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Abstract: Hash functions are widely used in encryption schemes and security layers of communication protocols 
(wap, ipsec) for data integrity, digital signature and message authentication codes. In addition to the demanded 
high security level, the need for high performance is a major factor of the security implementations. In this work, 
an ultra high speed architecture for the hardware implementation of both md5 and sha-1 is proposed. Both hash 
functions have been developed with vhdl description language and have been integrated in fpga devices. The 
introduced md5 implementation performance is equal to 2,1 gbps while sha-1 proposed implementation achieves 
throughput equal to 2,3 gbps. Both proposed implementations are compared in throughput, operating frequency 
and in the area-delay product, with other related works. From these comparisons, it is proven that the md5 
proposed implementation is better by a factor range from 700% to 1500%. The sha-1 proposed implementation is 
better by about 800% to 1700% in the term of performance, compared with the other conventional works. 
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1. Introduction 
In the last few years, communications have been 
grown up rapidly, due to the users increased needs 
and the maximized offered services and applications. 
In parallel to this growth, is the increased major 
demand for powerful secure implementations of 
cryptographic algorithms and encryption schemes. 
Almost all the communication protocols have 
specified security layers, which ensure security with 
high-level strength. In order these special and 
sensitive needs for cryptography to be satisfied in the 
desirable level, different categories of encryption 
algorithms, support the communication protocols and 
networks defense. 

Hash functions belong to one of the most 
important categories of encryption algorithms, 
against the external harmful attacks [1]. They are 
widely used in a great number of security 
applications and have been included in the 
specifications of communication protocols like WAP 
and IPsec. They mainly serve data integrity and 
message authentication codes (MAC) but they are 
also used in digital signatures, HMAC and random 
number generators. The most well know and widely 
used hash functions are MD5 and SHA-1 [10, 11]. 

In this paper, an ultra high speed architecture for 
the VLSI implementation of both MD5 and SHA-1 
hash functions is proposed. Both hash functions 
specifications and operation processes have been 
studied and a pipeline architecture with four 
processing levels is proposed. The internal 
components of the proposed architecture are analyzed 
and presented for each one of the MD5 and SHA-1  

 
implementations separately. Both MD5 and SHA-1 hash 
functions have been integrated by using VHDL 
description language, in FPGA hardware module. The 
synthesis results are presented in detail. The MD5 
implementation throughput reaches the value of 2,1 
Gbps while the SHA-1 throughput is equal to 2,3 Gbps. 
Both proposed implementations are compared with other 
related works for both MD5 [2, 4], and SHA-1 [3, 4, 6, 
9]. In these comparisons, the hardware terms of system 
performance (throughput), operating frequency and 
covered area are given, for both proposed and 
conventional implementations. Furthermore, in order to 
have a fair a detailed comparison, the Area-Delay 
products for all the hardware implementations are 
compared. These comparisons prove that the proposed 
implementations have ultra high-speed performance 
compared with the other conventional architectures in all 
of the cases. Especially the proposed MD5 
implementation has better performance with a factor 
equal from 7 to 15 times, compared with the 
conventional architectures. The Area-Delay product of 
the proposed MD5 implementation is still better (less) 
compared with all the others ones. The SHA-1 proposed 
implementation performance is superior to all the other 
conventional works. Especially, it is better at about 8 to 
17 times. It is proved that the SHA-1 introduced VLSI 
integration has better Area-Delay product in all of the 
cases. The proposed MD5 and SHA-1 implementations 
could be used efficiently in applications with high 
performance and minimized covered area demands. 
They can be flexible solutions for hardware 
implementations of data integrity, digital signatures and 
MAC applications. Furthermore, they can substitute 
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successfully possible existing developments, with 
better achieved performance and high security 
offered level at the same time. Especially, they can be 
used to implement the data integrity specified 
schemes of wireless protocols such as WAP and 
IPsec. 

