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1. Introduction 

Clustering [5] is a division of data into groups of 

similar objects. Each group, called cluster, consists of 

objects that are similar within the cluster and dissimilar 

to objects of other clusters. Representing data by fewer 

clusters necessarily loses certain fine details, but 

achieves simplification, and so may be considered as a 

form of data compression. It represents many data 

objects by few clusters models data by its clusters. 

Data modelling puts clustering in a historical 

perspective which is rooted in mathematics, statistics, 

and numerical analysis. Clustering is the subject of 

active research in several fields such as statistics, 

pattern recognition, artificial intelligence, and machine 

learning. From a practical perspective, clustering plays 

an outstanding role in data mining applications such as 

scientific data exploration, information retrieval and 

text mining, spatial database applications, Web 

analysis, marketing, medical diagnostics, 

computational biology, and many others. 

Although, classification [6] is an effective means for 

distinguishing groups or classes of objects, it requires 

the often costly collection and labelling of a large set 

of training tuples or patterns, which the classifier uses 

to model each group. It is often more desirable to 

proceed in the reverse direction: First partition the set 

of data into groups based on data similarity (e.g., using 

clustering), and then assign labels to the relatively 

small number of groups.  

From a machine learning perspective clusters 

correspond to hidden patterns, the search for clusters is 

unsupervised learning [15], and the resulting system 

represents a data concept. Therefore, clustering is 

unsupervised learning of a hidden data concept. 

Clustering is a challenging field of research in which 

its potential applications pose their own special 

requirements. There are many requirements of 

clustering in data mining such as: type of attributes 

algorithm can handle, scalability to large data sets, 

ability to work with high dimensional data [8, 9], 

ability to find clusters of irregular shape, handling 

outliers (noise), time complexity, data order 

dependency, labelling or assignment (hard or strict vs. 

soft or fuzzy [14, 16]), reliance on a priori knowledge 

and user defined parameters, and interpretability of 

results. 

However, clustering is a difficult problem 

combinatorially, and differences in assumptions and 

contexts in different communities have made the 

transfer of useful generic concepts and methodologies 

slow to occur.  

There are thousands of clustering techniques one 

can encounter in the literature. Most of the existing 

data clustering algorithms can be classified as 

hierarchical or partitional. Within each class, there 

exists a wealth of sub-class which includes different 

algorithms for finding the clusters.  
While hierarchical algorithms [2] build clusters 

gradually (as crystals are grown), partitioning 

algorithms [7] learn clusters directly. In doing so, they 

either try to discover clusters by iteratively relocating 

points between subsets, or try to identify clusters as 

areas highly populated with data [1]. 

Density based algorithms [10] typically regard 

clusters as dense regions of objects in the data space 

that are separated by regions of low density. The main 

idea of density-based approach is to find regions of 

high density and low density, with high-density regions 

being separated from low-density regions. These 

approaches can make it easy to discover arbitrary 

clusters. 
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Recently, a number of clustering algorithms have 

been presented for spatial data, known as grid-based 

algorithms. They perform space segmentation and then 

aggregate appropriate segments [11]. Many other 

clustering techniques are developed, primarily in 

machine learning, that either have theoretical 

significance, are used traditionally outside the data 

mining community, or do not fit in previously outlined 

categories. 

This paper deals with clustering algorithms which 

calculate connectivity of each data point to its cluster 

by depending on density reachability. Each cluster, 

which is a subset of the points of the data set, satisfies 

two properties: all points within the cluster are 

mutually density-connected, and if a point is density-

connected to any point of the cluster, it is part of the 

cluster as well. These algorithms can find arbitrarily 

shaped clusters, but they require parameters that are 

mostly sensitive to clustering performance. From other 

side, these algorithms need to detect nearest 

neighborhood of each data point which cause time 

consuming.  

We tackled with this defect and developed an 

original algorithm by using KD-Tree. The proposed 

algorithm depends on density reachability and groups 

data points in hierarchically way. Experimental results 

are shown in this paper to demonstrate the 

effectiveness of the proposed algorithm. We compared 

the proposed algorithm with other similar famous 

algorithm that is shown in literature. We present the 

proposed algorithm and its performance in detail along 

with promising avenues of future research. 

