
The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

Implementation and Comparative Analysis of

the Fault Attacks on AES

Saleem Raza, Malik Najmus Saqib, Azfar Shakeel, and Majid Iqbal Khan
 Department of Computer Science, COMSATS Institute of Information Technology, Pakistan

Abstract: This research presents the survey, analysis, comparisons and implementation of the most threatening new kind of
cryptographic attacks known as fault attacks or implementation attacks against Advanced Encryption Standard (AES)
algorithm. AES algorithm is used in various applications and is considered the most secure against conventional cryptanalytic
attacks which exploits the algebraic or mathematical weaknesses in the crypto-systems. Fault attacks are based on
interrupting the execution of the algorithm in such a way that it produces faulty cipher output which can be analysed to break
the algorithm. This research survey various fault attacks and provide implementation of three of them in detail for
demonstration purposes. It mapped the complex mathematical analysis into programming algorithms for ease of
implementation. At the end it compares various types of attacks based on our devised criteria of efficiency, flexibility and
usability of the attack methods.

Keywords: Fault attack, AES, cryptanalysis.

 Received March 26, 2012; accepted May 22, 2012; published online August 5, 2012

1. Introduction
Cryptography is concerned with protection of private
and confidential information. Cryptographic techniques
evolve constantly because of constant threats being
posed against them. Different kinds of attacks are
always discovered with the advancement of technology.
We are particularly interested in fault attacks due to two
reasons. First, these attacks are totally different in their
methodology and pose greater security threats than
other attacks. Secondly, they have deep potential.
Advanced Encryption Standard (AES) algorithm is
chosen because nowadays it has been in most security
processes. Consequently, cryptographic algorithms and
their implementations have to be constantly improved
in order to withstand contemporary attacks.

In 2000, NIST announced AES [11, 25] also, known
as Rijndael (pronounced “Rhine-doll”) Algorithm
developed by two Belgian cryptographers to protect
digital information. Even some vendors (Checkpoint
software Technologies Ltd, Cisco Systems Inc) planed
to market AES based products firewalls before its
announcement as a standard.

Rijndael is secure against all known conventional
cryptanalysis attacks, which are successful on other
algorithms. AES is symmetric block cipher, have
simple design, highly efficient in term of space, time
and also, much flexible (can run on various platforms
and can operate on different key sizes 128bit, 192bits,
and 256bits). The most common implemented version
is AES128 because this key length is sufficient to
provide security and requires less processing time than
bigger key length versions. Various approaches in the

key generation and expansion process of AES has
been proposed in literature [1].

This research article is about comparisons and
implementations of the new kind of attacks known as
fault attacks on well known cryptographic algorithm
AES. In such attack an adversary induces/injects faults
i.e. erroneous data when AES is executing on a device
and observes the reaction. This observation reveals
secret information, Thus fault attacks have become
serious security concerns.

2. Fault Based Attacks
Generally, fault based attacks lie under the category of
active attacks. These attacks could further be divided
into two categories when applied to cryptographic
algorithms:

1. Simple Fault Attack (SFA).
2. Differential Fault Attack (DFA).

SFA was proposed in 1997, by Boneh et al. [9]. This
attack was successfully applied against RSA
cryptosystem. Several authors extended the idea and
introduced various fault models.

After some time, a new kind of attack called DFA
attack was introduced by Biham and Shamir [7], and it
was successfully applied on secret key cryptosystem
DES [9].

Attacking philosophy of both types of attacks is
same. To attack disturbed the execution of
cryptosystem by inducing errors in some particular
time at some particular location. Then collect faulty
cipher-texts which can be analysed and compared with

The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

correct cipher-text in order to get the secret
information/key. Faults can be categorized in two ways:

1. Permanent.
2. Transient.

Permanent faults are also, called destructive faults.
Here device circuit or memory cell is permanently
changed/damaged (e.g., cutting data bus wire, freeing
memory cell to constant value) while in transient fault
(also, called provisional fault) device is just disturbed
during its processing. It recovers back to its original
behaviour after reset when fault simulation ceases.
With transient faults, the attacker can use the device
again and again and the attack can be repeated multiple
times in order to collect sufficient information.

