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Abstract: In one hand, the Model Reference Adaptive Control (MRAC) architecture has been widely used in linear adaptive 
control field. The control objective is to adjust the control signal in a stable manner so that the plant’s output asymptotically 
tracks the reference model’s output. The performance will depend on the choice of a suitable reference model and the 
derivation of an appropriate learning scheme. While in the other hand, clusters analysis has been employed for many years in 
the field of pattern recognition and image processing. To be used in control the aim is being to find natural groupings among a 
set of collected data. The mean-tracking clustering algorithm is going to be used in order to extract the input-output pattern of 
rules from applying the suggested control scheme. These rules will be learnt later using the widely used Multi-layer perceptron 
neural network to gain all the benefits offered by those nets. A hierarchical neuro-fuzzy MRAC is suggested to control robots 
in a flexible manufacturing system. This proposed controller will be judged for different simulated cases of study to 
demonstrate its capability in dealing with such a system. 
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1. Introduction 
Recently, low cost, small and middle production is 
made possible by a Flexible Manufacturing System 
(FMS). Flexible manufacturing systems represent 
efficiently grouped machine tools linked together for 
batch processing. The FMS consists of work cells, each 
cell is responsible of producing a group of parts with 
similar production processes [1, 16]. FMS is designed 
to accept raw materials at its input and automatically 
processes these raw materials into a certain product, 
which will be delivered at its output. The 
manufacturing process of these materials may take 
place on different work cells. Hence the capability and 
throughput of these systems are affected by the 
efficiency of the robots that move the product to and 
from these work cells. Moreover, inside each cell 
several machines may share to complete the 
manufacturing process [2]. In this case, the robot will 
play an important role in delivery, disposal and 
transport systems between cells and machines inside 
each cell.  

The dynamic equations of the robot are a set of 
highly nonlinear differential equations.  Therefore, the 
movement of the end effecter in a particular trajectory 
requires an efficient controller, which generates control 
signals applied by the robot joint actuators. There are 
many control strategies that can be applied to control 
robot joints. The traditional controllers cannot 
effectively control the motion of the robot. A controller 
based on the theory of the nonlinear control is suitable 
for the robot control [6]. Unfortunately, such 

controllers are not suitable for real-time FMS 
applications. This leads to think about controllers with 
intelligent capabilities to control the robot's operations 
in uncertain environments. 

There are several types of control algorithms that 
can be used for joint control of the robot. Some of 
these use classical controllers, such as Proportional-
Integral-Derivative (PID) [7] and adaptive controllers 
[10, 13], others use intelligent controllers based on 
neural nets [5, 8] and/or fuzzy logic [11, 15]. 
Conventional PID controller is still widely used in 
robotics. The performance of such a controller is not 
optimal and its parameters require readjustment, since 
the joint parameters are varying with time. Several 
tuning methods [17] have been published to obtain the 
controller parameters; however, most of these methods 
require the mathematical model of the robot. The 
nonlinear dynamic interactions of the robot joints are 
effectively minimized by applying sliding mode 
controllers [14]. Such a controller requires prior 
information about the robot parameters.  

This paper deals with design and implementation of 
a neuro-fuzzy controller extracted from a model 
reference adaptive controller. The resultant functional 
controller is built based on the rules derived from 
applying a certain correcting formula to drift the 
system to behave as close as possible to the selected 
model. This can be applied to any joint in the 
manufacturing system, which represents the control 
activity in hierarchical control in order to make it 
suitable for real-time applications. The proposed 



210                                                         The International Arab Journal of Information Technology,   Vol. 1,   No. 2,   July 2004 

R
O
B
O
T

JOINT  (1)

INPUT/OUTPUT
INTERFACE

DRIVE CIRCUIT

MEASUREMENT

MICROPROCESSOR SYSTEM

JOINT  (N)

INPUT/OUTPUT
INTERFACE

DRIVE CIRCUIT

MEASUREMENT

controller will improve the system performance by 
distributing the control tasks on multilevels. 

 
2. Hierarchical Architecture 

In our previous work [1, 2], the design and 
implementation of a hierarchical rout planner for FMS 
were proposed, as illustrated in Figure 1.  The aim of 
the FMS rout planner is to obtain the optimal 
manufacturing routes for jobs according to well-
designed cost function. The sequencing and monitoring 
module will monitor the competitive jobs to use the 
manufacturing cells and the required machines and 
robots. Also, this module can reveal the abnormal 
conditions in the system and generates feedback 
signals to the route planner to modify the old 
manufacturing routes to avoid the problems that may 
occur. 
 
