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1. Introduction 
 

To solve the problem of certificate management in 

traditional public key cryptography, Shamir [15] 

proposed the concept of the identity-based public key 

cryptography. However, identity-based public key 

cryptography needs a trusted Key Generation Centre 

(KGC) to generate a private key for an entity according 

to his identity. So, the key escrow problem arises. To 

solve the problem, CertificateLess Public Key 

Cryptography (CL-PKC) was proposed by Al-Riyami 

and Paterson [1]. 

Digital signature scheme, one of the general 

primitives of cryptography, has many applications in 

information security to provide authentication, data 

integrity, and non-repudiation. In an ordinary digital 

signature scheme, anyone can verify the validity of a 

signature using the signer’s public key. However, in 

some scenarios, this public verification is not desired, 

if the signer does not want the recipient of a digital 

signature to show this signature to a third party at will. 

To address this problem above, Jakobsson et al. [9] 

proposed the concept of Designated Verifier Signature 

(DVS) schemes. A DVS scheme is special type of 

digital signature scheme which provides message 

authentication without non-repudiation. These 

signatures have several applications such as in E-

voting, call for tenders and software licensing. Suppose 

Alice has sent a DVS to Bob. Unlike the conventional 

digital signatures, Bob cannot prove to a third party 

that Alice has created the signature. This is 

accomplished by the Bob’s capability of creating 

another signature designated to himself which is 

indistinguishable from Alice’s signature. 

Following the pioneering work due to Jakobsson et 

al. [9], many PKC-based DVS [12, 14, 17] and ID-

based DVS [10, 11, 16, 21] have been proposed. 

Huang et al. [8], presented the first CertificateLess 

Designated Verifier Signature (CLDVS) scheme. 

Unfortunately, their scheme is insecure against a 

malicious but passive KGC attack.  

In order to improve the security, several CLDVS 

schemes [3, 13, 19, 20] have been proposed. All the 

above CLS schemes may be practical, but they are 

from bilinear pairings and the pairing is regarded as the 

most expensive cryptography primitive. The relative 

computation cost of a pairing is approximately twenty 

times higher than that of the scalar multiplication over 

elliptic curve group [4, 18]. Therefore, CLDVS 

schemes without bilinear pairings would be more 

appealing in terms of efficiency. 

In this paper, we present a CLDVS scheme without 

pairings.  The scheme rests on the Elliptic Curve 

Computational Diffie-Hellman Problem (ECDHP). 

With the pairing-free realization, the scheme’s 

overhead is lower than that of previous schemes [3, 8, 

13, 19, 20] in computation. The rest of the paper is 

organized as follows: in section 2, we recall the model 

for CLDVS and the security properties of CLDVS, we 

propose our scheme in section 4, security analysis and 

performance analysis of the proposed scheme are given 

in section 5. Finally, we conclude this paper. 

 

2. Preliminaries 
 

2.1. Background of Elliptic Curve Group 

Let the symbol E/Fp denote an elliptic curve E over a 

prime finite field Fp, defined by an equation: 
 

2 3

py x ax b , a ,b F= + + ∈                  (1) 
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and with the discriminant:  

3 24 27 0a b∆ = + ≠                         (2) 

The points on E/Fp together with an extra point O 

called the point at infinity form a group:  

{( , ) : , , ( , ) 0} { }pG x y x y F E x y O= ∈ = ∪          (3) 

Let the order of G be n. G is a cyclic additive group 

under the point addition “+” defined as follows: Let 

P,Q∈G, l be the line containing P and Q (tangent line 

to E/Fp if P=Q), and R, the third point of intersection 

of l with E/Fp. Let l' be the line connecting R and O. 

Then P “+” Q is the point such that l' intersects E/Fp at 

R and O and P “+” Q. Scalar multiplication over E/Fp 

can be computed as follows:  

       (  )tP P P P t times= + + +…                  (4) 

The following problems defined over G are assumed to 

be intractable within polynomial time. Computational 

Eliptic curve Diffie-Hellman problem: For P the 

generator of G, given Q1=a.P and Q2=b.P to compute 

Q=ab.P. 