The rest of the paper is organized as follows: section 

2 describes review of literature and related studies. 

This section presents KD-Tree which is the most 

important multidimensional structure for storing a 

finite set of data points from k-dimensional space. 

Section 3 illustrates our proposed original algorithm 

for classifying complex data sets. We called the 

proposed algorithm a Dynamic Linkage Clustering 

using KD-Tree (DLCKDT). Section 4 illustrates 

experimental results to demonstrate the effectiveness 

of the proposed algorithm. We used synthetic and real 

data sets for testing efficiency of the proposed 

algorithm. Finally, section 5 concludes the paper and 

presents suggestions for future work. 

 

2. Background 

We present in this section the KD-Tree which is the 

most important multidimensional structure for storing a 

finite set of data points from k-dimensional space. In 

addition, the section illustrates the usage of KD-Tree. 

We use KD-Tree for improving performance of 

clustering algorithms and developing a new effective 

clustering algorithm. We also present Density-Based 

Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm for comparing it with the 

proposed algorithm. 

A K-dimensional tree, or KD-Tree [13] is a space-

partitioning data structure for organizing points in a K-

dimensional space. The KD-Tree is a top-down 

hierarchical scheme for partitioning data. Consider a 

set of n points, (x1...xn) occupying an m dimensional 

space each point xi has associated with it m coordinates 

(xi1, xi2,..., xim). There exists a bounding box, or bucket, 

which contains all data points and whose extrema are 

defined by the maximum and minimum coordinate 

values of the data points in each dimension. The data is 

then partitioned into two sub-buckets by splitting the 

data along the longest dimension of the parent bucket. 

These partitioning processes may then be recursively 

repeated on each sub-bucket until a leaf bucket is 

created, at which point no further partitioning will be 

performed on that bucket. A leaf bucket is a bucket 

which fulfils a certain requirement, such as, it only 

contains one data point. 

KD-Tree is the most important multidimensional 

structure for storing a finite set of data points from k-

dimensional space. It decomposes a multidimensional 

space into hyper-rectangles. A KD-Tree is a binary tree 

with both a dimension number and splitting value at 

each node. Each node corresponds to a hyper-

rectangle. A hyper-rectangle is represented by an array 

of minimum coordinates and an array of maximum 

coordinates (e.g., in 2 dimensions (k=2), (xmin, ymin) 

and (xmax, ymax)). When searching for the nearest 

neighbour we need to know if a hyper-rectangle 

intersects with a hyper-sphere. The contents of each 

node are depicted in Table 1. 
 

Table 1. The fields of KD-Tree node. 
 

Field Description 

Type Type of node tree (node or leaf) 

Parent The index of parent node in kd-tree 

Splitdim The splitting dimension number 

Splitval The splitting value 

Left kd-Tree 
A kd-tree representing points to the left 

of the splitting plane 

Right kd-Tree 
A kd-tree representing  points to the 
right of the splitting plane 

Hyperrect The coordinates of hyperrectangle 

Numpoints 
The number of points contained in 

hyperrectangle 

 

An interesting property of the KD-Tree is that each 

bucket will contain roughly the same number of points. 

However, if the data in a bucket is more densely 

packed than some other bucket we would generally 

expect the volume of that densely packed bucket to be 

smaller. Approximate Nearest Neighbour (ANN) is a 

library written in C++ [12], which supports data 

structures and algorithms for both exact and 

approximate nearest neighbour searching in arbitrarily 

high dimensions. The ANN library implements KD-

Tree data structure. The function performing the k-

nearest neighbor search in ANN is given a query point 
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q, a nonnegative integer k, an array of point indices, 

nnidx, and an array of distances, dists. Both arrays are 

assumed to contain at least k elements. This procedure 

computes the k nearest neighbours of q in the point set 

and stores the indices of the nearest neighbours in the 

array nnidx. 

Each node splits the space into two subspaces 

according to the splitting dimension of the node, and 

the node’s splitting value. Geometrically this 

represents a hyper-plane perpendicular to the direction 

specified by the splitting dimension. Searching for a 

point in the data set that is represented in a KD-Tree is 

accomplished in a traversal of the tree from root to leaf 

which is of complexity O(log(n)) (if there are n data 

points). The first approximation is initially found at the 

leaf node which contains the target point.   