Faults induced on software are considered transient
and such transient faults can be viewed from various
angles.

1. Error Type: What type of error is being induced? It
can be of two types:

a. Bit Error: Single bit has been flipped via XOR
operation in software or freezing any memory cell
to 0/1 value in hardware.

b. Byte Error: Whole byte has been changed by
XOR operation the byte with some random data
or freezing multiple cells.

2. Error Location: At which location, errors are being
induced. Algorithm can contain many transformation
and we can select any transformation for induction
of wrong data in it. This location can be fixed or
much flexible depending on the attack type.

3. Time: Some faults require to be induced at specific
time during computations while other does not
impose such restrictions.

3. Fault Based Cryptanalysis
Cryptanalysis is the study of methods to break
cryptosystem but usually excludes methods e.g.,
exhaustive search of attack that do not primarily target
weaknesses in the actual cryptosystems.

Most of the attacks and their cryptanalysis are based
on the mathematical security of the cryptosystem.
Modern attack take advantage of side channel
information that can be derived from physical
implementation of the cipher rather than exploiting
some weakness of the cipher itself.

Fault attacks are a kind of side channel attacks and
they occur by injecting the faults in the implementation
(hardware/software) of the cipher [4]. That is during
execution of particular cipher, faults are induced. This
disturbs the normal execution behaviour and results in
creation of faulty output. The attacker can guess secret
key after small number of the fault injections and
analysing faulty cipher texts. These attacks work on
both symmetric and asymmetric types of ciphers. They

can also, break the system faster than any other kind
of the physical attack. Fault attacks are being studied
constantly since 1996 in smart card industry. Initially,
most of the proposed attack models were theoretical
however these days, theoretical faults attacks are being
converted into practice due to advancement in
technology. Firstly, in 2001, Skorobogatov and
Anderson [28]. Performed a practical attack by
flipping a bit in the memory cell via photoflash lamp.

Various symmetric as well as public key
cryptosystems are under the fault attacks in different
ways. Bao et al. [3], presented transient fault to break
a public key cryptosystem.

Fiat-Shamir and Schnorr proposed first theoretical
active fault attack focussing on RSA cryptosystem [9].
This attack exploits Chinese Remainder Theorem
(CRT) and Montgomery Multiplication method. It is
easy to deploy. It requires single fault induction at any
position to completely break signature device. Due to
widespread use of RSA, it was real threat however
wide range of paper explains countermeasures. Then
focus of attacks shifted towards the cryptosystems
whose security is based on the Discrete Logarithm
problem. Thus, Elgamal Signature Scheme, Schnorr
Signature scheme and DSA scheme were the prime
targets under this category.

The attack on Schnorr signature scheme was also,
extended with modification of the identification
scheme. Attacks on RSA montgomery were also,
suggested employing them on the signing key instead
of the message [23]. Joye and Quisqater [17],
proposed the attacks in on Generalized RSA-type
cryptosystem. After that most of the fault attacks
proposed by Klima and Rosa. Successfully determined
private key of RSA and secret key of DSA [18].

Klima and Rosa [19], presented another attack
known as Bellcore attack on the Fiat-Shamir scheme
is shown. However, the Fiat Shamir scheme defends
against it. In [31], another attack proposed by
Voyiatzis and Serpares is presented that succeeded
against both classical and precautious Fiat-Shamir
schemes.

Fault attacks focus on changes from public to
symmetric key system with Biham and Shamir [6].
This attack is known as DFA. It was succeeded
against DES using only 50-200 faulty cipher texts.
This attack is also, presented on an unknown
algorithm of cryptosystem, called Skip Jack. This
attack was also, performed on DES via permanent
fault induction instead of transient fault induction.
Unknown cryptosystems described in [26], are also,
targeted by DFA attacks.

Jacob et al. [16], employ the faults and attack
obfuscated ciphers in software and then secret material
is extracted by avoiding de-obfuscation of the
program code.