 

2.2. Certificateless Designated Verifier 

Signatures 

A CLDVS scheme consists of eight algorithms [8]: 

Setup, Partial-Private-Key-Extract, Set-Secret-Value, 

Set-Private-Key, Set-Public-Key, Sign, Verify and 

Transcript-Simulation. 

• Setup: Taking security parameter k as input and 

returns the system parameters params and master 

key. 

• Partial-Private-Key-Extract: It takes params, master 

key and a user’s identity ID as inputs. It returns a 

partial private key dID. 

• Set-Secret-Value: Taking as inputs params and a 

user's identity ID, this algorithm generates a secret 

value sID. 

• Set-Private-Key: This algorithm makes params, a 

user's partial private key dID and his secret value sID 

as inputs, and outputs the full private key 

skID={dID,sID}. 

• Set-Public-Key: Taking as inputs params and a 

user's secret value sID and dID, and generates a public 

key pkID for the user. 

• Sign: It takes as inputs params, a message m, the 

signer A’s identity IDA, and A’s private key skID, the 

designated verifier’s B’s identity IDB public key pkID 

and outputs a signature S. 

• Verify: It takes as inputs params, a public key pkID, a 

message m, the signer A’s public key pkID, the 

designated verifier’s B’s identity IDB, B’s private 

key skID and a signature S, and returns 1 means that 

the signature is accepted. Otherwise, 0 means 

rejected. 

• Transcript-Simulation: An algorithm that is run by 

the designated verifier B to produce identically 

distributed transcripts that are indistinguishable 

from the original signer A. 

2.3. Security Properties of Certificateless 

Designated Verifier Signatures 

The CLDVS scheme must satisfy the following 

properties: 

• Correctness: If the signer properly produces a 

CLDVS by the CLDVS-Sign algorithm, then the 

verifying algorithm must accept the produced 

signature. 

• Unforgeability: It is computationally infeasible to 

construct a valid CLDVS without the knowledge of 

the private key of either the signer or the designated 

verifier [8]. 

• Source hiding: Given a message m and a CLDVS 

on m, it is infeasible to determine who created this 

signature either the original signer or the designated 

verifier, even if one knows all the private keys [8]. 

• Non-delegatability: Given any indirect form of the 

private key of the signer, it is infeasible to construct 

a valid CLDVS to any designated verifier [8]. 

2.4. Security Model for Certificateless 

Designated Verifier Signatures 

In CLDVS, as defined in [8], there are two types of 

adversaries with different capabilities, we assume Type 

1 Adversary, A1 acts as a dishonest user while Type 2 

Adversary, A2 acts as a malicious KGC: 

• CLDVS Type 1 Adversary: Such an adversary A1 

represents a third party attacks against the CLDVS 

scheme. A1 does not have access to the master key 

nor the user partial private key, but A1 can 

compromise users’ secret values or replace users’ 

public keys at will, because of the uncertified nature 

of the public keys generated by the users. 

• CLDVS Type 2 Adversary: Such an Adversary A2 

represents a malicious-but-passive KGC who is 

assumed malicious at the very beginning of the 

Setup stage of the system. A2 can access to the 

master key, but cannot obtain the user secret value 

nor replace the user public key. 

• Definition 1. A CLDVS scheme is existential 

unforgeable against adaptively chosen message and 

identity attacks if and only if it is secure against 

both types of adversaries. 

3. Our Scheme 

3.1. Scheme Description 

In this section, we present an ID-based signature 

scheme without pairing. Our scheme consists of eight 
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algorithms: Setup, Partial-Private-Key-Extract, Set-

Secret-Value, Set-Private-Key, Set-Public-Key, Sign, 

Verify and Transcript-Simulation. 

• Setup: Takes a security parameter k, returns system 

parameters and a master key. Given k, KGC does as 

follows: 
 

1. Choose a k-bit prime p and determine the tuple 

{FP, E/ FP, G, P} as defined in section 2.1. 

2. Choose the master private key *

nx Z∈  and 

compute the master public key Ppub=x·P. 

3. Choose two cryptographic secure hash functions 
* *

1 :{0,1} nH Z→  and * *

2 :{0,1} nH Z→ . 

4. Publish params={FP, E/FP, G, P, Ppub, H1, H2} as 

system parameters and keep the master key x 

secretly. 
 

