
The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013 283

A Dynamic Linkage Clustering using KD-Tree

Shadi Abudalfa
1
 and Mohammad Mikki

2

1
Department of Information Technology, University Collage of Applied Sciences, Palestine

2
Department of Computer Engineering, Islamic University of Gaza, Palestine

Abstract: Some clustering algorithms calculate connectivity of each data point to its cluster by depending on density

reachability. These algorithms can find arbitrarily shaped clusters, but they require parameters that are mostly sensitive to

clustering performance. We develop a new dynamic linkage clustering algorithm using kd-tree. The proposed algorithm does

not require any parameters and does not have a worst-case bound on running time that exists in many similar algorithms in

the literature. Experimental results are shown in this paper to demonstrate the effectiveness of the proposed algorithm. We

compare the proposed algorithm with other famous similar algorithm that is shown in literature. We present the proposed

algorithm and its performance in detail along with promising avenues of future research.

Keywords: Data clustering, density-based clustering algorithm, KD-tree, dynamic linkage clustering, DBSCAN.

Received February 26, 2011; accepted July 28, 2011; published online March 1, 2012

1. Introduction

Clustering [5] is a division of data into groups of

similar objects. Each group, called cluster, consists of

objects that are similar within the cluster and dissimilar

to objects of other clusters. Representing data by fewer

clusters necessarily loses certain fine details, but

achieves simplification, and so may be considered as a

form of data compression. It represents many data

objects by few clusters models data by its clusters.

Data modelling puts clustering in a historical

perspective which is rooted in mathematics, statistics,

and numerical analysis. Clustering is the subject of

active research in several fields such as statistics,

pattern recognition, artificial intelligence, and machine

learning. From a practical perspective, clustering plays

an outstanding role in data mining applications such as

scientific data exploration, information retrieval and

text mining, spatial database applications, Web

analysis, marketing, medical diagnostics,

computational biology, and many others.

Although, classification [6] is an effective means for

distinguishing groups or classes of objects, it requires

the often costly collection and labelling of a large set

of training tuples or patterns, which the classifier uses

to model each group. It is often more desirable to

proceed in the reverse direction: First partition the set

of data into groups based on data similarity (e.g., using

clustering), and then assign labels to the relatively

small number of groups.

From a machine learning perspective clusters

correspond to hidden patterns, the search for clusters is

unsupervised learning [15], and the resulting system

represents a data concept. Therefore, clustering is

unsupervised learning of a hidden data concept.

Clustering is a challenging field of research in which

its potential applications pose their own special

requirements. There are many requirements of

clustering in data mining such as: type of attributes

algorithm can handle, scalability to large data sets,

ability to work with high dimensional data [8, 9],

ability to find clusters of irregular shape, handling

outliers (noise), time complexity, data order

dependency, labelling or assignment (hard or strict vs.

soft or fuzzy [14, 16]), reliance on a priori knowledge

and user defined parameters, and interpretability of

results.

However, clustering is a difficult problem

combinatorially, and differences in assumptions and

contexts in different communities have made the

transfer of useful generic concepts and methodologies

slow to occur.

There are thousands of clustering techniques one

can encounter in the literature. Most of the existing

data clustering algorithms can be classified as

hierarchical or partitional. Within each class, there

exists a wealth of sub-class which includes different

algorithms for finding the clusters.
While hierarchical algorithms [2] build clusters

gradually (as crystals are grown), partitioning

algorithms [7] learn clusters directly. In doing so, they

either try to discover clusters by iteratively relocating

points between subsets, or try to identify clusters as

areas highly populated with data [1].

Density based algorithms [10] typically regard

clusters as dense regions of objects in the data space

that are separated by regions of low density. The main

idea of density-based approach is to find regions of

high density and low density, with high-density regions

being separated from low-density regions. These

approaches can make it easy to discover arbitrary

clusters.

284 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

Recently, a number of clustering algorithms have

been presented for spatial data, known as grid-based

algorithms. They perform space segmentation and then

aggregate appropriate segments [11]. Many other

clustering techniques are developed, primarily in

machine learning, that either have theoretical

significance, are used traditionally outside the data

mining community, or do not fit in previously outlined

categories.