Various cryptographic algorithms are based on
complex mathematical problems like discrete

Implementation and Comparative Analysis of the Fault Attacks on AES

logarithm and factoring calculations. Initially, it was
thought that fault induction attacks can only succeed on
such types of systems. Biehl et al. [5], performed DFA
on Elliptic Curve Cryptosystems (ECC) and Zheng [32]
attack modern random number generators with faults.
Similar types of attacks are also, presented on ECC.
One such attack is proposed by Biehl et al. [5], by
extending the DFA attack on RSA cryptosystem.

Fault attacks falls into two main categories of SFA
and DFA. This research describes these fault attacks
with specific example to get clear understanding.

3.1. Simple Fault Attack on Secret and Public

Cryptosystems
Bell-core attack was proposed for a public key
cryptosystem. With this attack an implementation of
RSA which is based on CRT can be broken using a
single wrong signature. Algorithm 1 shown the
working.
Algorithm 1. fault attack on DES.

Input: d M, P, q
Output: S=Mdmod p.q
dp=d mod (p-1),
dp=d mod (q-1)
Compute
Sp = Md mod p
Compute
Sq = Mdp modq
S = CRT (Sp, Sq)
Execute RSA-CRT Algorithm
Without Faults
Execute again and inject fault in computation of Sq
Deduce a parameter P using correct result S and faulty
result S’
S mod q ≠ S’ mod q
S mod p = S’ mod q

Now it is easy to know the factors of N by:

 GCD (S-S’, N) = p (1)

RSA security is based on factorization. After successful
factorization, System has been broken. A SFA against
secret key cryptosystem is against DES which is
described in [28], DES secret key is stored in EEPROM
when it is implemented in smart card. This key is
transferred to memory during encryption and
decryption. The attacker resets an entire byte of the key
when key is being transferred to memory. If attacker
could do it successfully, then the secret key can be
obtained. For this eight steps need to be performed in
order to get secret key as shown in Table 1. In each
step, known plain text is encrypted with different
number of bytes of the key. Consider cipher text S7 in
the table. Attacker can extract the first byte of the secret
key by checking all possible values of the first byte
until S7 is obtained. Similarly, based on S6 second byte
of the key can be found. This process continues until
the attacker gets all 8bytes of the key.

Table 1. Acquiring secret key.
DES Key Output

K0 = xx xx xx xx xx xx xx xx S0
K1 = xx xx xx xx xx xx xx 00 S1
K2 = xx xx xx xx xx xx 00 00 S2
K3 = xx xx xx xx xx 00 00 00 S3
K4 = xx xx xx xx 00 00 00 00 S4
K5 = xx xx xx 00 00 00 00 00 S5
K6 = xx xx 00 00 00 00 00 00 S6
K7 = xx 00 00 00 00 00 00 00 S7

3.2. Differential Fault Attack
DFA attacks come after simple fault attacks. The idea
was originated in 1996, when Boneh and Lipton from
Bellcore conducted a new kind of cryptographic attack
(DFA Attack) against public key cryptosystems.
Biham and Shamir [6], showed that this attack can be
extended to break almost any secret key algorithm.

Adi Shamir implemented this attack on a personal
computer and single bit faults were induced in all
rounds randomly. Complete last sub key (48bits) was
found in less than 200 cipher texts. To recover the
complete key (56bit), a simple way is that to guess via
exhaustive search missing 8bits in all 2^8=256 ways.
This attack works as follows: 1). A single bit error is
induced during the computation, suppose in round 16
of DES. So, one bit in the right half of the data is
flipped from 0 to 1 or vice versa. Now let the cipher
text collected before the final permutation of DES.
This will be faulty cipher text due to one bit error.
Assuming we can also, collect correct cipher text (at
the same point) without inducing error, only one bit in
the right half of the cipher text will differ (before final
permutation) between both of the cipher texts. 2). In
final permutation, this single bit will enter in S-Box
affecting the left half of the cipher text generated from
one or two S-Boxes. Now if we see different
distribution tables of these S-Boxes, the difference
must be related to none zero entries. 3). At the end, the
six key bit of each S-Box are guessed and any value
disagreeing with the expected difference of these S-
Boxes is discarded. Due to this phenomenon, this
attack is referred to as differential cryptanalysis.