This paper is organized as follows: In section 2       
both MD5 and SHA-1 hash functions are introduced. 
In the next section, the proposed system architecture 
is presented. The internal components of this 
architecture for both MD5 and SHA-1 
implementations are described in detail. The 
synthesis results for MD5 and SHA-1 VLSI 
implementations are given in the next section 4. 
Comparisons with other related works are also 
presented in the same section. Finally, important 
conclusions and observations are discussed in 
section5. 
 
2. Hash Functions 
An n-bit hash is a map from arbitrary length 
messages to n-bit hash values [1]. An n-bit hash 
function is an n-bit hash which is one-way and 
collision-resistant. One-way is the function that for a 
given hash value, it should require work equivalent 
about 2n hash computations to find any message that 
hashes that value. The term collision resistance 
characterizes the functions that finding two messages, 
which hash the same value, should require work 
equivalent to 2n/2 hash computations. Of course the 
hash functions architectures ofare public and 
commonly known. In the hash computation process, 
there is no secrecy and no keys, public or private, are 
used at all. The security is based on the one-way 
operation of each hash function itself. Hash functions 
are used for digital signature scheme, data integrity, 
HMAC and other cryptographic purposes (random 
number generators) [5, 8]. In most of the wireless 
protocols, such as WAP and IPsec, the widely used 
hash functions are SHA-1 and MD5. 

MD5 is the Message Digest algorithm developed 
by Ronald Rivest [10, 12]. The algorithm accesses 
512-bit message blocks and finally produces a 128-
bit hash value (message digest). This hash function is 
an improved version of MD4 but a more complex 
design [1]. In MD5 architecture a fourth round has 
been added, while each transformation step has a 
unique additive constant. Each step now adds in the 
result of the previous transformation step. This 
promotes a faster valance effect compared with MD4.  

Furthermore the order of the processed message 
sub-blocks is changed in transformation rounds 2 and 
3 [1]. In spite of these differences, both MD4 and 
MD5 produce a 128-bit message digest.  

SHA-1 is the Secure Hash Algorithm designed by 
NIST [7, 11]. This hash function is widely used in the 
Digital Signature Algorithm [8]. The SHA-1 is based 
on design aspects and mathematical principles similar 
to the applied to MD4 and MD5. Especially, SHA-1 
is almost the same with MD4 with the addition of an 

expand transformation, an extra round, and better 
avalanche effect [1].  

SHA-1 produces a 160-bit message digest, longer 
than the generated 128-bit hash value by MD5. This 
hash function offers high security level and no 
cryptanalytic attacks have been applied successfully 
against SHA-1 yet. The 160-bit message digest of SHA-
1 makes it more resistant to birthday and brute-force-
attacks than the 128-bit hash value of MD5. 
 
3. Proposed System Architecture 

3.1. MD5 Hash Function 
The proposed system architecture is illustrated in the 
following Figure 1. This architecture is used for both 
MD5 and SHA-1 implementation, with the appropriate 
modifications each time. 

The Padding Data Unit pads the input data and 
converts them to 512-bit blocks (padded data). This 
operation is characterized of simplicity and it is well 
defined by the MD5 specifications (for more details see 
[10]). Every produced padded data block is stored in one 
of the four used RAM blocks. Each one of the used 
RAM blocks is equal to 16x32-bit (=512-bit). Four 
padded data blocks in total can be processed by the 
proposed system architecture at the same time. 
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Figure 1. Proposed system architecture. 
 
The necessary data transformation is performed in the 

Pipeline Data Transformation Unit. The architecture of 
this unit is shown in Figure 2. 

This last unit basically consists of four different in 
architecture data transformation rounds. Of course, the 
pipeline applied design technique of this unit (Figure 2) 
needs four registers between the data transformation 
rounds. Every round operates on 4 inputs (AIn, BIn, CIn, 
DIn) plus the message input (Mi) and the constant input 
(Ki), all equal to 32-bit (Figure 3). 