Our proposed algorithm is a density-based 

clustering algorithm because it finds a number of 

clusters starting from the estimated density distribution 

of corresponding nodes. So we compare performance 

of our proposed algorithm with DBSCAN algorithm. 

DBSCAN is a data clustering algorithm proposed by 

Ester et al. [4]. It is a density-based clustering 

algorithm because it finds a number of clusters starting 

from the estimated density distribution of 

corresponding nodes. DBSCAN is one of the most 

common clustering algorithms and also most cited in 

scientific literature.  

DBSCAN uses two global parameters: epsilon 

which is used to determine the maximum radius of the 

point neighborhood, and minPoints which is used to 

determine the minimum number of points in an Eps-

neighbourhood of that point. Performance of DBSCAN 

is sensitive to values of these parameters. 

 

3. Methodology 

In this section we illustrate our original work for 

improving efficiency of classification and tackling the 

problem which is presented in section 1. This section 

illustrates usage of KD-Tree for developing original 

algorithm to classify complex data sets. We called the 

proposed algorithm a DLCKDT. We used selected 

nodes from KD-Tree to develop this algorithm.  

 

3.1. Selecting Dense Points 

We proposed to use KD-Tree for checking the 

connectivity of each data point with its cluster. We 

used KD-Tree to determine the collections of dense 

regions in dimensional space. Using KD-Tree will 

reduce computation cost and its results will be better 

than using other methods that are presented in 

literature for determining the dense regions. We 

selected some points of KD-Tree which denote the 

dense centers of dense regions in the data set. We 

called these points as Dense Points (DPs).  

Selecting leaf nodes as DPs is not suitable because 

each leaf node in KD-Tree is a bucket contains only 

one data point and will cause selecting all data points 

in the data set. So selecting leaf nodes as DPs will not 

form dense centers of dense regions in the data set.  

Selecting parent of leaf nodes in KD-Tree as DPs is 

not suitable also because parent of leaf node contains 

only two data points (two leaf nodes) and will cause 

sensitivity to noise (outlying data points) in the data 

set.  

Depending on the previous analysis, we selected 

DPs by searching for leaf nodes in the KD-Tree and 

then finding the grandparent of the leaf nodes. 

Grandparent of the leaf nodes contains more than two 

data points, so selecting them as DPs will reduce 

sensitivity to noise in the data set and will form small 

number of centers to denote to dense regions in the 

data set for reducing processing time in classification. 

Figure 1 shows the structure of KD-Tree and the 

position of DPs. We note that the DPs (which are 

shown as shaded nodes) denote to 2
nd
 and 3

rd
 levels of 

the KD-Tree. We note that more than two nodes fork 

from nodes of DPs, this indicates to DPs contains more 

than two data points. 
 

 
Figure 1. Selected dense points. 

 

Figure 2-a shows the position of DPs on synthetic 

data set which has one cluster. We note that these 

points form almost the shape of cluster with little 

number of points. We note that DPs distributed on the 

whole data set and they exist in dense regions of data 

points. Figure 2-b shows the rectangular regions which 

are covered by DPs of KD-Tree. We note that these 

regions almost cover all the data set, so we can 

conclude that DPs correspond to the dense regions of 

the data set. 

 

  
a) DPs of kd-tree. b) Rectangular regions covered  

        by DPs. 

Figure 2. Illustrating how DPs cover all the data set. 

 

Using upper levels in KD-Tree (more than the 3
rd
 

level) for selecting DPs will decrease number of DPs 

for representing dense regions, but in the same time 
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rectangular regions will be larger and will cover some 

parts of space which are empty from data points. 

Figure 3 shows selecting nodes from various levels in 

KD-Tree and showing the corresponding of these 

nodes to data points in a data set of one cluster. 

We note from Figure 3-a that the number of nodes 

which denote to dense regions are smaller than number 

of DPs which are shown in Figure 2-b but the size of 

rectangular regions are increased, this caused covering 

empty regions of data points. These effects are 

increased gradualness from Figure 3-c to Figure 3-e. 