• Set-Secret-Value: The user with identity ID picks 

randomly *

ID ns Z∈ , computes PID=sID·P and sets sID 

as his secret value. 

• Partial-Private-Key-Extract: This algorithm takes 

system parameters, master key, a user’s identifier 

and PID=sID·P as input and returns the user’s ID-

based private key. With this algorithm, KGC works 

as follows for each user with identifier IDU: 

1. Choose at random *

ID nr Z∈ , compute RID=rID·P 

and hID=H1(ID, RID, PID). 

2. Compute dID=rID+hID x mod n. 
 

The user’s s partial private key is the tuple 

{dID,RID} and he can validate her private key by 

checking whether the equation dID·P=RID+hID·Ppub 

holds. The private key is valid if the equation holds 

and vice versa. 

• Set-Private-Key: Given params, the user’s partial 

private key dID and his secret value sID, and output a 

pair skID={dID, sID} as the user’s private key. 

• Set-Public-Key: This algorithm takes params, the 

user’s secret value sID as inputs and as inputs, 

computes PID=sID·P and generates the user's public 

key pkID={RID, PID} 

• Sign: This algorithm takes system parameters, the 

signer A’s identity IDA, and A’s private key 
AIDsk , 

the designated verifier’s B’s identity IDB public key 

BIDpk and a message m as input and returns a 

signature of the message m. The user does as the 

follows: 

1. Compute 
1
( , , )

B B BID B ID ID
h H ID R P= . 

2. Choose at random *

nl Z∈  to compute 

( )
B B BID ID ID pubc l P R h P= ⋅ + + ⋅ . 

3. Compute r=H2(m,c). 

4. Choose   at   random   *

nt Z∈   and   compute 

1 ( ) mod
A AID IDs lt r d s n−

= − + . 

5. The resulting signature is (r, s, t). 

• Verify: This algorithm takes system parameters, the 

signer A’s identity IDA, and A’s public key 
AIDpk , 

the designated verifier’s B’s identity IDB private key 

BIDsk , a message m and a signature (r, s, t) as 

inputs. Then return 1 means that the signature is 

accepted. Otherwise, 0 means rejected. The user 

does as the follows: 
 

1. Compute 
1( , , )

A A AID A ID IDh H ID R P= . 

2. Compute  ( )( ( ))
B B A A AID ID ID ID ID pubc t d s s P r P R h P′ = + ⋅ + ⋅ + + ⋅ . 

3. Check whether r=H2(m,c’) holds. Return 1 if it is 

equal. Otherwise return 0. 
 

• Transcript-Simulation: This algorithm takes system 

parameters, the signer A’s identity IDA, and A’s 

public key
AIDpk , the designated verifier’s B’s 

identity IDB private key 
BIDsk and a message m as 

inputs. Then generate a signature (r, s, t). The user 

does as the follows: 
 

1. Compute 
1
( , , )

A A AID A ID ID
h H ID R P= . 

2. Choose at random *, ,ns r Z′ ′∈ compute 

( ),
A A AID ID ID pubc s P r P R h P′ ′= ⋅ + ⋅ + + ⋅ r=H2(m,c), 

l=r´l
-1

mod n,  s=s´l
-1

mod n  and t=l(dIDB+sIDB)
-1 

mod n. 

3. The resulting signature is (r, s, t). Since 
 

        

( )( ( ))

( ( ))

( ))

( ))

B B A A A

A A A

A A A

A A A

ID ID ID ID ID pub

ID ID ID pub

ID ID ID pub

ID ID ID pub

c t d s s P r P R h P

l s P r P R h P

sl P rl P R h P

s P r P R h P c

′ = + ⋅ + ⋅ + + ⋅

= ⋅ + ⋅ + + ⋅

= ⋅ + ⋅ + + ⋅

′ ′= ⋅ + ⋅ + + ⋅ =

    

 

Then the designated verifier can generate the same 

transcripts in an indistinguishable way. 

 

3.2. Security Analysis 

In the section, we give security analysis of our 

proposed scheme and show that the security of our 

proposed scheme is secure under the difficulty of 

solving the ECCDH problem. 
 

1. Correctness: The correctness of proposed scheme 

can be verified by the following equations. 