 
 
 
 
 
 

Figure 1. System organization. 
 

For an FMS, several tasks of measurement, control, 
planning, operator communications, etc. can be 
distributed among a number of computers linked 
together and configured in a hierarchical structure. For 
the proposed system, given in Figure 2, five levels are 
recommended, these are: 
• Measurement and actuation level: Provides on-line 

measurement and actuation database for the whole 
system. 

• Control calculations level: Generates the required 
control signal for each joint. 

• Controller parameters tuning level: Updates the 
controller parameters according to the actual 
behavior of the joint and the required trajectory. 

• Robot trajectory planning level: Determines the 
input commands for each joint according to the 
robot trajectory. 

• Planning and sequencing level: Obtains the optimal 
manufacturing routs for jobs, and then selects the 
required manufacturing cells, machines and robots. 
 
 
 
 
 
 
 

 
 

This architecture has several features: 

• Information abstraction. 

• Balancing precision with complexity. 
• Multiple time scale operations. 
It is assumed that the higher levels in the hierarchy, 
that is planning and sequencing, deal with a more 
abstract view of the control problem and do so in less 
precise terms. Moreover, the action-taking place at the 
higher levels affects the behavior of the system over a 
longer time span whereas the lower levels in the 
hierarchy operate on a faster time scale.  

Figure 3 outlines the general layout of a robot 
system. It consists of a manipulator, and an 
input/output interface. A feedback interface is required 
to convert the position sensor signal of each joint into a 
digital code. The actuating signal generated by the 
control algorithm is loaded to the actuator of each joint 
through a feedforward interface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Robot system layout. 

 
3. Model Reference Adaptive Control  

The MRAC architecture has been widely used in the 
linear adaptive control field as shown in Figure 4 The 
control objective is to adjust the control signal in a 
stable manner so that the plant’s output y(t), 
asymptotically tracks the reference model’s output 
ym(t). The performance of this algorithm depends on 
the choice of a suitable reference model and the 
derivation of an appropriate learning mechanism. 
Researchers in the sixties found that simple gradient-
based learning rules were sometimes insufficient and 
there is no reason why this should not also be the case 
for more general nonlinear plant models and 
controllers [3, 4, 12].  
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Figure 4. Model reference control architecture. 
3.1. Control Strategy 
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The main function of the learning algorithm is to 
obtain the correct control signal (ud) corresponding to 
the desired output (yd). The difference between the 
desired response (yd) and the measured process output 
(y) is called the learning error (eL). It is expected that 
this error will asymptotically approach zero, or a 
predefined small region, with increasing number of 
trials. The proposed learning scheme is shown in 
Figure 5. 
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Figure 5. Block diagram of the proposed MRAC system. 
 
3.2. Learning Algorithm 
The object of the learning control is to determine the 
control input ud(t) by repetitive trial such that the error 
asymptotically tends to zero, or a prespecified small 
value, in the time interval of interest. The following 
error and derivative correction learning algorithm is 
proposed: 
 

         Uk+1(t)= uk(t) + PeLk(t+?) + QeLk(t+ ?)             (1) 
 

Where k denotes the instant number, ? is the time 
advances and p, q are learning gains for error signal 
and its derivative respectively. 

It is noted that the error between the step command 
signal and the controlled output y(t) cannot be used as 
a learning basis because such a learning objective (step 
output) is clearly unrealistic. Therefore, a reference 
model is introduced, which specifies an achievable 
performance one would like to attain. Then, the 
learning error is used as a learning signal; see Figure 5. 
Equation (1) is used throughout the simulation for 
Single Input Single Output (SISO), P and Q are just 
scalar gains. 

The main bottlenecks of this algorithm reside in 
choosing a suitable reference model and the time-
consuming trail and error procedure in finding the 
suitable settings of the learning gains. The complete 
derivations of the previously discussed learning control 
algorithms are given by Linkens et al. [9]. 
 