Figure 3-e shows that only one node represents all data 

points in cluster and covers empty space outside the 

cluster. So we inferred, if we use upper levels for 

representing DPs then the shape which is formed by 

rectangular regions for covering the cluster will be 

rough, and many data points will be selected from 

other clusters if there are overlapped clusters in the 

data set.  

We can conclude that selecting the grandparent of 

the leaf nodes in KD-Tree for representing DPs is the 

best choice to determine the collections of dense 

regions in dimensional space. We used this concept for 

selecting DPs in our experiments for increasing 

performance of classifying clusters in complex data 

set. 

 

  
a) Nodes of the 4th level. b) Nodes of the 5th level. 

  
c) Nodes of the 6th level. d) Nodes of the 7th level. 

 
e) Nodes of the 8th level. 

Figure 3. Selecting nodes from various levels in KD-Tree upper 

than the 3rd level. 

 

Selecting DPs have many advantages. First of all, 

using DPs reduces the number of data points used for 

classification, so this method will reduce time 

complexity. From other side, using DPs will reduce the 

effect of noise (outlying data points) on classification. 

Figure 4 shows position of DPs (plotted as circles) in 

data set having one cluster with outlying data points. 

We note that the outlying data points, which denoted as 

+symbols in the four corners of the figure, is not 

selected as DPs. We note also that all DPs are 

concentrated in spaces which have density of data 

points. 

So we can use DPs for checking density reachability 

of each data point with its cluster. Using DPs will be 

effective for classifying complex data sets which have 

overlapped and arbitrary shaped clusters. 

 

 
Figure 4. Selecting DPs form data set having noise. 

 

Next, we will use DPs for improving efficacy of 

clustering algorithms and developing a new effective 

clustering algorithm. 

 

3.2. Dynamic Linkage Clustering using KD-

Tree 

In this section we develop a new clustering algorithm 

depending on the KD-Tree. We called the proposed 

algorithm as a DLCKDT. We used selected nodes from 

KD-Tree to develop this algorithm. Our goal for 

developing this algorithm is classifying complex data 

sets more accurately than other algorithms which are 

presented in the literature.  

The new developed clustering algorithm depends on 

the KD-Tree. It consists of three phases: The first 

phase selects DPs of KD-Tree for using them as initial 

seeds. The second phase assigns each data set to its 

nearest DP. So the output of this phase is a collection 

of small clusters whose number is equal to the number 

of DPs. The last phase merges the small clusters 

(output of the second phase). During the third phase, 

each iteration consists of merging the nearest two 

clusters. This phase continues until the number of 

clusters is equal to the value which is specified by the 

user in advance (denoted by the number of classes). 

The pseudo code of our novel clustering algorithm 

using KD-Tree is: 

1. Input the number of clusters K. 

2. Select DPs of KD-Tree (DP1,..., DPn). 

3. Assign each data point Xi to its nearest DPj to form 

initial clusters of data points.     

4. Merge every two adjacent clusters of step 3.  

5. Find the nearest two clusters and merge them. 

6. If the number of merged clusters N>K, then go to 

step 5; else return the merged clusters. 
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Step 2 is the first phase in the algorithm for selecting 

DPs of KD-Tree. Step 3 is the second phase. It creates 

a large number of small groups which are used as 

initial clusters. Steps 4, 5, and 6 form the final phase. 

This phase merges clusters which are generated in step 

3. The merging is terminated when the number of 

merged clusters is equal to the value of K, where K is 

an input parameter which is defined as the target 

number of clusters. Step 4 decreases to half the number 

of selected clusters which are generated by step 3. This 

step is used for reducing time complexity. We used the 

nearest neighbor distance [17] to calculate the distance 

between each two clusters C1 and  C2 which is denoted 

by where: 

                                      D(C1, C2)=min d(yi, zi)                        

                                       1≤ i≤ r,1≤ j≤ s 

Figure 5 gives an example of the nearest neighbor 

distance in the two-dimensional case. We note that 

D(C1, C2) is the Euclidean distance between the nearest 

points between clusters C1 and C2. For calculating this 

equation we need to calculate all distances between 

each point in C1 and C2 and then finding the minimum 

distance. We can find the nearest two clusters for step 

5 of the algorithm by calculating the minimum distance 

between all clusters. 
 

 
Figure 5. Nearest neighbour distance between two clusters. 

