiation (TME) Algorithm for Enhancing RSA Public-Key Encryption Speed 43

Therefore, the number of multiplications in this

algorithm depends on the number of 1’s in e. However,
for MSD algorithm, the number representation of the
entries consists of –1, 0 and 1. i.e. any number may
have many MSD representations as compared with the
fixed binary system. Since the number of modular
multiplications in the algorithm depends upon the
number of non-zero entries in the MSD representation
of e, which can be made less than binary by using
weight minimization technique [7]. This has speeded
up the process, as will be seen later in the comparison
computation listed in section 5.

4. The Proposed Algorithms
To improve the modular exponentiation execution
speed, two algorithms were suggested in this section.
The first one is a Modified Convolution Algorithm
which is suitable for modular multiplication, while the
second one is a Tabulated Modular Exponentiation
which is a modified version of Selby algorithm found
suitable for the modular exponentiation computation
[14]. Both algorithms, together with the pseudo-code
description are outlined below.

p = (a [0])2

22])[{(
1

1

11616*22∑
−

=

+++=
n

i

iiiapP

 ∑
−

=

−
2/)1int(

0

]}[*][
i

j

jiaja

P = p + ∑
−

=

++=
22

1162
n

ni

ipP ∑
−

+−=

−
2/)1int(

1

][*][
i

nij

jiaja

Modified Convolution Algorithm
begin
let a(an n-words number) as input
n = size;
let p= procedure1 (n, a[])+procedure2

(2*n+2, a[], size);
output: p (a (2n-1)-words number)
end

double procedure1 (an n-words number, a[])
begin
if n is less than zero then
return zero
else
let s= return call procedure3 (an n-words

number, a[])*power(2, 16*n+1)
return s+ power (a[n], 2) * power (2, 2*16*n)

+ return call procedure1(n-1,
a[]);

end

double procedure3 (an n-words number, a[])
begin
loop from i = 0 to number/2
s=a[i] * a[number -i]
end loop
return s
end

double procedure2 (i, a[], size)
begin
if n is greater than (2*size+2)
return zero
else
begin
let s = 0;
loop from j=size +1 to j<=(i-1)/2 steps 1
let s = s+ a[j]*a[i-j];
end
let s=s+ pow(2, 16*i+1);
return s + return call procedure2 (i-1, a[],

size);
end

4.1. Modified Convolution Algorithm
This algorithm is based on the utilization of a
symmetric property found in squaring a function. It
applies the convolution principle; the square of any
binary function follows a symmetric property that
would reduce the number of multiplication operations
as follows:
Suppose a is an n-bits binary number, whose decimal
value is given by

1

1
2

210 2*...2*2* −
−++++= n

naaaaa (11)

Finding the square of a, results into

222
1

32
2112

1
01122110

2
02

2
1200110

2
0

2

2*)(2*)(

....2*)...(...

2*)(2*)()(

−
−

−
−−−−

−
−−−−

++

++++++++

+++++=

n
n

n
nnnn

n
nnnn

aaaaa

aaaaaaaa

aaaaaaaaaaa
 (12)

Notice that the number of multiplication operations
for this convolution algorithm is n2. By applying the
commutative theorem to equation 12, we arrive at

222
1

32
12

1
2/1)2/(2110

22
12010

2
0

2

2*)(2*)1(....

2*)1*)...((...

2*)1(2*)1()(

−
−

−
−−

−
−−−

++

+++++

++++=

n
n

n
nn

n
nnnn

ashlaa

shlaaaaaa

ashlaashlaaaa
 (13)

Where n is an even number and shl1 means shift left
by 1 digit.

Suppose X be the required number of multiplication
operations for equation 13, then,

44 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

2/)2/...321(*4
1122...2/...2211

nn
nX

−++++=
++++++++++=

 (14)

But (1 + 2 + 3 + . . . + n/2) = (n/2 * n/4 + n/4)

Therfore

2/)(2 nnX += (15)

for i = 1 to n-1 do begin

btab[i] = btab [i-1] Shl 16

btab [i] = btab [i] mod N;
(using the modular reduction algorithm)

The size of this table is n2-words.
end

Using the table algorithm, the TME_algorithm is
computed as follows:

double TME_Algorithm(n, a[], btab[][], size)
begin
 if (n ==0)
 return 0;

Form equations 13, 14, and 15, we managed to
reduce the number of multiplications by applying
commutative theorem from n2 to (n2 + n)/2, i.e. it is
half the number of multiplication operations required
convolution algorithm as well as for Blakley
multiplication algorithm [16]. Furthermore, the same
result will be obtained for
odd numbers.

