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Abstract: This research introduces the hybrid Multilayer feed forward Neural Network (NN) and the Maximum Likelihood 

(ML) technique into the problem of estimating a single component chirp signal parameters. The unknown parameters needed 

to be estimated are the chirp-rate, and the frequency parameters. NN was trained with several thousands noisy chirp signals 

as the NN inputs, where the chirp-rate and the frequency parameters were embedded into those chirp signals, and those 

parameters were used as the corresponding NN output.  The NN resulted in parameter estimates that were near the global 

maximum point. ML gradient based technique then used the NN output parameter estimates as its initial starting point in its 

search of the global point parameters. The ML gradient based search improved the accuracy of the NN parameter estimates 

and the new estimates were very much near the exact parameter values.  Hence it can be said that NN working in corporation 

with the ML gradient based search results in accurate parameter estimates for the case of large signal to noise ratio.  
 

Keywords: Chirp parameter estimation, frequency estimation, NN, ML. 
 

Received August 28, 2011; accepted December 29, 2011; published online August 5, 2012 
 

 

1. Introduction 
 

Chirp parameter estimation is a problem of well-

known applications, such as radar, sonar, and 

seismography. Spectral analysis techniques have been 

used in chirp signals estimation and detection. Those 

techniques are mostly based on the Maximum 

Likelihood (ML) principle [1]. The corresponding ML 

function has many local optimal points beside the 

global optimal point which renders gradient-based 

search techniques unsuitable since they may get stuck 

at any one of these local optimal points. To overcome 

this problem, a simple but yet effective high resolution 

grid search is used but at a high computational cost. 

There are other suggested techniques for solving this 

problem; such as phase unwrapping [3, 4], which is 

suitable for estimation of single chirp signal under high 

signal-to-noise ratio. O’Shea [5] dealt with a cubic 

phase FM chirp signal where it is preprocessed and 

converted into quadratic phase chirp signal where then 

the 3D search problem is reduced to 1D search 

problem. An improved recursive cyclostationary based 

algorithm is suggested to obtain estimates of frequency 

and chirp rate parameters where error propagation 

effect is reduced resulting in improvement in 

estimation accuracy [7]. An approximate ML estimator 

was introduced with low computational complexity 

where a weighted linear combination of the phases of 

the received signal samples were used to obtain the 

chirp signal parameters with the aid of a phase 

unwrapping algorithm [8].  

Our proposed research introduces multilayer feed 

forward Neural Network (NN) as the main estimation 

engine. Trained NN results in near global parameter 

estimates of a ML function. The NN then supplies its 

near global parameter estimates to a ML gradient based 

maximization technique. Once the gradient based 

technique is given the initial estimate it locks onto the 

region where the global maximum point exists and it 

steers its self onto that point. This hybrid technique 

results in accurate chirp signal parameter estimates.  

 The NN is trained with several thousands of chirp 

signals used as inputs and the chirp signal parameters 

as the corresponding outputs. The data window length 

used as the NN input had a size N=256 samples. 

Consider dealing with a chirp signal s(n)=sin(ω0n+β0n
2
) 

with additive white Gaussian noise resulting in noisy 

signal x(n).  
 

               1N,...,1,0n),n(w)n(s)n(x −=+=               (1) 
 

where w(n) is zero mean white Gaussian noise with 

variance 
2

wσ  and uncorrelated with the chirp signal. 

The chirp signal parameters (ωo, βo) represent the 

frequency and the chirp-rate parameters respectively.  

The NN was trained with large set of noisy chirp 

signals as its input, and the chirp-rate and frequency as 

its corresponding output parameters. Large signal to 

noise ratios were considered in this research since no 

filtering of the chirp signal was used. The noisy chirp 

signals must not be contaminated with large noise 

levels in order to obtain good parameter estimates from 
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the NN. Filtering of chirp signals before applying them 

to the NN will be best, but classical filtering techniques 

can not produce clean chirp signals if the chirp 

parameter is large. It is well known fact that chirp 

signal with a large chirp-rate parameter value ends up 

with wide bandwidth. In such case, noisy chirp signals 

can not be adequately filtered using classical filtering 

techniques. Noise reduction of noisy holographic 

signals was considered by [2], where trained NN was 

used to filter noisy input signals and resulted in noise 

filtered signal.  