The four rounds are very similar but its one performs 
a different operation. Each operation is based on a 
nonlinear function on three of AIn, BIn, CIn, and DIn, 
inputs. Then, this result is added to the fourth input with 
the input data block (Mi) and the constant (Ki). That 
result is rotated to the right and the rotated data output is 
added with the input (B). There are four different 
nonlinear functions, one for each round, which are 
described by the following four equations: 
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Round 1: 
F (X,Y,Z) = (X AND Y) OR ((NOT X) AND Z) 

Round 2: 
G (X,Y,Z) = (X AND Z) OR (Y AND (NOT Z)) 

Round 3: 
H (X,Y,Z) =  (X XOR Y XOR Z) 

Round 4: 
I (X,Y,Z)  =  Y XOR (X OR (NOT Z)) 

where X,Y,Z are equal to 32-bit. 
Each round modifies the input data 16 times. 

These necessary transformations are performed with 
the use of loop rolling technique (feedback logic). 
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Figure 2. Pipeline data transformation unit. 

 
As it has been mentioned before the data (input 

message) are processed 16 times in each 
transformation round and in this way 64 
transformations are performed in total. The proposed 
architecture of Figure 2, processes four different 
padded data blocks at the same time. When the 
transformation of the N padded data block is 

completed in the round unit K, then it is forward to 
round unit K+1. After that, the N+1 padded data block is 
entered to the K round unit. 

This operation is repeated every 16 clock cycles. 
Every padded data block needs 64 clock cycles in total 
to be completely transformed. Then the outputs data 
(Out1, Out2, Out3, Out4) are loaded from the Modulo 
Adders Unit (Figure 1). The modulo adders unit consists 
of 4 modulo adders. In this unit modulo additions 232 are 
performed, between the input data (Out1, Out2, Out3, 
Out4) and the four constants (X1, X2, X3, X4). In this 
way the message digest (128-bit) is finally produced. 
With the pipeline applied technique a new 128-bit 
message digest is generated every (16+1) clock cycles. 
The specified constants for the MD5 operation are stored 
in the Constants unit. Four 32-bit constants (initial 
values) have been defined. These values (X1, X2, X3, 
X4) are called chaining variables. In addition, every one 
of the four transformation rounds demands 16x32-bit 
constants to support its operation, according to MD5 
hash function specifications [10]. These values are 
loaded from the four data inputs (K1, K2, K3, K4), one 
for each round. 

 
3.2. SHA-1 Hash Function 

The proposed system architecture (Figure 1) can be 
used alternatively for the implementation of the 
other widely used hash function SHA-1. Only the 
Constants Unit and the Pipeline data transformation 
unit needs minor modification in order the proposed 
system architecture (Figure 1) to perform efficiently 
as SHA-1 hash function. The Data transformation 
round architecture of SHA-1 is shown in the 
following Figure 4. 

The basic difference with the MD5 
transformation round is that SHA-1 round operates 
on five 32-bit variables (inputs/outputs). It also 
based on a different nonlinear function. The 
specified nonlinear functions for each one of the 
SHA-1 transformation rounds are: 

 

MA MA MANonlinear
Function

A
32-bit

B
32-bit

C
32-bit

D
32-bit

Mi
32-bit

Ki
32-bit

MARight
Shifter

 
 

Figure 3. MD5 data transformation round. 
 

Round 1: 
F1(X, Y, Z) = (X AND Y) OR ((NOT X) AND Z) 

Round 2: 
F2(X, Y, Z) = (X XOR Y XOR Z) 

Round 3: 
F3(X, Y, Z) = (X AND Y) OR (X AND Z)  
OR (Z AND Y) 
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Round 4: 
F4(X, Y, Z) = (X XOR Y XOR Z)  
 

where X,Y,Z are equal to 32-bit. 

The data are transformed 20 times in each round 
(80 times in total) and finally a 160-bit (5x32-bit)  
message 
digest is produced.  

The proposed architecture of Figure 2 ensures that 
four 512-bit padded data blocks are processed at the 
same time and every (20+1) clock cycles a new 
message digest is generated. 