4. NeuroFuzzy Controller Design 

4.1. Mean-Tracking Algorithm 
Clusters analysis has been employed for many years in 
the field of pattern recognition and image processing, 
the aim is being to find natural groupings among a set 
of collected data. A main problem always is the 
question of how many clusters there should be within a 
set of collected data. In practice, however, the number 

of clusters is problem dependent. The mean-tracking 
clustering algorithm was derived with the intention of 
dealing efficiently with operating data collected from 
high speed production machinery, the data is in the 
form of variable information taken from sensors in the 
plant, i.e.; variables such as speed, tension, 
temperature. In this case data is plotted in an n-
dimensional space, each data point in the space 
corresponds to the machine state at a particular instant 
of time. Natural clusters of data points are then formed; 
all of the points within a cluster depict similar 
operating conditions to other points within that cluster. 
The center of gravity of the search data is then found 
by finding the mean value of all the points, which lie 
within the same cluster [18], see Figure 6 for 
description. In the proposed functional neuro-fuzzy 
controller the controlled data, input-output variables, 
are collected and clustered based on fuzzy-number 
using mean-tracking algorithm. The choice of the 
clusters will be clarified in simulation results section 
specifically in equation (9).  
 
        

 
 

 
 
 
 
 
 
 
 

 
 

Figure 6. The mean-tracking cluster search method. 
 

4.2. Controller Implementation 
Depending on the methods for converting qualitative/ 
linguistic labels into quantitative/ numerical values, the 
structures of the resulting controllers are significantly 
different. Three possible controller input modes can be 
defined as in the following vectors: 
 

             Z = [eml ceml, em2 cem2,....., emT cemT]               (2) 
             Z = [eml seml, em2 sem2,...., emT semT]                (3) 

                Z = [eml ceml seml,,. …., emT  cemT  semT]          (4) 
 

where em, cem, and sem are the measured error, change 
of error and sum of error. The three input types 
determined by the above representations (2, 3, 4) are 
called EC, ES, and ECS respectively. It is noted that 
they are analogous to classical PD, PI, and PID 
controllers respectively. 

By explicitly embedding the meaning of the 
linguistic labels, the control jth rule can be written as: 
 

If em is [Cj(em), dj(em)] and em is  [Cj(cem), dj(cem)] Then       
    u  is [Cj(u), dj(u)]                                                    (5) 
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where dj(em), dj(cem) are the input width for error and 
change-in-error respectively with centers Cj(em) and 
Cj(cem), while dj(u) is the width of the control action 
with center Cj(u). 
 Now, it is possible to teach a neural network (NN) 
with only the central value vectors, i.e; the previous j th 
linguistic rules become 
 

                  If Cj(em) and Cj(cem) Then Cj(u)               (6) 
 

While leaving the width vectors implicitly treated. One 
may ask how the fuzzy concept is handled in such 
paradigm. The answer as concluded before is that the 
NN inherently possesses some fuzziness, which is 
exhibited in the form of interpolation over new 
situations. 

The clustering criterion based on mean-tracking 
algorithm using fuzzy number can be done over the 
vectors defined by equations (2, 3, 4) along with their 
corresponding control action (u) to get the centers of 
those variables to be learned using Back-Propagation 
Neural Network (BNN) of a structure shown in Figure 
7. An ECS controller mode of clustered training 
vectors, conducted from controlling a process using the 
MRAC system are used to learn BNN of Figure 7.     
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Figure 7. ECS type BNN represents the proposed functional neuro 
controller. 
 

The functional neuro-fuzzy controller of Figure 7 
has many advantages over that of MRAC. These can 
be summarized as follows: 

• The size of the controller architecture decreases 
dramatically to offer less storage memory, less 
computations time and less fuzziness. Thus more 
efficient controller is available also a less cost 
hardware controller, if needed, can be easily 
achieved. 

• More robust controller is obtained as will be 
verified in the simulation results. 

 
5. Simulation Results 
A robot model of an open loop type (0) second order 
transfer function: 
  

                 G(s) = 1/ s2 + 7.5s + 0.09                         (7) 
 

is taken to be control using the proposed control 
scheme. The closed loop response to a unit step change 
in input shows the sluggish over damped behavior of 

the system since it has low gain with a high damping 
ratio; moreover steady state error is detected. Thus the 
need is raised to include the effect of proportional, 
derivative and integral actions (ECS) type. 
A model reference of: 
 

                    Gm(s) = 5.4/ s2+5.4s +5.4                     (8) 
 

 is chosen, after many trials, so that the robot system 
dynamic can follow such model with an applicable 
control action values. Applying equation (1) with gains 
p= 1.0 and q= 0.0, the required data for unit step 
change in input with sampling time of 0.1 sec. have 
been collected in the short-term memory to be used 
later. 