4.2. Tabulated Modular Exponentiation
 Algorithm
This algorithm utilizes a tabulation technique in order
to improve the computation speed of modular
exponentiation. We will refer to it as Tabulated
Modular Exponentiation, (TME) algorithm. It is
achieved by implementing tables within the acceptable
range of the microcomputer. The main idea in this
algorithm is to reduce the size of multiplication results
for n-word numbers from (2n-1)-word in convolution
algorithm to (n+2)-word in our proposed algorithm.
Since the modulus of (n+2)-word number is faster than
the modulus of (2n-1)-word number, the TME
algorithm is more efficient to use instead of
convolution algorithm for multiplication. The table
entries of this algorithm are of the form:

btab [i] [j], 0<= i <= n-1, 0<= j <= n-1 (16)

The pseudo-code and recursive representation for
this algorithm are described below.

/* n represents the words number
 btab[][] represent the tabulated value */

let b (an n-words number), a (an n-words number),

N (an n-words number) as input.
output: p (an (n+2)-words number).

The table of this algorithm is computed by the
following procedure:

table()
begin
btab [0] = b;
 else

{
 s = 0;
 for(j=0; j<m; j++)
 s = s+a[n]*btab[n][j]* pow(2, j*16);
}
 return s+TME_Algorithm(n-1, a[], btab[][], size);
end

The correctness of this algorithm can be proven as
follows:

Nbna

babaNbaNP
n mod)2**]1[....

2**]1[*]0[(mod*mod
)1(16

16

−−+

++==

NNbna

NbaNba
n mod)mod2**]1[...

mod2**]1[mod*]0[(
)1(16

16

−−+

++=

 ∑∑
−

=

−

=

=
1

0

16
1

0

mod2*]][[*][
n

j

j
n

i

Njibtabia (17)

Hence ∑∑
−

=

−

=

==
1

0

16
1

0

2*]][[*][
n

j

j
n

i

jibtabiaP

5. Results

The various algorithms outlined in this paper were
studied and compared with each other by writing
computer programs for each, with the aim of
measuring the time required for their execution (the
time complexity).

In order to insure fair comparison of the
computation time between various algorithms
considered in this work, the same software and
hardware environment were used, namely, all
calculations were performed by programs written in
Turbo Pascal language that were

 Tabulated Modular Exponentiation (TME) Algorithm for Enhancing RSA Public-Key Encryption Speed 45

running on a Pentium II PC. The results are displayed
in Figures 2-5 and briefly described in the following.
The time complexity for modular multiplication of two
32-bit integer numbers using convolution algorithm
and divide and conquer algorithm are shown in Figure
2. It shows that the convolution algorithm is superior
to divide and conquer algorithm by a factor of 5,
despite the fact that the number of multiplications in
the latter is 25% less than the former. This is mainly
attributed to the time needed for processing the carry
bit in the divide and conquer algorithm.

Figure 2. Time complexity for multiplication algorithm multip-
lication algorithm.

The time complexity for modulus algorithms used to
reduce 2n-bits number to n-bits number by iterative
division and modular reduction techniques are shown
in Figure 3. It shows that the modular reduction
algorithm is faster than the iterative division
algorithm. For example, the time required to reduce
64-bits number to 32-bits number is 2.8 seconds and
0.11 seconds, respectively.

Figure 3. Time complexity for modulus algorithm.

The second method for modular multiplication
considered here involves combined techniques for
multiplication and modulus. It included two
algorithms, namely: (1) Combined convolution and
modular reduction algorithm and (2) Repeated shift
and add algorithm.
Figure 4 shows that the time complexity measurements
for these two techniques. It points out that convolution

and modular reduction algorithm is much faster than
repeated shift and add algorithm, for example the time
required for one modular multiplication of 32-bits
numbers is 0.16 seconds and 1.6 seconds for the two
algorithms, respectively.

Figure 4. Time complexity of modular multiplication.

Therefore, the combined convolution and modular

reduction algorithm is selected to be used in the
modular exponentiation of the proposed algorithms.

Figure 5 shows the time complexity for the modular
exponentiation algorithm outlined in section 3.2. It
shows that the Modified Signed-Digit (MSD)
algorithm is slightly faster than the Repeated Square
and Multiply (RSM) algorithm. This can be attributed
to the more efficient digit representation of MSD.

Figure 5. Time complexity for modular exponentiation.

When the suggested algorithm is implemented, the
time complexity is calculated and plotted as curve
marked 3 in Figure 2. In comparison with both divide
and conquer algorithm and convolution algorithm, it
shows an improvement of 16.4% in time complexity
over the more efficient algorithm of the two, which is
the convolution algorithm.

When the TME algorithm suggested in this paper is
used for multiplication in the modified sign-digit
algorithm, the execution time for one modular
exponentiation became shorter, for example, it was
77.56 seconds instead of 88.85 seconds, using the

46 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

same computation environment. This improvement
was of the order of 12.7%.