4. Fault Attacks on AES
Rijndael [11, 12], was selected as the AES algorithm
and it replaced the DES. AES was designed after
introduction of the crypt analysis on secret key
cryptosystems. So, AES was made resistant against all
known cryptanalysis. As an example, the original
proposal prevents all timing attacks. It was known that
careless implementation of the AES may result in
successful timing attacks and the secret key can be
derived easily [2]. This key can be derived by 3000
samples per key byte. The final proposal of the
algorithm was aware of this and the attack was
immune easily but fault attacks were proved
successful even against AES.

The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

Fault attacks can be induced permanently or
temporarily in smart card. Examples of permanent fault
include cutting data bus wire or freezing memory cells
etc. Temporary faults include introducing abnormal
voltages during AES execution. Faults can also, be
induced at specific location (memory cell) or at specific
time. Some of the attacks have been applied to smart
cards in practice successfully.

Further any round can be disturbed via induction of
faulty data. For example, if one byte is changed in sub-
bytes operation, then this effect will cascade to all next
three operations in the round. It will affect one to four
bytes in output of that particular round resulting
ultimately in faulty cipher-text. Faulty and fault free
cipher texts can be collected and employ mathematical
cryptanalysis to discover keys or portion of the keys.
Some attacks also, belong to key expansion operation
of Rijndael.

There are various ways to induce faults in devices
implementing AES. Some of them are voltage spikes,
clock glitches, overheating via excessive temperature,
exposing to radiations and light. Interested reader
should consult [8, 15, 21]. The focus of this article is on
fault attacks induced in the software implementation of
AES.

4.1. DFA Attacks on AES
New types of faults attacks known as DFA succeeded
against AES even it was considered to combat all
known attack when proposed. Even though DFA
attacks target initially was feistal structure like DES but
Dusart et al. [13], applied it successfully against AES,
even though it does not have such a structure. Blomer
and Seifert [8], presented additional fault based attack
on AES.

Stricter model derives 128bit secret key by
collecting 128bits faulty cipher texts, but require exact
synchronization in time and space for errors injection.
This model assumed that one can force the value of any
chosen bit to Zero. It is shown by Biham and Shamir
that applying this technique upon memory cells storing
the key would make it trivial to get the key and the
same is true for any other algorithm. The other less-
stricter model extracts keys after collecting 256 faulty
cipher texts. This second attack is implementation
dependent and its principle is to turn timing attack on
AES suggested by Koeune and Quisqater [20]. Into a
fault based cryptanalysis.

In [14], Giraud discussed two fault attacks on AES.
In the first one, assumption is that the faults can be
induced on one bit before the last diffusion layer. About
50 cipher texts are needed to retrieve the full key. A
second attack proposed by Giraud is on the whole byte
and is more realistic to perform. Here fault is induced at
different places including the key schedule and in 250
cipher texts. It would become possible to extract the
key. Here it is assumed that attacker can choose the

stage of the byte where the fault occurs but not exact
location. The calculation to determine the exact
location takes 5 days.

Dusart et al. [13], presented the four fault models
and attack succeeded for all key sizes (128, 192,
256bits). They showed that 128bit key can be created
with 10 pairs of faulty/correct messages. These attacks
take advantages of byte fault occurring after shift row
layer of 9th round. Authors show that five well located
faults are necessary to retrieve the four key bytes.

There is also, another DFA attack against AES by
Chien-Ning and Surg-Ming [10], that is very
interesting and it covers all of the errors under its two
fault models. For the first model they claimed that
with only six faulty cipher texts, whole 128bit key can
be found. However, the other fault model needs 1500
cipher texts to cover all faults. When two models are
combined, all faults can be covered those occur in
9th round of encryption algorithm of the AES
cryptosystem. It is generalized method as it does not
assume any specific location or values of the occurred
faults.

Chien-Ning and Sung-Ming focused on the fault
attacks against AES key schedule by inducing single
byte fault in round key instead of inducing faults in
encryption or decryption algorithm. However, their
fault model is based on the Giraud fault model. But
with extension they were able to get keys in 22 faulty
cipher texts and with less computational complexity.
Also, they focus on countermeasures of their proposed
attacks [22].