 

DLCKDT has three main advantages: 

1. It is easy to implement. 

2. The algorithm does not depend on the initial 

conditions. This forces the algorithm to converge to 

global solution. 

3. It can classify very complex data sets which cannot 

be classified by other clustering algorithms in the 

literature.  

However the proposed algorithm suffers from the 

following disadvantages: 

1. The user has to specify the number of classes in 

advance. 

2. The elapsed time is increased when comparing it 
with other clustering algorithms in the literature. 

 

4. Experimental Results 

Experimental results are shown in this section to 

demonstrate the effectiveness of the DLCKDT. We 

implemented DLCKDT algorithm by using MATLAB 

7.3 (R2006b) for illustrating its performance. We used 

synthetic and real data sets for testing efficiency of the 

proposed algorithm. 

We used our algorithm for classifying a lot of 

complex data sets. Figure 6 illustrates the power of our 

algorithm. We used a data set that consists of two 

circles (two clusters); one of them is inside the other as 

shown in Figure 6-a. Figure 6-b shows the DPs 

(marked as circles) of KD-Tree. We note that DPs are 

distributed though whole data set, and located in the 

dense regions. We note that the DPs formed the shape 

of clusters with small number of data points. Figure 6-c 

shows the clusters of DPs. We note that every data 

point is connected to the nearest DP. We note that this 

step generates a collection of small clusters where DPs 

form their centroids.  We note that the number of these 

groups equal to number of used DPs. The results of 

merging every two adjacent clusters of DPs are shown 

in Figure 6-d. We note that the number of total groups, 

which are marked with different colors and shapes, is 

reduced to half (only 24 groups). The output of the 

algorithm is shown in Figure 6-e. We note that data set 

is classified correctly into to clusters. Data points of 

the first cluster (the smallest circle) are marked as 

circles and the data points of the second cluster (the 

largest circle) are marked as triangles. 

 

  
a) Complex Synthetic data set. b) DPs of kd-tree. 

  
c) Clusters of DPs. d) Merging every two adjacent  

        clusters of DPs. 

 
e) The output of algorithm. 

Figure 6. Effectiveness of the proposed algorithm. 

 

The following real-life data sets [3] are used for 

testing performance of our proposed algorithm 

DLCKDT and DBSCAN. Here, n is the number of data 

points, d is the number of features, and K is the number 

of clusters.  

1. Iris Plants Data Set (n=150, d=4, K=3): This is a 

well-known data set with 4 inputs, 3 classes, and 

(1) 
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150 data vectors. The data set consists of three 

different species of iris flower: Iris setosa, Iris 

virginica, and Iris versicolour. One class is linearly 

separable from the other 2; the latter are not linearly 

separable from each other. For each species, 50 

samples with four features each (sepal length, sepal 

width, petal length, and petal width) were collected. 

The number of objects that belong to each cluster is 

50. 

2. Abalone Data Set (n=1253, d=8, K=3): This is a 

data set for predicting the age of abalone from 

physical measurements. The data were sampled 

from three clusters: the first cluster has 397objects, 

the second cluster has 434objects, and the last 

cluster has 422objects. The data contains eight 

relevant features: 1). sex, 2). length, 3). diameter, 4). 

height, 5). whole weight, 6). shucked weight, 7). 

viscera weight, and 8). shell weight.   

3. Contraceptive Method Choice Data Set (n=1473, 

d=9, K=3): This data set is a subset of the 1987 

National Indonesia Contraceptive Prevalence 

Survey. The samples are married women who were 

either not pregnant or do not know if they were at 

the time of interview. The problem is to predict the 

current contraceptive method choice: 1). no use 

(629objects), 2). long-term methods (333objects), or 

3). short-term methods (511objects) of a woman 

based on her demographic and socio-economic 

characteristics. The data contains nine relevant 

features: 1). wife's age, 2). wife's education, 3). 

wife's education, 4). number of children ever born, 

5). wife's religion, 6). wife's now working?, 7). 

husband's occupation, 8). standard-of-living index, 

and 9). media exposure. 