This paper deals with clustering algorithms which

calculate connectivity of each data point to its cluster

by depending on density reachability. Each cluster,

which is a subset of the points of the data set, satisfies

two properties: all points within the cluster are

mutually density-connected, and if a point is density-

connected to any point of the cluster, it is part of the

cluster as well. These algorithms can find arbitrarily

shaped clusters, but they require parameters that are

mostly sensitive to clustering performance. From other

side, these algorithms need to detect nearest

neighborhood of each data point which cause time

consuming.

We tackled with this defect and developed an

original algorithm by using KD-Tree. The proposed

algorithm depends on density reachability and groups

data points in hierarchically way. Experimental results

are shown in this paper to demonstrate the

effectiveness of the proposed algorithm. We compared

the proposed algorithm with other similar famous

algorithm that is shown in literature. We present the

proposed algorithm and its performance in detail along

with promising avenues of future research.

The rest of the paper is organized as follows: section

2 describes review of literature and related studies.

This section presents KD-Tree which is the most

important multidimensional structure for storing a

finite set of data points from k-dimensional space.

Section 3 illustrates our proposed original algorithm

for classifying complex data sets. We called the

proposed algorithm a Dynamic Linkage Clustering

using KD-Tree (DLCKDT). Section 4 illustrates

experimental results to demonstrate the effectiveness

of the proposed algorithm. We used synthetic and real

data sets for testing efficiency of the proposed

algorithm. Finally, section 5 concludes the paper and

presents suggestions for future work.

2. Background

We present in this section the KD-Tree which is the

most important multidimensional structure for storing a

finite set of data points from k-dimensional space. In

addition, the section illustrates the usage of KD-Tree.

We use KD-Tree for improving performance of

clustering algorithms and developing a new effective

clustering algorithm. We also present Density-Based

Spatial Clustering of Applications with Noise

(DBSCAN) algorithm for comparing it with the

proposed algorithm.

A K-dimensional tree, or KD-Tree [13] is a space-

partitioning data structure for organizing points in a K-

dimensional space. The KD-Tree is a top-down

hierarchical scheme for partitioning data. Consider a

set of n points, (x1...xn) occupying an m dimensional

space each point xi has associated with it m coordinates

(xi1, xi2,..., xim). There exists a bounding box, or bucket,

which contains all data points and whose extrema are

defined by the maximum and minimum coordinate

values of the data points in each dimension. The data is

then partitioned into two sub-buckets by splitting the

data along the longest dimension of the parent bucket.

These partitioning processes may then be recursively

repeated on each sub-bucket until a leaf bucket is

created, at which point no further partitioning will be

performed on that bucket. A leaf bucket is a bucket

which fulfils a certain requirement, such as, it only

contains one data point.

KD-Tree is the most important multidimensional

structure for storing a finite set of data points from k-

dimensional space. It decomposes a multidimensional

space into hyper-rectangles. A KD-Tree is a binary tree

with both a dimension number and splitting value at

each node. Each node corresponds to a hyper-

rectangle. A hyper-rectangle is represented by an array

of minimum coordinates and an array of maximum

coordinates (e.g., in 2 dimensions (k=2), (xmin, ymin)

and (xmax, ymax)). When searching for the nearest

neighbour we need to know if a hyper-rectangle

intersects with a hyper-sphere. The contents of each

node are depicted in Table 1.

Table 1. The fields of KD-Tree node.

Field Description

Type Type of node tree (node or leaf)

Parent The index of parent node in kd-tree

Splitdim The splitting dimension number

Splitval The splitting value

Left kd-Tree
A kd-tree representing points to the left

of the splitting plane

Right kd-Tree
A kd-tree representing points to the
right of the splitting plane

Hyperrect The coordinates of hyperrectangle

Numpoints
The number of points contained in

hyperrectangle

An interesting property of the KD-Tree is that each

bucket will contain roughly the same number of points.