Another similar attacks focussing on key
scheduling is presented in [27]. Totally new approach
is adopted in [30], by devising some rules to get 80
bits of the secret key with just two pairs of correct and
faulty cipher text. They claim that following these
rules make the process efficient because we get rid of
the solving complex simultaneous equations. They
extended the attack and would be able to get extra 8bit
of secret key just combining with previous attack, they
are able to get 88bit of secret keys effectively [29].
Remaining 40bits are obtained by brute-force
approach.

5. Design of Algorithm
The process explained by Dusart et al. [13], is
mathematical and described in very complex way to
find more difficulties for a computer science student
to convert it into some proper procedure so that it can
be implemented in easily in any programming
language.

5.1. Algorithm 1: From Dusart et al. [13]
• First Step: The first step is to generate a set called

E1 described as proposition 1 in [13]. This set

Implementation and Comparative Analysis of the Fault Attacks on AES

depends on the mapping E1=x2+ x. The way this set
is computed is as follows:

1. Select each value from x=1 to 255.
2. Compute x2+x.
3. Look to see if a new unique value is obtained. If

yes store in an array E1.

• Second Step: Now, next step is to generate a set
called S(c,ε’) Scep. It is also, defined in [13], as
proposition 1. The way this set is computed is as
follows:

1. First generate a set for each of the “'c” value and
the corresponding “ε ′ ” value.

a. “c” value refers to the {2, 1, 1, 3} for the first
Mix Columns.

b. “ε ′ ” refers to the “error” found between the
no-error ciphertext and faulted ciphertext.

2. There are 4 sets above- for each pair of “c” and
“ε ′ ”.

3. Now find a set y that is an intersection of all 4
sets.

4. Set y represents all potential faults.

• Third Step: Now-for each value in the set S(c,ε’) Scep
(called θ in proposition 5 [13]), we want to find a
solution to the equations:

 θ= t2+t (2)

These solutions are called α and β. They follow the
relationship β=α +1.

• Fourth Step: Now we are ready to generate potential
values of K10 (key of 10th round) using the two
solutions found above as α and β. one value of K10
is=Sub_Byte(c*e*α). The other value
is=Sub_Byte(c*e*β). Finally, store the potential K10
keys and sort to find only the unique ones. This is
now our list of potential K10 values. This process can
be repeated with multiple attacks until only one
value left that will be the correct key value.

• Full Key recovery: Once a correct single K10 is
generated it is possible to recover the entire key by
reversing the key expansion algorithm. This is
shown by Dusart et al. [13].

5.2. Algorithm 2: From Giraud [14]
The main idea of the algorithm is a follows:

1. Induce a bit fault in the final round of encryption.
2. A bit fault means error on a single bit.
3. Then analyse the results of final ciphertext and

compare to fault free ciphertext.

The algorithm proceeds as follows:
1. Do an exhaustive search of possible M9 bytes (0-

255) and all possible bit faults (8total), where M9 is
cipher after 9th round.

2. Find the error value that is the difference between
clean ciphertext (called C) and faulty ciphertext
(called D).

3. Store the list of potential values in an array.

This is now repeated for each byte of 9th round cipher
text. Then find the common value (intersection) of all
possible values. That is:

1. Calculate error value for each fault value.
2. Find the “intersection” of potential M9 values.
3. Once we have a single value of M9.
4. Calculate K10 from equation below:

9 10C = ShiftRows(SubBytes(M))ÅK

The process can be repeated for each byte of K10. Then
finally the entire key is recovered.

5.3. Algorithm 3: Moradi [24]
The algorithm proceeds as follows:

1. First Step:

a. Generate the set called S1. This is the set where
at least one of the faults bytes is zero.

S 1 { : (e ,e ,e ,e) | e 0 ;(1 i 4),1 2 3 4 i

: (e ,e ,e ,e) FM 1 ;1 2 3 4

MixColumn() ()}

ε

ε ε

ε ε

′ ′= ∀ ≠ ≤ ≤

∃

′=

b. Using the possible fault bytes generate all
possible first column vectors (column vector).

If only byte fault then there are 256 vectors (0 to
255 total byte values, each vector for each byte).