Using these input-output data, 17-extracted rules are 
obtained as shown in Table1, using the following 
clusters: 

em = 0.0 to 1.0 step 0.15 
   cem = -0.85 to 0.0 step 0.15 

                      sem = 1.0 to 9.5 step 1.5                       (9) 
 
 

Table 1. ECS clustered training vector of 17 rules used to train the 
BNN of Figure 7. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is important to state here that since the integral 
action has been included by the accumulation in 
control signal, thus the sum of error will be of no use 
and it is added just to keep the notation of its existence. 

Generally NNs can be used to memorize or discover 
the control strategy. Since the control law is extracted 
based on the MRAC scheme shown if Figure 5, thus 
BNN is applied here to memorize such control rules. 

Applying the error back-propagation learning 
algorithm to BNN with the following characteristics: 

Topology: 3-node input layer, 12-node tansh nonlinear 
hidden layer, 1-node linear output layer. 
Parameters setting: Random initial weights of values 
between -0.5 to 0.5, steepness= 1.0, threshold= 1.0, 
learning rate= 0.1, momentum term= 0.0 and a 
stopping criterion of 0.01.  

The 17 ESC fuzzy clustered rules shown in Table  1 
are used to train the BNN illustrated by Figure 7. 
Convergence has been reached after 1645 iterations to 

Center 
of em 

Center 
of cem 

Center 
of sem 

Center of Control 
Action 

1 0 1 6.484656 
1 -0.25 2.5 6.291598 
1 -0.55 2.5 6.021482 

0.9 -0.85 4 5.814579 
0.75 -0.85 4 5.65887 
0.6 -0.85 5.5 4.701158 

0.45 -0.7 7 3.688067 
0.45 -0.55 7 2.936129 
0.3 -0.55 7 2.737491 
0.3 -0.4 7 2.235832 
0.3 -0.4 8.5 2.091233 

0.15 -0.4 8.5 1.696041 
0.15 -0.25 8.5 1.271224 
0.15 -0.1 8.5 0.805575 

0 -0.1 8.5 0.382604 
0 -0.1 9.5 0.116563 
0 0 9.5 0.090025 
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give final weights set which is inherently representing 
the controller behavior.  

Figure 8 illustrates the two controlled responses of 
that conventional PID and neuro controllers along with 
that of uncontrolled one. The superiority of the neuro 
controller can be detected directly. 
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Figure 8. Comparisons between responses. 
 

Many simulation tests have been achieved as well to 
verify the proposed controller capabilities as below: 

Robustness test: Applying a disturbance of 20% of 
input value at steady state will not drift the controlled 
response into instability but to a slight acceptable 
steady state error of 0.037 value, which is within the 
tolerance band as shown in Figure 9. While Figure 10 
illustrates the stand still controlled response if a time 
delay of 1 sec is occurred initially. 
 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

time (sec.)

input (t)
with MRAC

effect of 
disturbanc

output (t)

 
Figure 9. Effect of disturbance on the controlled response. 
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Figure10. Effect of time delay on the controlled response. 

 
Tracking ability: Although the controller is extracted 
based on the unit step change in input, the 
generalization feature offered by neural networks 
gives the advantage of the ability to follow another 
input signal successfully. This is clearly shown in 
Figures 11 and 12, which illustrate the good tracking 
ability to both square, and staircase waves respectively.  
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Figure 11. Controlled response tracking to a square wave input. 

 

0

0.5

1

1.5

2

2.5

0 5 10 15 20

time (sec.)

with MRAC

input (t)

output (t)

 
Figure 12. Controlled response tracking to a stair case input. 

 
6. Conclusions 
Many concluded points of high importance can be 
declared as follows: 

• The complexity of MRAC is in choosing the 
appropriate model, which the underlying controlled 
system must follow. 

• Suitable BNN parameters setting and topology are 
of high importance to gain fast convergence. 
Unfortunately there is no specified setting criterion, 
thus a trial and error procedure is applied.   

• Representation of the input-output data achieved by 
using the mean-tracking algorithm is found to 
produce a robust functional neuro controller. 

• The number of the extracted centers should be 
chosen neither large that gives a meaningless use of 
the clustering criterion nor so small that yields a bad 
representation of the original data. 

• Generalization feature offered by neural networks 
gives the flexibility and adaptivity to use the 
resultant controller in many applications. 

• A hardware form of the neuro controller can be 
easily achieved since it will be of small size and low 
cost. 
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