However, if the data in a bucket is more densely

packed than some other bucket we would generally

expect the volume of that densely packed bucket to be

smaller. Approximate Nearest Neighbour (ANN) is a

library written in C++ [12], which supports data

structures and algorithms for both exact and

approximate nearest neighbour searching in arbitrarily

high dimensions. The ANN library implements KD-

Tree data structure. The function performing the k-

nearest neighbor search in ANN is given a query point

A Dynamic Linkage Clustering using KD-Tree 285

q, a nonnegative integer k, an array of point indices,

nnidx, and an array of distances, dists. Both arrays are

assumed to contain at least k elements. This procedure

computes the k nearest neighbours of q in the point set

and stores the indices of the nearest neighbours in the

array nnidx.

Each node splits the space into two subspaces

according to the splitting dimension of the node, and

the node’s splitting value. Geometrically this

represents a hyper-plane perpendicular to the direction

specified by the splitting dimension. Searching for a

point in the data set that is represented in a KD-Tree is

accomplished in a traversal of the tree from root to leaf

which is of complexity O(log(n)) (if there are n data

points). The first approximation is initially found at the

leaf node which contains the target point.

Our proposed algorithm is a density-based

clustering algorithm because it finds a number of

clusters starting from the estimated density distribution

of corresponding nodes. So we compare performance

of our proposed algorithm with DBSCAN algorithm.

DBSCAN is a data clustering algorithm proposed by

Ester et al. [4]. It is a density-based clustering

algorithm because it finds a number of clusters starting

from the estimated density distribution of

corresponding nodes. DBSCAN is one of the most

common clustering algorithms and also most cited in

scientific literature.

DBSCAN uses two global parameters: epsilon

which is used to determine the maximum radius of the

point neighborhood, and minPoints which is used to

determine the minimum number of points in an Eps-

neighbourhood of that point. Performance of DBSCAN

is sensitive to values of these parameters.

3. Methodology

In this section we illustrate our original work for

improving efficiency of classification and tackling the

problem which is presented in section 1. This section

illustrates usage of KD-Tree for developing original

algorithm to classify complex data sets. We called the

proposed algorithm a DLCKDT. We used selected

nodes from KD-Tree to develop this algorithm.

3.1. Selecting Dense Points

We proposed to use KD-Tree for checking the

connectivity of each data point with its cluster. We

used KD-Tree to determine the collections of dense

regions in dimensional space. Using KD-Tree will

reduce computation cost and its results will be better

than using other methods that are presented in

literature for determining the dense regions. We

selected some points of KD-Tree which denote the

dense centers of dense regions in the data set. We

called these points as Dense Points (DPs).

Selecting leaf nodes as DPs is not suitable because

each leaf node in KD-Tree is a bucket contains only

one data point and will cause selecting all data points

in the data set. So selecting leaf nodes as DPs will not

form dense centers of dense regions in the data set.

Selecting parent of leaf nodes in KD-Tree as DPs is

not suitable also because parent of leaf node contains

only two data points (two leaf nodes) and will cause

sensitivity to noise (outlying data points) in the data

set.

Depending on the previous analysis, we selected

DPs by searching for leaf nodes in the KD-Tree and

then finding the grandparent of the leaf nodes.

Grandparent of the leaf nodes contains more than two

data points, so selecting them as DPs will reduce

sensitivity to noise in the data set and will form small

number of centers to denote to dense regions in the

data set for reducing processing time in classification.

Figure 1 shows the structure of KD-Tree and the

position of DPs. We note that the DPs (which are

shown as shaded nodes) denote to 2
nd
 and 3

rd
 levels of

the KD-Tree. We note that more than two nodes fork

from nodes of DPs, this indicates to DPs contains more

than two data points.

Figure 1. Selected dense points.

Figure 2-a shows the position of DPs on synthetic

data set which has one cluster. We note that these

points form almost the shape of cluster with little

number of points. We note that DPs distributed on the

whole data set and they exist in dense regions of data

points. Figure 2-b shows the rectangular regions which

are covered by DPs of KD-Tree. We note that these

regions almost cover all the data set, so we can

conclude that DPs correspond to the dense regions of

the data set.

a) DPs of kd-tree. b) Rectangular regions covered

 by DPs.

Figure 2. Illustrating how DPs cover all the data set.