4. Haberman's Survival Data Set (n=306, d=3, K=2): 

The data set contains cases from a study that was 

conducted between 1958 and 1970 at the University 

of Chicago's Billings Hospital on the survival of 

patients who had undergone surgery for breast 

cancer. The objective is to classify each data vector 

into: 1). the patient survived 5years or longer 

(225objects), or 2). the patient died within 5year 

(81objects). The data contains three relevant 

features: 1). age of patient at time of operation, 2). 

patient's year of operation, and 3). number of 

positive axillary nodes detected. 

5. Heart Disease Data Set (n=303, d=13, K=2): This 

is a data set with 13 inputs, 2 classes, and 303 data 

vectors. The "goal" field refers to the presence of 

heart disease in the patient. The problem is to 

predict the diagnosis of heart disease (angiographic 

disease status) by classifying each data vector into: 

1)<50% diameter narrowing (164objects); or 2)> 

50% diameter narrowing (139objects). The data 

contains 13 relevant features: 1). age, 2). sex, 3). 

chest pain type, 4). resting blood pressure, 5). serum 

cholestoral, 6). fasting blood sugar>120 mg/dl?, 7). 

resting electrocardiographic results, 8). maximum 

heart rate achieved, 9). exercise induced angina?, 

10). ST depression induced by exercise relative to 

rest, 11). the slope of the peak exercise ST segment, 

12). number of major vessels, and 13). that (normal, 

fixed defect, or reversable defect). 

We used Waikato Environment for Knowledge 

Analysis (WEKA) for classifying data sets by 

DBSCAN algorithm. WEKA is a collection of machine 

learning algorithms for data mining tasks. The 

algorithms can either be applied directly to a dataset or 

called from your own Java code. WEKA contains tools 

for data pre-processing, classification, regression, 

clustering, association rules, and visualization. It is 

also well-suited for developing new machine learning 

schemes. 

We assigned input parameters of DBSCAN 

algorithm to epsilon=0.9 and minPoints=6 for 

classifying all data sets. We tested performance of 

DBSCAN and our algorithm DLCKDT by counting 

the data points which are classified incorrectly. The 

data set description and the individual performance of 

DBSCAN algorithm and our algorithm DLCKDT are 

summarized in Table 2.  
 

Table 2. The data sets description, percentage of incorrectly 

clustered instances by DBSCAN algorithm and DLCKDT 

algorithm. 

# 
Data set 

Name 
n D K 

Percentage of 

Incorrectly 

Clustered 

Instances by 

Using DBSCAN 

(%) 

Percentage of 

Incorrectly 

Clustered 

Instances by 

Using DLCKDT 

(%) 

1 Iris 150 4 3 66.67  26 

2 Abalone 1253 8 3 65.36 49.16 

3 

Contraceptive 

method 

choice 

1473 9 3 59.47 57.77 

4 
Haberman's 

survival 
306 3 2 87.91 25.82 

5 Heart disease 303 13 2 59.08 43.89 

 

We observed that the proposed algorithm performed 

very well. We found that the DBSCAN algorithm 

failed to classify 68% of the average number of all 

instances in the data sets while DLCKDT performed 

41%. We can conclude that the proposed algorithm 

performs better performance than DBSCAN algorithm 

and it doesn’t reliance on a priori knowledge and user 

defined parameters like DBSCAN. 

 

5. Conclusions and Future Work 

In this paper, we described an essential problem in data 

clustering and presented some solutions for it. We 

developed a novel clustering algorithm by using kd-

tree and we proved its performance. The proposed 

algorithm did not have a worst-case bound on running 

time. Experimental results are shown in this paper to 

demonstrate the effectiveness of the proposed 

algorithm. We illustrated the performance of 

classifying complex data sets. We proved that the 
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proposed algorithm can classify complex data sets 

more accurately than other algorithms presented in the 

literature. The work reported in this paper may be 

extended in a number of ways, some of which are 

discussed below: 

1. We used KD-Tree for improving the performance of 

classification. Many optimizing search strategies in 

KD-Tree are developed in literature. We can use 

these strategies for improving the time complexity 

of our algorithm and study its performance. 

2. Our proposed algorithm depends on KD-Tree for 

improving the performance of clustering. It is 

interesting to study some other kinds of trees like 

R+_tree and Bkd-tree: A Dynamic Scalable KD-

Tree. 
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