2. Second Step:

a. The most important part of the algorithm is the
generation of the set called “I”.

b. Since fault in the first column affects only the
first column after the MixColumn step. It is
possible to generate a complete set of potential
values of M9.

c. This is generated using the set S1 above.
d. Do an exhaustive search of possible M9 columns.
e. Once we have a single column we can compute

K10 .
f. Find the error value that is the difference

between clean ciphertext (called C) and faulty
ciphertext (called D).

g. Store this list of potential values in an array.

This is now repeated the above steps for each
column. Then we find the common value
(intersection) of all possible values of K10. Once we
have K10 we use the key recovery from K10 to get
the original key.

(3)

The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

6. Implementation
We have implemented the following algorithms to
demonstrate that fault attacks really works. AES
implementation is done before the implementation of
below algorithms:

1. Fault attack defined by Dusart et al. [13].
2. Fault attack defined by Giraud in [14].
3. Key recovery from bit fault attack defined by Giraud

[14].
4. Key recovery defined by Moradi et al. [24].
5. Full Key recovery (Dusart) by assuming that partial

key (round key) recovered in Dusart.

This section briefly explains the implementation
aspects for 1, 2, 3, and 4 and rest is based on same
aspects. MATLAB is used in the implement of these
algorithms. These algorithms manipulate the data in
form of matrices and MATLAB is most suitable for this
kind of work due to its matrix-orientation.

1. Fault Attack Implementation (K9 Attack) Defined by
Dusart: How to induce fault into any state byte is
defined theoretically in section 2.1.1 of this report.
For implementation, we set mode bit in aes_main
file to 1. Fault induction is done in this way:

K9byte=bin2dec(‘00011110’) (4)
After checking that round is 9 then we add this into the
first byte of state at position (1, 1) via this change of
code

 if (mode==1)
 if (i_round == 9),
 state(1,1) = bitxor(state(1,1), k9byte);
 end
 end

2. Fault Attack Implementation Defined by Giraud:
How to induce just one bit fault in any location is
tricky process. How to change one bit? It can be
done via XOR operation that bit with 1. Let suppose
we want to change a bit in a byte at location bfa_i
and bfa_j. The code snippet is given below:

 bfa=bin2dec(‘10000000’);
 when we want to change any bit in any byte, we will

bitxor with this value of bfa.
 mode variable will be set to 2 for this attack.
 % If BFA is done -- Bit fault attack
 if mode==2,
 state(bfa_i,bfa_j) = bitxor(state(bfa_i,bfa_j), bfa);
 end

3. Key Recovery from Bit Fault Attack defined by
Giraud: The main file from Giraud attack recovery
is Get_K10_BFA.m

C10 is cipher output, D10 is the faulty output. If any
byte is faulty, we can find it by XOR of C10 and D10.
In our code, we simply take byte (1, 1) and induce three
error cases for it. Thus faulty bytes in D matrix are
D10_1, D10_2, and D10_3. We find the error (Err) for
each of them by XOR operation corresponding bytes.

This is done using following code:

% First compute the Err vector
nerr = 3;
Err = 0*ones(nerr,1);
Err(1) = bitxor(C10(1,1),D10_1(1,1));
Err(2) = bitxor(C10(1,1),D10_2(1,1));
Err(3) = bitxor(C10(1,1),D10_3(1,1));
disp('Error bytes for the attacks are ...');
disp(' ');
disphex10('Error bytes = ',Err);
disp(' ');

‘disphex’ converts integer values into hexadecimal
format. Errors values are calculated via ‘bitxor’ of
correct and faulty bytes and stored in three locations
of the array. ‘ebit_hex’ is an array representing 8-
possibilities of 1 bit error in a byte.

ebit_hex = {'01' '02' '04' '08' '10' '20' '40' '80' };
ebit = hex2dec(ebit_hex);

We iterate through all possible values of M9 byte
(0…255) and through all possibilities of bit error
(1…8). Then for all possibilities, we have calculated
their substitution bytes via subbyte () and store the
results in B1. Similarly, for each inducing of error bits
in M9 byte, we determined subbytes values and store
the results into B2. Then ‘ecal’ determines error value
by XOR operation between correct and faulty B1 and
B2 arrays as shown below:

for k=1:nerr,
// loop over all possibilities
 for i=1:2^8,
 // i loops over all possible values of M9 (1..255)
 for j=1:8,
 // j loops over all possible values of bit err
 //so let M9_pos be the potential M9 byte
 M9_pos= i-1;
 // the corresponding "C" byte (i.e. without fault)
 B1=sub_bytes(M9_pos, s_box);