The Constants Unit (Figure 1) in the case of SHA-
1 implementation initializes the inputs of SHA-1 
pipeline data transformation unit (Figure 2), with five 
32-bit specified initial values. In addition four 32-bit 
constants are used (K1, K2, K3, K4), one for each 
round for the Pipeline Data Transformation Unit. Of 
course both initial values and used rounds constants 
have been specified by the SHA-1 standard. 
Especially, the initial values are refreshed each time 
that a message digest is produced (for more details 
see [11]). 

 

MA MA MA MANonlinear
Function

EIn
32-bit

DIn
32-bit

CIn
32-bit

BIn
32-bit

Mi
32-bit

Ki
32-bit

AIn
32-bit

EOut
32-bit

DOut
32-bit

COut
32-bit

BOut
32-bit

AOut
32-bit

Shifter
<<<5

Shifter
<<<30

 
  

Figure 4. SHA-1 Data transformation round 
 

4. Synthesis Results 
The proposed system architecture, (Figure 1) has 

been captured by using VHDL. All the internal 
components of the design were synthesized placed 
and routed using XILINX FPGA device [14]. The 
system then was simulated again, for the verification 
of the correct functionality. The test scenarios that are 
applied to the proposed architectures, in order to 
verify systems’ correct functionality, are provided by 
the MD5 and SHA-1 standards [10, 11]. In addition, 
during the test procedure a great number of test 
vectors were used to verify the right operation of the 
received FPGA device samples. These test vectors, 
were mostly selected in a random way, but there have 
been included some special values of the input data 
(for example “FFF…FFF”, “000…000”) to ensure 
maximum test coverage.  

The synthesis results for both MD5 and SHA-1 
implementations are illustrated in the next Table 1, in 
terms of covered area resources, and operating 
frequency. 

Both implementations have almost the same 
operating frequency. Especially SHA-1 operates up 
to 72 MHz, while MD5 implementation has 

frequency equal to 70 MHz. The covered area resources 
are less for the MD5 integration by about 15-20 % 
compared with the SHA-1 implementation. Both hash 
functions designs, fit to the same used FPGA device 
(v100ecs14). MD5 implementation allocates 1226 FG, 
713 CLB slices and 1591 Dffs. SHA-1 FPGA integration 
uses 1473 FGs, 878 CLB slices, and 1735 Dffs. 

Comparisons of the proposed MD5 integration, with 
previous published implementations of the same hash 
function are presented in Table 2. The proposed MD5 
implementation has very high throughput compared with 
the other conventional works of both hardware 
implementations [2, 4, 13] and software developments 
[3]. It has to be mentioned that work [13] is an 
estimation of a possible hardware implementation of the 
MD5 and not a real hardware integration of this certain 
hash function. 

Table 1. FPGA implementations synthesis results D Flip-Flops 
(DFFs), Configurable Logic Blocks (CLBs), Function Generators 
(FGs). 

 
Nevertheless, in this work [13] no estimations about 

the covered area are presented. In spite of these 
omissions, the presented estimations results of [5] are 
very interesting for the readers and they are reported in 
order to have a fair and detailed comparison. 

Furthermore, the proposed MD5 implementation is 
also compared with the other hardware implementations 
in the Area-Delay Product.  

Especially, and only for the hardware 
implementations the Area-Delay product can be used as 
a comparison term. This product is calcula ted easily 
according to the equation: 

A-D Product  = Allocated Area   X  Tdelay 

where Tdelay = 1 / Frequency. 

The following Figure 5 shows the Area-Delay Product 
Comparison for the MD-5 implementations. From, the 
illustrated diagram of Figure 5 it is proven that the 
proposed MD5 implementation has better (less) Area-
Delay product in the case of conventional works related 
to hardware implementations.  

In the following Table 3, previous published 
implementations of the SHA-1 are presented and are 
compared with the proposed implementation of this hash 
function. The used pipeline architecture is proved a 

Fpga Device:  Xilinx V100ecs144 

   Hash Functions  Md5 Sha-1 

   Covered Area Used / 
Available 

Utilization Used / 
Available 

Utilization 

    Inputs/Outputs 68 / 94 72 % 68 / 94 72 % 

   Fun. Generators 1226 / 2400 51 % 1473 / 2400 61 % 

   Clb Slices 713 / 1200 59 %  878 / 1200  73 % 

   Dffs Or Latches 1591 / 2988 53 % 1735 / 2988 58 % 

   Operating 
Frequency 70 Mhz 72 Mhz 
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better applied design technique for the SHA-1 
implementation. 