Since 
A A A A AID ID ID ID ID pub( d s ) P P R h P+ ⋅ = + + ⋅ and 

( )
B A B B BID ID ID ID ID pub

d s P P R h P+ ⋅ = + + ⋅ , we have: 
 

         

1

1

( )( ( ))

( )(( ( ))

( ))

( )

( )

( )

B B A A A

B B A A

A A A

B B

B B

B B B

ID ID ID ID ID pub

ID ID ID ID

ID ID ID pub

ID ID

ID ID

ID ID ID pub

c t d s s P r P R h P

t d s lt r d s P

r P R h P

t d s lt P

l d s P

l P R h P c

−

−

′ = + ⋅ + ⋅ + + ⋅

= + − + ⋅

+ ⋅ + + ⋅

= + ⋅

= + ⋅

= + + ⋅ =

         

(5) 

(6) 



392                                                             The International Arab Journal of Information Technology, Vol. 10, No. 4, July 2013  

 

Then the correctness of our scheme is proved. 

2. Unforgeability: We will prove our scheme can 

provide the unforgeability property by the following 

two   theorems.  The  proof  of  the two theorems are 

given in the appendixes. 

• Theorem 1: If there is a type 1 adversary A1 that 

breaks our proposed CLDVS scheme, then there 

exists an algorithm F which solves the ECDHP 

problem with non-negligible probability. 

• Theorem 2: If there is a type 2 adversary A2 that 

breaks our proposed CLDVS scheme, then there 

exists an algorithm F which solves the EDCDH 

problem with non-negligible probability. 

3. Source Hiding: Given a DVS (r, s, t) on a message 

m, even if a third party knows the signer A’s private 

key pair ( , )
A AID IDd s and the verifier B’s private 

key pair ( , ),
B BID IDd s he cannot identify whether 

( , )
A AID IDd s or ( , )

B BID IDd s has been used in the 

construction of the term s because he does not have 

the knowledge of the random numbers l used during 

the signing process. Hence, it is infeasible to 

determine whether the original signer or the 

designated verifier creates the signature. 

4. Non-Delegatability: The problem of delegatability 

does not exist in our scheme. Because the 

construction of the term s requires the signer’s 

private key pair ( , ),
A AID IDd s and it is impossible 

for the signer to delegate his signing capability to 

any third party without disclosing his private keys, a 

third party can not generate a valid signature (r, s, t) 

on a message m. 

 

4. Comparison with Previous Scheme 

In this section, we will compare the efficiency of our 

new scheme with the latest CLDVS schemes, i.e., 

Huang et al. scheme [8], Ming et al. scheme [13], 

Chen et al. scheme [3], Yang et al. scheme [20] and 

Xiao et al. scheme [19]. For the convenience of 

evaluating the computational cost, we define some 

notations as follows: 
 

• TGexp: The time of executing a modular 

exponentiation operation. 

• TGpair: The time of executing a pairing operation. 

• TGpbsm: The time of executing a pairing-based scalar 

multiplication operation of point. 

• TGebsm: The time of executing an ECC-based scalar 

multiplication operation of point. 

• TGpadd: The time of executing an addition operation 

of points 

• TGinv: The time of executing a modular inversion 

operation. 

• TGmul: The time of executing a general 

multiplication operation. 

• TGadd: The time of executing a general addition 

operation. 

• TGmtph: The time of executing a map-to-point hash 

function. 

• TGh: The time of executing a one-way hash 

function. 

In Table 1, we summarize the performance results of 

different CLDVS schemes. From the Table 1, we know 

that the client side requires only 

3TGpair+1TGpbsm+TGmtph+TGh+1TGpadd.  

For the pairing-based scheme, to achieve the 1024-

bit RSA level security, we have to use the Tate pairing 

defined over some supersingular elliptic curve on a 

finite field Fq, where the length of q is 512 bits at least 

[2]. For the ECC-based schemes, to achieve the same 

security level, we employ some secure elliptic curve on 

a finite field Fp or F2
m, where the length of p is 160 bits 

at least [2]. Table 1 shows the results of the 

performance comparison. 
 

Table 1. Performance evaluation of our protocol. 
 