 // the corresponding D byte (i.e., with faults)
 B2=sub_bytes(bitxor(M9_pos, ebit(j)), s_box);
 //so the error with this M9_pos and this
 // bit error is ecal
 ecal=bitxor(B1, B2);

Also, we check for each value if the calculated error in
the error stored in ‘Err’ array. If this is the case, store
the error value along with its position and then
determine potential M9 bytes (for each error induced,
their will be many values as potential candidates for
M9 byte). This is done via adding these lines to
previous code snippet

// if the calculated error IS the error then we have
potential M9
// jth position is being stored as well along with potential
bytes

 if (ecal == Err(k)),
 nf(k) = nf(k)+1;
 M9list(nf(k),k) = M9_pos;
 Elist(nf(k),k) = ebit(j);
 end

Implementation and Comparative Analysis of the Fault Attacks on AES

At end we intersect all sets of potential candidates and
common value of M9 will be the actual byte (because
all errors are originating from M9 byte) as shown
below:

// Now find the intersection of the potential M9 byte and find
the intersection of the sets
xx = intersect(M9list(1:nf(1),1),M9list(1:nf(2),2));
M9_found = intersect(xx,M9list(1:nf(3),3));

Now we can find one byte of key K10 via applying the
equation given in paper like this:
K10_1_1 = bitxor(sub_bytes(M9_found, s_box), C10(1,1));

After we find K10 (1, 1), it shows that this is correct
value. In the same way, we can find other key bytes by
applying bit errors in other locations. Once we find the
complete K10 (Last round key), we can get initial
secret key by implementing the pseudo-code given at
last page of Dusart’s paper.

4. Key Recovery Defined by Moradi: Moradi algorithm
is based on generalized attack i.e., any fault attack
that changes at most three bytes in first column of
mixcolumns. Each byte in input to mixcolumn
affects four bytes in its output.

Moradi does not define any specific fault attack
because it is general model. It just says that if fault in
effecting first column of mixcolumn in 9th round, then
the key recovery procedure explained in paper can
determine the correct key bytes. So, we based the
implementation by taking fault model described in
Dusart’s paper. We took all relevant correct faulty
bytes given in Dusart’s paper. So, code snippet is:

// Faulted bytes from the encryption algorithm in dusart
fb_hex={'de' '3b' 'c2' '62'};
fb=hex2dec(fb_hex); // a column vector
nfb=max(size(fb));
// Fault free bytes -- from the encryptoin Appendix B in
standard
fc_hex= {'39' '6a' '85' 'fb'};
fc= hex2dec(fc_hex); % a column vector
nfc = max(size(fc));
// Faults – also, from the encryption algorithm (called
"epp" in Moradi)
epp_hex= {'e7' '51' '47' '99'};
epp= hex2dec(epp_hex); % a column vector
nepp=max(size(epp));

// The correct “B” vector bytes –first column at start of
round 10 encryption algorithm
B10_hex={'eb' '40' 'f2' '1e'};
B10 = hex2dec(B10_hex);

So, the focus is on key recovery assuming faulted bytes
and error primes are known. This algorithm works on
exhaustive search methodology. We calculate all values
of applying mixcoumn operation on all possible bytes
for the first coulumn of input to MixColumn via genS1
function. The important code snippet is:

% for each potential byte error compute a column of S1,j is
index into cmat array
%cmat contain the 4 constant values used in MixColumn
operation for mixing the first column of input state matrix
for i=1:255,
 for j=1:4,
 S1(j,i) = poly_mult(i, cmat(j), mod_pol);
 end
end

Now we need to generate I matrix shown in equation
21 [14], with the help of equation 20 [14]. Then
generates the set E1 and helps to create I matrix. Now
it is iterated through all possible values of I matrix and
check if we can find correct B vector values (for single
column of M9). Once the correct B vector is found,
we can apply equation 22 [14], and equation 23 [14] to
determine Key byte. The process is repeated until the
key for 10th round (K10) is found. Once K10 is found,
we trace back the key expansion algorithm to find the
original key.