The rest of this paper is organized as follows: 

Section 2 presents the details of the proposed NN 

technique for the estimation of the chirp signal 

parameters. Section 3 presents the infamous classical 

ML estimation technique used for fine tuning the NN 

estimated parameters. Section 4 presents the simulation 

results of the proposed technique and the total training 

and testing time required by the NN. Conclusion is 

presented in section 5. 

 

2. Neural Network Based Chirp Parameter 

Estimation 
 

It is well known that maximization of the likelihood 

function results in accurate reliable parameter 

estimates. But usually a likelihood function may have 

several maximum points, where a gradient based 

search technique may get stuck at any one of them. NN 

in this research were trained to obtain estimates that 

are near the global maximum point, and such near 

global estimates can be considered as good initial 

starting points for gradient based search techniques. 

Hence NN works jointly with gradient based technique 

to produce accurate ML based parameter estimates.   

This research proposes an estimation technique that 

uses NN for a direct estimation of frequency and chirp-

rate parameters of noisy chirp signals. Noisy chirp 

signals must not be contaminated with large noise 

levels in order to obtain good parameter estimates. 

Two layers and three layers NN were tested for the 

estimation of chirp-rate and frequency parameters. It 

was found through simulation that the three layers NN 

resulted in more accurate parameter estimates than that 

of the two layers NN; hence the two layers NN was 

excluded. 

Hyperbolic tangent nonlinearity functions were used 

for the two hidden layer neurons, while linear transfer 

function was used for the output neurons. Resilient 

backpropagation training algorithm was used for 

training the network.  Riedmiller et al. [6] had noticed 

that the nonlinear transfer functions; the hyperbolic 

tangent and the log sigmoid; of the neurons have very 

small gradient for large input values. The small 

gradient values result in slow convergence for the NN 

in the training phase because back-propagation is a 

gradient based learning algorithm. In order to 

overcome this problem, the sign of the gradient is used 

instead of its small value for updating the NN 

parameters. This results in a major improvement on the 

speed of convergence of the NN. 

The noisy signal x(n) in equation 1 is converted to a 

NN input vector X=[x(0), x(1), …., x(N-1)]. The NN 

input size is equal to the input vector size which is N. 

The first hidden layer size was chosen to be 20 

neurons, and the second layer size was 10 neurons. The 

output layer size was equal to the number of the 

parameters needed to be estimated.  

A total of 2000 noisy chirp signals were used in the 

training phase as the NN inputs. The NN was trained 

directly with the input data without any preprocessing 

or filtering. In another phase, the NN was trained with 

preprocessed data. The preprocessing step was 

obtained through windowing the data vector using 

hanning window. It turned out that using windowed 

data resulted in more accurate parameter estimates.  

In this research the data set is multiplied by the 

hanning window before applying it as input to the NN. 

This step is performed in order to minimize the effect 

of the endpoints of the data set. The endpoints of the 

input data vector are multiplied with the small values 

of the end points of the hanning window. Also, the 

middle part of the data set is enhanced by getting 

multiplied by the large values of the middle part of the 

hanning window. 

The hanning window w(n) is obtained as follows: 

  1N0,1,...,n ),
1N

n
cos(2π0.5(1w(n) −−

−
−=              (2) 

 

The data x(n) was multiplied with the window w(n) 

and resulted in the windowed data xh(n) where 
 

                    xh(n)=x(n)w(n),    n=0, 1, …, N-1                     (3) 
 

The resulting xh(n) was used as the NN input signal. 

Figure 1 below presents the hanning window, the chirp 

signal, and the windowed chirp signal. 
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a) Hanning window. 
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b) Chirp signal. 
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c) Windowed chirp signal. 

 

Figure 1. Presents the hanning window, the chirp signal, and the 

windowed chirp signal. 
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It is well known that the training phase of the NN 

requires long training time, especially when faced with 

large set of input vectors where the inputs are of large 

dimensions. But once the NN is trained, the total run 

time in the testing phase is minimal.  

 

3. Maximum Likelihood Based Estimation 
 

ML parameter estimates of chirp signal in equation 1 is 

obtained by maximizing the probability density 

function ƒ(X, Ф) with respect to the parameters vector 

Ф=[β, ω]. The symbol X represents the input data 

vector [x(0), x(1),….,x(N-1)]. 
 