Using upper levels in KD-Tree (more than the 3
rd

level) for selecting DPs will decrease number of DPs

for representing dense regions, but in the same time

286 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

rectangular regions will be larger and will cover some

parts of space which are empty from data points.

Figure 3 shows selecting nodes from various levels in

KD-Tree and showing the corresponding of these

nodes to data points in a data set of one cluster.

We note from Figure 3-a that the number of nodes

which denote to dense regions are smaller than number

of DPs which are shown in Figure 2-b but the size of

rectangular regions are increased, this caused covering

empty regions of data points. These effects are

increased gradualness from Figure 3-c to Figure 3-e.

Figure 3-e shows that only one node represents all data

points in cluster and covers empty space outside the

cluster. So we inferred, if we use upper levels for

representing DPs then the shape which is formed by

rectangular regions for covering the cluster will be

rough, and many data points will be selected from

other clusters if there are overlapped clusters in the

data set.

We can conclude that selecting the grandparent of

the leaf nodes in KD-Tree for representing DPs is the

best choice to determine the collections of dense

regions in dimensional space. We used this concept for

selecting DPs in our experiments for increasing

performance of classifying clusters in complex data

set.

a) Nodes of the 4th level. b) Nodes of the 5th level.

c) Nodes of the 6th level. d) Nodes of the 7th level.

e) Nodes of the 8th level.

Figure 3. Selecting nodes from various levels in KD-Tree upper

than the 3rd level.

Selecting DPs have many advantages. First of all,

using DPs reduces the number of data points used for

classification, so this method will reduce time

complexity. From other side, using DPs will reduce the

effect of noise (outlying data points) on classification.

Figure 4 shows position of DPs (plotted as circles) in

data set having one cluster with outlying data points.

We note that the outlying data points, which denoted as

+symbols in the four corners of the figure, is not

selected as DPs. We note also that all DPs are

concentrated in spaces which have density of data

points.

So we can use DPs for checking density reachability

of each data point with its cluster. Using DPs will be

effective for classifying complex data sets which have

overlapped and arbitrary shaped clusters.

Figure 4. Selecting DPs form data set having noise.

Next, we will use DPs for improving efficacy of

clustering algorithms and developing a new effective

clustering algorithm.

3.2. Dynamic Linkage Clustering using KD-

Tree

In this section we develop a new clustering algorithm

depending on the KD-Tree. We called the proposed

algorithm as a DLCKDT. We used selected nodes from

KD-Tree to develop this algorithm. Our goal for

developing this algorithm is classifying complex data

sets more accurately than other algorithms which are

presented in the literature.

The new developed clustering algorithm depends on

the KD-Tree. It consists of three phases: The first

phase selects DPs of KD-Tree for using them as initial

seeds. The second phase assigns each data set to its

nearest DP. So the output of this phase is a collection

of small clusters whose number is equal to the number

of DPs. The last phase merges the small clusters

(output of the second phase). During the third phase,

each iteration consists of merging the nearest two

clusters. This phase continues until the number of

clusters is equal to the value which is specified by the

user in advance (denoted by the number of classes).

The pseudo code of our novel clustering algorithm

using KD-Tree is:

1. Input the number of clusters K.

2. Select DPs of KD-Tree (DP1,..., DPn).

3. Assign each data point Xi to its nearest DPj to form

initial clusters of data points.

4. Merge every two adjacent clusters of step 3.

5. Find the nearest two clusters and merge them.

6. If the number of merged clusters N>K, then go to

step 5; else return the merged clusters.

A Dynamic Linkage Clustering using KD-Tree 287

Step 2 is the first phase in the algorithm for selecting

DPs of KD-Tree. Step 3 is the second phase. It creates

a large number of small groups which are used as

initial clusters. Steps 4, 5, and 6 form the final phase.

This phase merges clusters which are generated in step

3. The merging is terminated when the number of

merged clusters is equal to the value of K, where K is

an input parameter which is defined as the target

number of clusters. Step 4 decreases to half the number

of selected clusters which are generated by step 3. This

step is used for reducing time complexity. We used the

nearest neighbor distance [17] to calculate the distance

between each two clusters C1 and C2 which is denoted

by where:

 D(C1, C2)=min d(yi, zi)

 1≤ i≤ r,1≤ j≤ s

Figure 5 gives an example of the nearest neighbor

distance in the two-dimensional case. We note that

D(C1, C2) is the Euclidean distance between the nearest

points between clusters C1 and C2. For calculating this

equation we need to calculate all distances between

each point in C1 and C2 and then finding the minimum

distance. We can find the nearest two clusters for step

5 of the algorithm by calculating the minimum distance

between all clusters.