Finally, the total improvement in speed (or
reduction in execution time) for the modular
exponentiation when using both of the suggested
algorithms together is 25.9%. This will obviously lead
to a considerable improvement in the overall
computation time required for any data security
system.

6. Conclusion
Comparison study of the time complexity for fast
algorithms suitable for RSA cryptosystem
implementation is conducted. Two modified
algorithms were suggested. The first is a modified
convolution algorithm used for multiplication and the
second is a modified Selby algorithm for modular
exponentiation. The overall improvement obtained by
using the suggested TME algorithm over the fastest
studied algorithms was 25.9 %, which may be
considered of great benefit.

However, the implementation of RSA cryptosystem
is still slow which makes it more suitable for use in
hybrid encryption schemes, where RSA can be used in
conjunction with other algorithms. The best choice
seams to be that RSA is used for key distribution and
other schemes like DES, AES or IDEA are used for
data security [10, 11, 17].

References
[1] Diffie W. and Hellman M.E., “New Direction in

Cryptography,” IEEE Trans. Information Theary,
vol. IT-22, no. 6, pp. 644-654, 1976.

[2] Rivest, R., Shamir A., and Adleman L., “Method
for obtaining Digital Signature and Public Key
Cryptosystem,” Comm. of ACM, vol. 21, no. 2,
1978.

[3] Mohan S. B., “Fast Algorithm for Implementing
RSA Public-Key Cryptosystem,” Electronic
Letters, vol. 21, no. 17, 1985.

[4] Robert S., Algorithms, Addison Wesley, USA,
1983.

[5] Selby A., “Algorithms for Software
Implementation of RSA,” vol. 136, no. 3, 1989.

[6] Sloan, K. R., “A Computer Algorithm for
Calculating A*B mod M,” IEE Trans. on
Computers, vol. C-34, no. 3, 1985.

[7] Davis D. W., Security for Computer Networks,
Wiley, UK, 1989.

[8] Saloma A., Public-Key Cryptography, Springer,
1996.

[9] Jedwab J. and Mitchell C. J, “Minimum Weight
Modified Signed-Digit Representations and Fast
Exponentiation”, Electronic Letters, vol. 25, no.
17, 1989.

[10] ElGamal T., “A Public Key Cryptosystem in a
Signature Scheme Based on Discrete Logarithm,”
IEEE Trans Information Theory, vol. IT-31, no.
4, 1985.

[11] Boneh D. and Franklin M., “Efficient Generation
of Shared RSA Keys,” J. of ACM, vol. 48, no. 4,
pp. 702-722, 2001.

[12] Schneier B., Applied Cryptography, John Wiley
& Son, 1996.

[13] Naini S. R. and Wang H., “Broadcast
authentication for Group Communication,”
Theoretical Computer Science, vol. 269, pp. 1-
21, 2001.

[14] Rashid A. M. T., “Software Inplementation of
RSA Public-Key Cipher for Microcomputer
Protection and Authentication,” MSc Thesis,
Basrah University, 1992.

[15] Campbell R., “Basics of Computational Number
Theory,” http://www.math.umbc.edu.~campbell/
NumbThy/Basic NumberThy.html, last visited
11/5/2002.

[16] Cornam T., Leiserson C.E. and Rivest, R. L.,
Introduction to Algorithms, McGraw Hill
Company, 1999.

[17] Bellare M; Garang J. A. and Rabin T., ³Fast
Batch Verification for Modular Exponentiation
and Digital Signature,́ Advances in
Cryptography, Eurocrypt98 Proceedings,
Lecture Notes in Computer Science, vol. 1403,
1998.

[18] Aho A., Hopcroft J. and Ullman J., The Design
and Analysis of Computer Algorithms, Addison-
Wesley, 1974.

[19] Blum T. and Paar C., ³High-Radix Montgomery
Modular Exponentiation on Reconfigurable
Hardware,́ IEEE Trans. on Computers,
http://www.computer.org/tc/tc2001/t0759abs.htm

Hamza Ali received his BSc in physics from
University of Basrah in 1968, MSc in electronics from
University of London in 1973 and PhD in computer
engineering from University of London in 1977.
Previously he worked in Basrah University, Iraq, one
year in Aizu University, Japan and currently associate
professor at the Computer Science Department, Zarka
Private University, Jordan. His research interest
includes computer security and authentication, pattern
recognition and neural networks.

Hamed Fawareh received his PhD in software
engineering from University Putra Malaysia,
2001. Currently, he is an assistance professor at
the Department of Computer Science, Zarka
Private University, Jordan. His research areas
include software engineering, algorithm security,
and Biocomputing.