( )
N 1

2
2

2 N / 2 2

n 0w w

1 1
f ( X ; ) exp x ( n ) sin( n n )

( 2 ) 2
Φ ω β

πσ σ

−

=

= − − +
 
 
 

∑   (4) 

 

Maximization of the density function can be obtained 

through minimization of J(Ф) where: 
 

           ( )
N 1

2
2

n 0

J ( ) x ( n ) sin( n n )Φ ω β
−

=

= − +∑        (5) 

 

Steepest decent approach is used to minimize J(Ф) in 

terms of  ω and β as follows: 
 

    

k -1

k k -1

ˆ

J ( )
ˆ ˆ =  -

ω

Φ
ω ω µ

ω
∂

∂
ɺɺ

ɺɺ ɺɺ

         (6) 
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β
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−

∂
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    (7) 

where kω̂
ɺɺ

and ˆ
kβ are the kth estimates of the unknown 

parameters ωo and βo: 
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Steepest descent gradient based search technique 

produces accurate parameter estimates if the initial 

parameters point is near the global minimum point of 

J(Ф). Usually they end up getting stuck at any of the 

local minimum points of J(Ф) if the initial point was 

far from the global minimum point and near a local 

one. For illustration purposes, consider dealing with 

the case of known frequency and unknown chirp 

parameter. The plot of the cost function J(β) shown in 

Figure 2 corresponds to the case of  noise free chirp 

signal with known ωo=0.06, and βo assumed unknown 

where it was assigned a value of 0.0004 in the signal 

s(n). The plot shows several local minimum points 

beside the unique global minimum point at the exact 

value of βo=0.0004.  

When dealing with noisy data, the NN produces 

near global chirp parameter estimates of the function 

J(Ф). Accurate parameter estimates can be obtained by 

the NN when low noise cases are considered. Higher 

noise levels results in higher estimation error 

variances. To minimize the NN estimation error 

variances, the gradient-based technique is used to fine 

tune the NN parameter estimates. Hence, NN is used as 

the first stage estimator where its estimates are not far 

from the true global optimal point. Then gradient based 

technique can be used to fine tune the NN estimates.  
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Figure 2. Function J(β) with minimum at β=0.0004. 

 

4. Simulation 
 

In this section several simulation scenarios were 

performed using NN. The NN was trained and tested 

for a single unknown chirp-rate parameter in 

subsection 4.1.  Subsection 4.2 deals with the case of 

unknown frequency and chirp-rate parameters.  

 

4.1. Chirp-Rate Parameter Estimation 
 

In this simulation the chirp signal had a known 

frequency ωo=0.06 and unknown chirp βo. In the 

training phase of the NN, 2000 chirp parameter values 

of the chirp signal x(n) were randomly selected using a 

uniform random generator with a value in the range 

[0.0001 , 0.0007]. In the testing phase, 1000 chirp-rate 

parameter values where chosen from a curve 

representing the shape of a raised sine function. The 

raised sine function that generates the jth chirp 

parameter value is: 
 

             
0 ( j ) 0.0004 0.0003 sin( 0.002 j )β π= +             (10) 

 

Each of these chirp-rate parameter values is embedded 

into the signal s(n), where a Gaussian noise is added to 

s(n) resulting in signal x(n). The resulting 1000 signals 

are used in the testing phase of the NN. The trained 

NN then gives a chirp parameter estimate to each of 

these signals. Figure 3 below shows the exact and the 

estimated chirp-rate curves for the case of noiseless 

unwindowed data. Since noiseless data were used, the 

estimated parameters by the NN where very accurate to 

the point that the true parameters curve and the 

estimated parameters curve merged and looked as a 

single curve. To further illustrate the difference 

between the true and the estimated parameters, the 

estimation error histogram is presented in the lower 

part of Figure 3. The jth estimation error between the 

exact jth chirp parameter (β0(j)) and its estimate ( ˆ ( )o jβ ) 

is presented in equation 11: 
 

                 ˆ( ) ( ) ( )
o o

e j j jβ β= −                      (11) 
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a) Exact and estimated chirp parameter values within the range [0.0001, 
0.0007]. 
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b) Histogram of the estimation error. 

 

Figure 3. NN trained and tested with noiseless unwindowed data. 
 