Figure 5. Nearest neighbour distance between two clusters.

DLCKDT has three main advantages:

1. It is easy to implement.

2. The algorithm does not depend on the initial

conditions. This forces the algorithm to converge to

global solution.

3. It can classify very complex data sets which cannot

be classified by other clustering algorithms in the

literature.

However the proposed algorithm suffers from the

following disadvantages:

1. The user has to specify the number of classes in

advance.

2. The elapsed time is increased when comparing it
with other clustering algorithms in the literature.

4. Experimental Results

Experimental results are shown in this section to

demonstrate the effectiveness of the DLCKDT. We

implemented DLCKDT algorithm by using MATLAB

7.3 (R2006b) for illustrating its performance. We used

synthetic and real data sets for testing efficiency of the

proposed algorithm.

We used our algorithm for classifying a lot of

complex data sets. Figure 6 illustrates the power of our

algorithm. We used a data set that consists of two

circles (two clusters); one of them is inside the other as

shown in Figure 6-a. Figure 6-b shows the DPs

(marked as circles) of KD-Tree. We note that DPs are

distributed though whole data set, and located in the

dense regions. We note that the DPs formed the shape

of clusters with small number of data points. Figure 6-c

shows the clusters of DPs. We note that every data

point is connected to the nearest DP. We note that this

step generates a collection of small clusters where DPs

form their centroids. We note that the number of these

groups equal to number of used DPs. The results of

merging every two adjacent clusters of DPs are shown

in Figure 6-d. We note that the number of total groups,

which are marked with different colors and shapes, is

reduced to half (only 24 groups). The output of the

algorithm is shown in Figure 6-e. We note that data set

is classified correctly into to clusters. Data points of

the first cluster (the smallest circle) are marked as

circles and the data points of the second cluster (the

largest circle) are marked as triangles.

a) Complex Synthetic data set. b) DPs of kd-tree.

c) Clusters of DPs. d) Merging every two adjacent

 clusters of DPs.

e) The output of algorithm.

Figure 6. Effectiveness of the proposed algorithm.

The following real-life data sets [3] are used for

testing performance of our proposed algorithm

DLCKDT and DBSCAN. Here, n is the number of data

points, d is the number of features, and K is the number

of clusters.

1. Iris Plants Data Set (n=150, d=4, K=3): This is a

well-known data set with 4 inputs, 3 classes, and

(1)

288 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

150 data vectors. The data set consists of three

different species of iris flower: Iris setosa, Iris

virginica, and Iris versicolour. One class is linearly

separable from the other 2; the latter are not linearly

separable from each other. For each species, 50

samples with four features each (sepal length, sepal

width, petal length, and petal width) were collected.

The number of objects that belong to each cluster is

50.

2. Abalone Data Set (n=1253, d=8, K=3): This is a

data set for predicting the age of abalone from

physical measurements. The data were sampled

from three clusters: the first cluster has 397objects,

the second cluster has 434objects, and the last

cluster has 422objects. The data contains eight

relevant features: 1). sex, 2). length, 3). diameter, 4).

height, 5). whole weight, 6). shucked weight, 7).

viscera weight, and 8). shell weight.

3. Contraceptive Method Choice Data Set (n=1473,

d=9, K=3): This data set is a subset of the 1987

National Indonesia Contraceptive Prevalence

Survey. The samples are married women who were

either not pregnant or do not know if they were at

the time of interview. The problem is to predict the

current contraceptive method choice: 1). no use

(629objects), 2). long-term methods (333objects), or

3). short-term methods (511objects) of a woman

based on her demographic and socio-economic

characteristics. The data contains nine relevant

features: 1). wife's age, 2). wife's education, 3).

wife's education, 4). number of children ever born,

5). wife's religion, 6). wife's now working?, 7).

husband's occupation, 8). standard-of-living index,

and 9). media exposure.