 Sign Verify 

Huang et al.’s 

scheme [8] 

1TGpair +1TGpbsm + 
1TGinv +1TGmtph + 

1TGh +1TGpadd 

3TGpair +1TGpbsm + 
TGmtph + TGh +           

1 TGpadd 

Ming et al.’s 

scheme [13] 

1TGpair +3 TGpbsm + 

TGmtph + TGh 

3TGpair +2TGpbsm + 1 

TGpadd + TGh 

Chen et al.’s 

scheme [3] 

1TGpair +1TGpbsm + 
TGmtph + TGh 

1TGpair +1TGpbsm + 
TGmtph + TGh 

Yang et al.’s 

scheme [20] 

1TGpair +4 TGpbsm + 
TGmtph + TGh + 

1 TGpadd 

1TGpair +2TGpbsm + 
TGmtph + TGh +          

1 TGpadd 

Xiao et al.’s 

scheme [19] 

3TGpbsm + TGinv + 

TGmtph + TGh 

1TGexp +2TGpair + 

1TGpbsm + TGmtph + 
TGh 

Our scheme 

2TGebsm +1TGinv + 
3TGpadd +2 TGh + 

2TGmul +2 TGadd 

2TGebsm +3TGpadd + 
2TGh +1 TGmul + 

1TGadd 

 

As the main computational overheads, we only 

consider the bilinear pairing operation, the modular 

exponentiation, the scale multiplication and the 

pairing-based scale multiplication. From the theoretical 

analysis [4] and the experimental result [2, 5, 6, 7], we 

know the relative computation cost of the bilinear 

pairing operation, the modular exponentiation and the 

pairing-based scale multiplication are at least 19, 3 and 

3 times that of the scalar multiplication separately. The 

running time of the sign algorithm of our scheme is 

9.09% of Huang et al. scheme [8], 7.14% of Ming et 

al. scheme [13], 9.09% of Chen et al. scheme [3], 

6.45% of Yang et al. scheme [20] and 22.22% of Xiao 

et al. scheme [19], the running time of the verify 

algorithm of our scheme is 3.33% of Huang et al. 

scheme [8], 3.18% of Ming et al. scheme [13], 9.09% 

of Chen et al. scheme [3], 8.00% of Yang et al. scheme 

[20] and 4.54% of Xiao et al. scheme [19]. Thus our 
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scheme is more useful and efficient than the previous 

schemes. 

5. Conclusions 

In this paper, we have proposed an efficient CLDVS 

scheme without bilinear pairings. We also prove the 

security of the scheme under random oracle. Compared 

with previous scheme, the new scheme reduces both 

the running time. Therefore, our scheme is more 

practical than the previous related schemes for 

practical application. 
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Appendixes 

• Proof for Theorem 1: Suppose F is challenged with 

a ECCDH instance (P, Q1=aP, Q2=bP) and is 

tasked to compute Q3=ab·P. To do so, F picks two 

identity IDI and IDJ at random as the challenged ID 

in this game, and gives {Fp, E/Fp, G, P, Ppub=Q1, H1, 

H2} to A1 as the public parameters. Then F answers 

A1’s queries as follows. 

• H1-Queries: F maintains a hash list 
1HL of tuple 

( , , , , )
i i i ii ID ID ID IDID R P d h as explained below. The 

list is initially empty. When A1 makes a hash oracle 

query on IDi, if the query IDj has already appeared 

on
1HL , then the previously defined value is 

returned. Otherwise, F acts as described in the 

partial private key extraction queries. 

• H2-Queries: F maintains a hash list 
2HL of tuple 

(mj, cj, hj). When A1 makes H2 queries for identity 

IDi on the message mj, F chooses a random value 
*

j nh Z∈ , sets hj=H2(mj, cj) and adds (mj, cj, hj) to 

2HL , and sends hj to A1. 

• Partial Private Key Extraction Queries: A1 is 

allowed to query the extraction oracle for an identity 

IDi. F query H1 oracle, IDi is on 
1HL , then F 

response with ( , , , , ).
i i i ii ID ID ID IDID R P d h Otherwise, 

if simulates the oracle as follows. It chooses 

*,i i na b Z∈  at random, sets ,
iID i pub iR a P b P= ⋅ + ⋅  

iID id =b ,  
1( , ) mod ,

i iID i ID ih H ID R a n= ← − response 

with ( , , , , ),
i i i ii ID ID ID IDID R P d h and inserts 

( , , , , )
i i i ii ID ID ID IDID R P d h into 

1
.HL Note that 

( , , )
i i iID ID IDR d h generated in this way satisfies the 

equation dID·P=RID+hID·Ppub in the partial private 

key extraction algorithm. It is a valid secret key.  