Table 1 Presents simulation results of NN trained 

with unwindowed (unprocessed) data. The first row is 

the NN test results corresponding to the case of NN 

trained with noiseless data. The second row is the NN 

test results corresponding to the case of NN trained 

with noisy data. In both cases, the NN was tested under 

three different Standard Deviation (STD) noise levels 

of 0.0, 0.01, and 0.1. Both rows present the Standard 

Deviation Estimation Error (SDEE) of the chirp-rate 

parameter obtained by the NN. Table 2 presents the 

SDEE of a NN trained and tested using windowed 

data. It is clear by comparing the results of Table 1 and 

Table 1 that NN trained and tested with windowed data 

resulted in smaller SDEE values. It is also clear that 

NN trained with noisy data produce smaller SDEE than 

those trained with noiseless data when tested with 

noisy data. Table 3 presents the estimation error of the 

steepest decent algorithm where it had its initial 

parameters from the NN. It is clear that the steepest 

descent SDEE is much better than that of the NN. That 

was the main idea behind using the steepest descent 

technique in corporation with the NN.  
 

Table 1. SDEE of the chirp-rate parameter using unwindowed data. 
 

 Testing Noise Levels 

STD=0.0 STD=0.01 STD=0.1 

NN Trained with 

Noiseless  Data 
6.2855e-4 0.0078 0.0963 

NN Trained with 

Noisy Data 
0.0076 0.0067 0.0491 

 

Table 2.  SDEE of the chirp-rate using windowed data. 
 

 
Testing Noise Levels 

STD=0.0 STD=0.01 STD=0.1 

NN Trained with 

Noiseless  Data 
3.2094e-4 0.0037 0.0423 

NN Trained with 

Noisy Data 
0.0016 0.0021 0.0153 

 

Table 3. SDEE of the chirp-rate obtained with steepest descent 

gradient based method. 
 

Testing Noise Levels 

STD=0.0 STD=0.01 STD=0.1 

0.0000 2.6110e-4 0.0037 

 

4.2. Chirp-Rate and Frequency Parameters 

Estimation 

In this part, windowed data was used in the training 

and testing phases. The frequency parameter ω was 

chosen from a uniform random generator within the 

range [0.0, 0.08]. The chirp-rate parameter was also 

chosen from a uniform random generator within the 

range [0.0001 0.0008]. By comparing results of Table 

4, it is clear that NN trained with noisy data results in 

smaller estimation error than NN trained with noiseless 

data when noisy data was used in the testing phase. 

Again, steepest descent algorithm results in 

improvement of the SDEE for the estimated 

parameters.  
 

Table 4. SDEE of chirp-rate and frequency parameters. 
 

Windowed 
Parameter 

Estimates 
STD=0.0 STD=0.01 STD=0.1 

NN 

Trained 

with 

Noiseless  

Data 

Chirp 

Freq 

0.0056 

0.0041 

0.0213 

0.0208 

0.1910 

0.1957 

NN 

Trained 

with Noisy 

Data 

Chirp 
Freq 

0.0184 
0.0176 

0.0203 
0.0197 

0.0775 
0.0954 

Steepest 

Descent 

Chirp 

Freq 

0.0000 

1.0738e-16 

0.0011 

0.0022 

0.0105 

0.0207 

 

It can be seen that NN working in corporation with 

ML gradient based search technique resulted in more 

accurate parameter estimates than that of a NN 

working on its own. Gradient based search technique 

of the ML function would not have been able to obtain 

the global point parameters estimate if the NN was not 

used to supply its near global parameters estimate. 

 

5. Simulation Time 
 

The NN simulation was performed on a four year old 

Acer PC computer with Intel Centrino microprocessor 

of 2.0GHz processor speed. The three layers NN was 

trained with 2000 noisy chirp signals, and the total 

number of training epochs was chosen to be 5000 

epochs. The total training time was Ttraining=5.02 

minutes. The NN was tested with 1000 chirp signals 

and the total testing time was Ttest=0.031 seconds, 

which implies that the testing time per a single chirp 

signal is 31×10
-6

 second. This shows how fast the 

processing speed of NN when running in the testing 

phase.  

 

6. Conclusions 
 

It can be said that NN in corporation with gradient 

based search technique results in reliable accurate 

global parameter estimates of a ML function for chirp 

signal parameters. Gradient search technique by itself 

can not obtain the global point parameters since the 
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likelihood function have many local maximum points 

beside the global maximum point. The NN was 

capable of obtaining the near global point parameter 

estimates, then the gradient based search technique 

used the NN estimates to fine tune those estimates. 

Future work will consider working on finding a non 

classical filtering technique to filter wide band noisy 

chirp signals in order to obtain more accurate NN chirp 

parameter estimates.   
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