4. Haberman's Survival Data Set (n=306, d=3, K=2):

The data set contains cases from a study that was

conducted between 1958 and 1970 at the University

of Chicago's Billings Hospital on the survival of

patients who had undergone surgery for breast

cancer. The objective is to classify each data vector

into: 1). the patient survived 5years or longer

(225objects), or 2). the patient died within 5year

(81objects). The data contains three relevant

features: 1). age of patient at time of operation, 2).

patient's year of operation, and 3). number of

positive axillary nodes detected.

5. Heart Disease Data Set (n=303, d=13, K=2): This

is a data set with 13 inputs, 2 classes, and 303 data

vectors. The "goal" field refers to the presence of

heart disease in the patient. The problem is to

predict the diagnosis of heart disease (angiographic

disease status) by classifying each data vector into:

1)<50% diameter narrowing (164objects); or 2)>

50% diameter narrowing (139objects). The data

contains 13 relevant features: 1). age, 2). sex, 3).

chest pain type, 4). resting blood pressure, 5). serum

cholestoral, 6). fasting blood sugar>120 mg/dl?, 7).

resting electrocardiographic results, 8). maximum

heart rate achieved, 9). exercise induced angina?,

10). ST depression induced by exercise relative to

rest, 11). the slope of the peak exercise ST segment,

12). number of major vessels, and 13). that (normal,

fixed defect, or reversable defect).

We used Waikato Environment for Knowledge

Analysis (WEKA) for classifying data sets by

DBSCAN algorithm. WEKA is a collection of machine

learning algorithms for data mining tasks. The

algorithms can either be applied directly to a dataset or

called from your own Java code. WEKA contains tools

for data pre-processing, classification, regression,

clustering, association rules, and visualization. It is

also well-suited for developing new machine learning

schemes.

We assigned input parameters of DBSCAN

algorithm to epsilon=0.9 and minPoints=6 for

classifying all data sets. We tested performance of

DBSCAN and our algorithm DLCKDT by counting

the data points which are classified incorrectly. The

data set description and the individual performance of

DBSCAN algorithm and our algorithm DLCKDT are

summarized in Table 2.

Table 2. The data sets description, percentage of incorrectly

clustered instances by DBSCAN algorithm and DLCKDT

algorithm.

Data set

Name
n D K

Percentage of

Incorrectly

Clustered

Instances by

Using DBSCAN

(%)

Percentage of

Incorrectly

Clustered

Instances by

Using DLCKDT

(%)

1 Iris 150 4 3 66.67 26

2 Abalone 1253 8 3 65.36 49.16

3

Contraceptive

method

choice

1473 9 3 59.47 57.77

4
Haberman's

survival
306 3 2 87.91 25.82

5 Heart disease 303 13 2 59.08 43.89

We observed that the proposed algorithm performed

very well. We found that the DBSCAN algorithm

failed to classify 68% of the average number of all

instances in the data sets while DLCKDT performed

41%. We can conclude that the proposed algorithm

performs better performance than DBSCAN algorithm

and it doesn’t reliance on a priori knowledge and user

defined parameters like DBSCAN.

5. Conclusions and Future Work

In this paper, we described an essential problem in data

clustering and presented some solutions for it. We

developed a novel clustering algorithm by using kd-

tree and we proved its performance. The proposed

algorithm did not have a worst-case bound on running

time. Experimental results are shown in this paper to

demonstrate the effectiveness of the proposed

algorithm. We illustrated the performance of

classifying complex data sets. We proved that the

A Dynamic Linkage Clustering using KD-Tree 289

proposed algorithm can classify complex data sets

more accurately than other algorithms presented in the

literature. The work reported in this paper may be

extended in a number of ways, some of which are

discussed below:

1. We used KD-Tree for improving the performance of

classification. Many optimizing search strategies in

KD-Tree are developed in literature. We can use

these strategies for improving the time complexity

of our algorithm and study its performance.

2. Our proposed algorithm depends on KD-Tree for

improving the performance of clustering. It is

interesting to study some other kinds of trees like

R+_tree and Bkd-tree: A Dynamic Scalable KD-

Tree.