 
Table 2.  MD5 implementations comparison. 

 

Architecture 
Covered 

Area 
(CLBS) 

Frequency 
(MHz) 

Throughput 
(Mbps) 

Dominikus [4] 1004 43 146 

Dobbertin  [5] Software 90 114 

Touch   [6] - 300 256 

Deepakumara  [7] 880 
4763 

21 
71.4  

165 
354 

Proposed MD5 1313 70 2,1 Gbps 

 
 

Table 3.  SHA-1 implementations comparison. 
 

Architecture Covered Area 
(CLBS) 

Frequency 
(MHz) 

Throughput 
(Mbps) 

Roe             [8] Software - 
133 

4.23 
41.51 

Dominikus  [4] 1004 43 146 

Dobbertin   [5] Software 90 40 

Kitsos         [9] 2506 47 300 

Proposed SHA-1 1578 72 1,7 Gbps 
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Figure 5.  MD5 area-delay product comparison. 
 

The proposed implementation has far high 
throughput compared with all the others software and 
hardware implementations. The work [9] is an 
assembly development in two different kinds of 
processors. The second processor of [8] operates at 
133 MHz while for the first no information is given 
for the system clock. In the assembly implementation 
of [3] a 90 MHz processor is used. The hardware 
implementation of [6] uses a loop rolling technique 
and has the higher throughput of all the conventional 

architectures. Nevertheless, the pipeline proposed 
architecture for the SHA-1 implementation has 8 times 
better throughput compared with [6]. The work [4] has 
been designed as a typical processor and needs a great 
number of clock cycles in order to generate a 160-bit 
message digest block. Especially, 320 clock cycles are 
needed for every produced message digest in [4], while 
our proposed system architecture demands only 21 clock 
cycles. 

 

The proposed SHA-1 implementation is compared 
with the other related hardware integrations in the term 
of Area-Delay product. This comparison is shown in the 
Figure 6. From the following illustrated diagram it is 
proven that the proposed SHA-1 implementation has 
better (less) Area-Delay product compared with the 
other published work [6] and almost the same with work 
[4]. It is obvious that comparison by using this 
implementation factor (Area-Delay product) can be done 
only in the cases of hardware implementations and not 
for software developments [3, 9]. 
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Figure 6. SHA-1 area-delay product comparison. 
 

5. Conclusions 
Security has become a very critical issue on the 

provision of electronic services. In addition to the 
supported security level, performance is major factor for 
both hardware and software implementations. The 
system throughput must not be the bottleneck of the 
implementation itself.  

In this work, an ultra high speed architecture for the 
VLSI implementation of MD5 is presented. In addition, 
with minor modifications the proposed architecture can 
be used for the hardware integration of the SHA-1 hash 
function. Both hash functions have been implemented by 
using VHDL in FPGA devices. The synthesis results are 
illustrated and compared with other related works, 
published in the technical literature. From the 
performance comparison it is proven that the MD5 
proposed implementation is better by a factor range from 
700% to 1500%. In addition, the Area-Delay product of 
the proposed implementation is better in all of the cases.    
The SHA-1 proposed implementation is better at about 
800% to 1700% compared with the other conventional 
works. The Area-Delay product comparison proves that 
the proposed SHA-1 implementation is superior to all 
the  other related implementations.  Both   MD5   and  
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SHA-1  proposed implementations offer high-speed 
performance and support high security level at the 
same time. They can be used efficiently in all the 
hash functions applications such us digital signature, 
data integrity, message authentication and random 
number generators. Both of them can substitute 
successfully any existing implementations in the 
above referenced applications with superior 
performance. They can also be used successfully in 
communication protocols such as IPsec and WAP 
and security schemes in general. 
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