• Public Key Extraction Queries: F maintains a list 

Lpk of tuple ( , , )
i ii ID IDID s pk which is initially 

empty. When A1 queries on input IDi, F checks 

whether Lpk contains a tuple for this input. If it does, 

the previously defined value is returned. Otherwise, 

if IDi≠IDJ, F picks a random value 
* ,ID ns Z∈  

computes .
i iID IDP s P= ⋅ If IDi=IDJ, F sets 

iIDP b P= ⋅ and 
iIDs =⊥ . F queries Partial Private 

Key Extraction Queries with IDi and 
iIDP and get 

response .
iIDR  At last F returns { , }

i i iID ID IDpk P R= and 

adds ( , , )
i ii ID IDID s pk to the Lpk. 

• Private Key Extraction Queries: For query on input 

IDi, If IDi=IDI or IDi=IDJ, F stops and outputs 

“failure”. Otherwise, F performs as follows: 

If the 
1HL  and the Lpk contain the corresponding 

tuple ( , , , )
i i ii ID ID ID

ID R s h and the tuple 

( , , )
i ii ID IDID s pk  respectively, F sets 

{ , }
i i iID ID IDsk d s=  and sends it to A1. Otherwise, F 

makes a partial private key extraction query and a 

public key extraction query on IDi, then simulates as 

the above process and sends { , }
i i iID ID IDsk d s= to 

A1. 

• Public Key Replacement: When A1 queries on input 

�,( ),
ii IDpkID F checks whether the tuple 

( , , )
i ii ID IDID s pk is contained in the Lpk. If it does, 

F sets �
i iID IDpk pk=  and adds the tuple 

( , , )
ii IDID pk⊥ to the Lpk.  

• Signing Queries: When a message m, the signer A’s 

identity IDA, the designated verifier’s B ’s identity 

IDB is coming, F acts as follows: F first checks that 

whether tuple ( , , , )
i i ii ID ID IDID R d h and 

( , , )
i ii ID IDID s pk are in 

1HL  and Lpk separately. If 

yes, it just retrieves ( , , , )
A A B BID ID ID IDd s P R from the 

tables and uses these values to sign for the message 

according to the signing algorithm described in the 

scheme. It outputs the signature (r, s, t) for the 

message m and stores the value H2(m, c) in 
2HL  for 

consistency. If IDA or IDB has not been queried to 
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the partial private extraction oracle and the private 

extraction oracle, F executes the simulation of the 

partial private extraction oracle and the private 

extraction oracle, then uses the corresponding secret 

key to sign the message. 

Finally, A1 stops and outputs a signature S={r, s, t} 

on the message m with the signer A’s identity IDA, 

and A’s private key 
AIDsk , the designated verifier’s 

B’s identity IDB public key 
BIDpk , which satisfies 

the following equation 

( , , , , , ) 1
B AA ID IDVerify params m ID sk pk S = . If IDA≠IDJ 

or IDB≠IDJ, F outputs “failure” and aborts. 

Otherwise, F recovers the tuple 

( , , , )
I I II ID ID IDID R d h and ( , , , )

J J JJ ID ID IDID R d h  

from 
1
,HL the tuple ( , , )

I II ID IDID s pk and 

( , , )
J JJ ID IDID s pk from Lpk and the tuple (m, c, h) 

from 
2
.HL  Then, we have: 

( )( ( ))
J J I I IID ID ID ID ID pubc t d s s P r P R h P= + ⋅ + ⋅ + + ⋅      (7) 

Since PIDI=sIDI·P, RIDJ=b·P and Ppub=a·P, we could 

have: 

     2 2

2 3

( )( ( ))

( )

J J I I I

J I

I I

J I I I

ID ID ID ID ID pub

ID ID

ID ID

ID ID ID ID pub

c t d s s P r P R h P

t s Q t s s P t r s Q

t r d Q t r h Q

t s r P R h P

= + ⋅ + ⋅ + + ⋅

= ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ + + ⋅

   