References

[1] Abu-Abbas O., “Comparisons Between Data

Clustering Algorithms,” The International Arab

Journal of Information Technology, vol. 5, no. 3,

pp. 320-325, 2008.

[2] Agarwal P., Alam M., and Biswas R., “Analysing

the Agglomerative Hierarchical Clustering

Algorithm for Categorical Attributes,”

International Journal of Innovation,

Management and Technology, vol. 1, no. 2, pp.

186-190, 2010.

[3] Asuncion A. and Newman D., “UCI Repository

of Machine Learning Database,” available at:

http://www.ics.uci.edu/~mlearn/MLrepository.

html, last visited 2007.

[4] Ester M., Kriegel H., Sander J., and Xu X., “A

Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise,”

in Proceedings of the 2
nd
 International

Conference on Knowledge Discovery and Data

Mining, Portland, pp. 226-231,1996.

[5] Gan G., Ma C., and Wu J., Data Clustering:

Theory, Algorithms, and Applications, ASA-

SIAM Series on Statistics and Applied

Probability, SIAM, Philadelphia, Alexandria,

2007.

[6] Halgamuge S. and Wang L., Classification and

Clustering for Knowledge Discover, Springer-

Verlag Berlin Heidelberg, New York, 2005.

[7] Hammerly G. and Elkan C., “Alternatives to the

k-Means Algorithm That Find Better

Clusterings,” in Proceedings of the 11
th

International Conference on Information and

Knowledge Management, USA, pp. 600-607,

2002.

[8] Kogan J., Introduction to Clustering Large and

High-Dimensional Data, Cambridge University

Press, New York, 2007.

[9] Kogan J., Teboulle M., and Nicholas C.,

Grouping Multidimensional Data, Springer-

Verlag, New York, 2006.

[10] Kriegel H., Kröger P., Sander J., and Zimek A.,

“Density-Based Clustering,” Wiley

Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, vol. 1, no. 3, pp. 231-240,

2011.

[11] Lin N., Chang C., Jan N., Chen H., and Hao W.,

“A Deflected Grid-Based Algorithm for

Clustering Analysis,” International Journal of

Mathematical Models and Methods in Applied

Sciences, vol. 1, no. 1, pp. 33-39, 2007.

[12] Mount D. and Arya S., “ANN: A Library for

Approximate Nearest Neighbor Searching,”

available at: http://www.cs.umd.edu/~mount/

ANN, last visited 2005.

[13] Panigrahy R., “An Improved Algorithm Finding

Nearest Neighbor Using KD-Trees,” in

Proceedings of the 8
th
 Latin American

Conference on Theoretical Informatics, Berlin,

pp. 387-398, 2008.

[14] Sato-Ilic M. and Jain L., Innovations in Fuzzy

Clustering, Springer-Verlag, New York, 2006.

[15] Theodoridis S. and Koutroumbas K., Pattern

Recognition, Elsevier Academic Press,

Amsterdam, 2003.

[16] Valente J. and Pedrycz W., Advances in Fuzzy

Clustering and its Applications, John Wiley &

Sons Ltd, England, 2007.

[17] Williams W. and Lambert J., “Multivariate

Methods in Plant Ecology: V. Similarity

Analyses and Information-Analysis,” Journal of

Ecology, vol. 54, no. 2, pp. 427-445, 1966.

Shadi Abudalfa received his BSc

and MSc degrees both in computer

engineering from the Islamic

University of Gaza, Palestine in

2003 and 2010 respectively. He is

a lecturer at the University Collage

of Applied Sciences, Palestine. From

July 2003 to August 2004, he worked as a research

assistant at projects and research Lab in IUG. From

February 2004 to August 2004, he worked as

a teaching assistant at Faculty of Engineering in IUG.

Mohammad Mikki is a professor of

computer engineering at Islamic

University of Gaza, Palestine. His

general research interests are in high

performance parallel and distributed

computing, high speed computer

networks and communications

protocols and computer networks management,

modeling and design of digital computer systems,

internet technology and programming, internet

performance measurement tools, and web-based

learning.