Then we have 

3 2

2 2

( )

I J

I I

J I I I

ID ID

ID ID

ID ID ID ID pub

t r h Q c t s Q t s s P

t r s Q t r d Q

t s r P R h P

⋅ ⋅ ⋅ = − ⋅ ⋅ − ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

− ⋅ ⋅ ⋅ + + ⋅

        (9) 

and 

1

3 2

2 2

( ) (

( ))

I

J I I

J I I I

ID

ID ID ID

ID ID ID ID pub

Q t r h c t s Q

t s s P t r s Q t r d Q

t s r P R h P

−
= ⋅ ⋅ − ⋅ ⋅ −

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ + + ⋅

          (10) 

Obviously, the probability of IDA=IDI or IDB=IDJ 

is 1

( 1)
s s

q q −

. Thus, we can obtain Q3=ab·P with the 

probability
2

( 1)s sq q

ε

−
. In other words, given (P, Q1=aP, 

Q2=bP), F can solve the ECCDH problem with non-

negligible probability 2
,

( 1)s sq q

ε

−

 which is in 

contradiction with the ECCDH assumption. 

• Proof for Theorem 2: Suppose that there is a type 2 

Adversar A2 who can breaks our scheme with 

probability ε, when making qe extraction queries, qs 

signing queries and qh hashing queries respectively. 

Then, we will show how to use the ability of A2 to 

construct an algorithm F solving the ECCDH. 

Suppose F is challenged with a ECCDH instance (P, 

Q1=aP, Q2=bP) and is tasked to compute Q3=ab·P. 

To do so, F chooses a random 
*

nx Z∈ , computes 

Q=xP, picks two identity IDI and IDJ at random as 

the challenged ID in this game, and gives public 

parameters {Fp, E/Fp, G, P, Ppub=Q1, H1, H2} and 

the master key s to A2 . Then F answers A2’s 

queries as follows. 

• H1-Queries: F maintains a hash list 
1HL of tuple 

( , , , , )
i i i ii ID ID ID IDID R P d h indexed by IDi. The list 

is initially empty. When A2 makes a hash oracle 

query on IDi, if the query IDi has already appeared 

on
1
,HL then the previously defined value is 

returned. Otherwise, F makes the partial private key 

extraction query with IDi, and sends 
iIDh to A2. 

• H2-Queries: F maintains a hash list 
2HL of tuple 

(mj, cj, hj). When A2 makes H2 queries for identity 

IDi on the message mj, F chooses a random value 
*

j nh Z∈ , sets hj=H2(mj, cj) and adds (mj, cj, hj) to 

2
,HL and sends hj to A2. 

• Partial Private Key Extraction Queries: A2 is 

allowed to query the extraction oracle for an identity 

IDi. F query H1 oracle, IDi is on 
1HL , then F 

response with ( , , , , ).
i i i ii ID ID ID IDID R P d h  Otherwise, 

if simulates the oracle as follows. It chooses 
iIDr at 

random, sets ,
i iID IDR r P= ⋅  

1( , , )
i i iID i ID IDh H ID R P=  

and ,
i i iID ID IDd r x h= + ⋅  response with 

( , , , , ),
i i i ii ID ID ID IDID R P d h and inserts 

( , , , , )
i i i ii ID ID ID IDID R P d h  into 

1HL . 

• Private Key Extraction Queries: F maintains a list 

Lsk of tuple ( , , )
i ii ID IDID d s which is initially 

empty. For query on input IDi, F performs as 

follows: 

1. If the query IDi has already appeared on Lsk, then 

the previously defined value is returned.  

2. Else if IDi=IDI, F sets 
iIDs =⊥ , 1iIDP Q= . 

3. Else if IDi=IDJ, F sets 
iIDs =⊥ , 2iIDP Q= . 

4. Else if IDi≠IDI and IDI≠IDJ, F generates a 

random number * ,
iID n

s Z∈ compute .
i iID IDP s P= ⋅  

Then F looks up 
1HL to get the tuple 

( , , , ),
i i ii ID ID IDID R d h and add the tuple 

(8) 
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( , , , )
i i ii ID ID IDID d s P to Lsk, and sends 

{ , }
i i iID ID IDsk d s= to A2. 

• Public Key Extraction Queries: F maintains a list 

Lpk of tuple ( , )
ii IDID pk which is initially empty. 

When A2 queries on input IDi, F checks whether 

Lpk contains a tuple for this input. If it does, the 

previously defined value is returned. Otherwise, F 

looks up the tables 
1HL and Lsk and gets the tuple 

( , , , )
i i ii ID ID IDID R d h and ( , , , )

i i ii ID ID IDID d s P  

separately. At last F returns { , }
i i iID ID IDpk P R= and 

adds ( , )
ii IDID pk to the Lpk. 

• Signing Queries: When a message m, the signer A’s 

identity IDA, the designated verifier’s B’s identity 

IDB is coming, F acts as follows: If IDA=IDI or 

IDA=IDJ, F terminates the simulation. Otherwise, F 

first checks that whether tuple 

( , , , )
i i ii ID ID IDID R d h and ( , )

ii IDID pk are in 

1HL and Lpk separately. If yes, it just retrieves 

( , , , )
A A B BID ID ID IDd s P R from the tables and uses 

these values to sign for the message according to the 

signing algorithm described in the scheme. It 

outputs the signature (r, s, t) for the message m and 

stores the value H2(m, c) in 
2HL for consistency. If 

IDA or IDB has not been queried to the partial private 

extraction oracle and the private extraction oracle, F 

executes the simulation of the partial private 

extraction oracle and the private extraction oracle, 

then uses the corresponding secret key to sign the 

message. 

Finally, A2 stops and outputs a signature S={r, s, t} 

on the message m with the signer A’s identity IDA, 

and A’s private key 
AIDsk , the designated verifier’s 

B’s identity IDB public key 
BIDpk , which satisfies 

the following equation 

( , , , , , ) 1
B AA ID IDVerify params m ID sk pk S = . If IDA≠IDI 

or IDB≠IDJ, F outputs “failure” and aborts. 

Otherwise, F recovers the tuple 

( , , , )
I I II ID ID IDID R d h and ( , , , )

J J JJ ID ID IDID R d h  

from 
1
,HL the tuple ( , , )

I II ID IDID s pk  and 

( , , )
J JJ ID IDID s pk  from Lpk and the tuple (m, c, h) 

from 
2
.HL Then, we have: 

( )( ( ))
J J I I IID ID ID ID ID pubc t d s s P r P R h P= + ⋅ + ⋅ + + ⋅    (11) 

Since 
1 ,

IID
P Q a P= = ⋅ 2JIDR Q b P= = ⋅ and Ppub=x·P, we 

could have: 

3 2 2

( )( ( ))

( )

J J I I I

J J I I I J

I I

ID ID ID ID ID pub

ID ID ID ID ID pub ID

ID ID

c t d s s P r P R h P

t s R t d r P R h P t s P

t r Q t d r Q t r h x Q

= + ⋅ + ⋅ + + ⋅

= ⋅ ⋅ + ⋅ ⋅ ⋅ + + ⋅ + ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

  (12) 

Then we have: 

3

2 2

( )

J

J I I I

J I I

ID

ID ID ID ID pub

ID ID ID

t r Q c t s R

t d r P R h P

t s P t d r Q t r h x Q

⋅ ⋅ = − ⋅ ⋅ −

⋅ ⋅ ⋅ + + ⋅ −

⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

        (13) 

and 

1

3

2 2

( ) (

( )

)

J

J I I I

J I I

ID

ID ID ID ID pub

ID ID ID

Q t r c t s R

t d r P R h P

t s P t d r Q t r h x Q

−
= ⋅ − ⋅ ⋅ −

⋅ ⋅ ⋅ + + ⋅ −

⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

         (14) 

Obviously, the probability of IDA=IDI or IDB=IDJ is 
1

.
( 1)s sq q −

Thus, we can obtain Q3=ab·P with the 

probability
2

.
( 1)

s s
q q

ε

−
 In other words, given (P, Q1=aP, 

Q2=bP), F can solve the ECCDH problem with non-

negligible probability 2
,

( 1)s sq q

ε

−
which is in 

contradiction with the ECCDH assumption. 

 

 