7. Comparisons of Algorithms
The implemented fault attack algorithms are compared
based on the following criteria.

7.1. Flexibility
It is defined as an ability to change the components of
the attacks (i.e., encryption, decryption and key
scheduling), their location (i.e., function or round) and
timings.

The attacks presented by Dusrat el al. [13], cover
both components these are encryption/decryption and
key scheduling. Their second attack actually presents
three sub models to cover more fault models. One sub
model applies on key expansion and the other two
applies on plain text at round 8 and round 9
respectively.

The attacks presented by A. Moradi et al. [24],
claims to cover all attacks in its two general models.
All attacks up to MixColumns of 9th rounds are
covered under their generalized models. It is the most
flexible attacks of all kind because it presents the
attacks under generalized models. The models cover
all faults that can occur in 9th round of encryption.
Giraud’s presented attack in [14], is not much general
as the above two and cover simple model of static
attack but it includes other merits.

Flexibility can be expanded to include AES three
modes (128, 192 and 256bits). Giraud’s attack works
for all modes while Moradi et al. attack has been
implemented just to recover 128bit key.

7.2. Efficiency
The efficiency could be space-wise and time-wise.
Space wise efficiency is less focused when attacks are
demonstrated but time is much critical. Some attack

The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

models can recover secret information faster than other
models. This is usually measured by considering that
how many cipher or plaintext pairs are needed to get
secret key information from any model.

Attacks presented by Moradi et al. [24], are
generalized First model require just six faulty texts to
get secret key information for the last round key. The
time to get this is less than 10 seconds. However, the
second model requires 1495 faulty texts. Comparing
this with Giraud’s presented attacks later is the most
efficient as for its two models. It just requires 50 and
less than 250 cipher texts respectively to determine
secret key information.

Note that we are considering external efficiency
instead of internal. It would be possible to run the key
recovery algorithm for long time but we would need to
input just two cipher text in it to get required key. It
would be assumed to be more efficient but there might
be contrary results if algorithms spends considerable
amount of time internally to perform all operations.

7.3. Feasibility
Feasibility is the determination that a procedure can be
successfully accomplished in the required time frame.
Almost all attacks are feasible that have been
performed but we would need to define less or more
feasible.

Giraud et al., defines two attack models. First attack
is Bit Fault Attack (BFA) that is less feasible as very
sophisticated hardware is needed to induce just one bit
fault at proper location while in the same paper the
second attacks model was actually put into practice on
smart cards. There is also, an attack by Dusart et al. that
is less feasible in hardware and takes 5 days to get
exact location of error induced. But if we could find the
location, then it is much flexible after that and can
recover keys within minutes.

8. Conclusions
Although, AES is prominent crypto standard widely
used nowadays in various applications and is secure
against all conventional cryptanalytic attacks, yet fault
based cryptanalysis poses serious threats against it. By
implementing various attacks and comparing different
fault models, it is clear that such kind of attacks is
practical. Most of the attack models allow us to obtain
full AES-128bit key.

Although, we have observed that most of the models
are difficult to implement and in theory they are
analysed to show that these attacks work. We have
observed that most of such work is evolved
theoretically. In this work we have implemented some
fault attacks, which are theoretical in literature, to
check their practicability. With rapid evolution of
technologies, it would be possible in future to convert
those theoretical models into practical ones so it is

important that counter work should be done side by
side.

Numerous countermeasures have been proposed to
avoid, prevent or detect fault attacks. Malkin et al.
[22], has provided a good comparison of various fault
attack countermeasure. It also, provides a thorough
overview of known strategies, with an emphasis on
AES, to thwart fault attacks. But, attacks models
outweigh counter attack methods and with rapid
development of technology, there will be more threats
than we face today.

9. Future Work
The attacks always improve and new approaches are
coming into existence. This work can be extended to
propose countermeasures against fault attacks.

Another work that can be done in future is to
propose fault models and countermeasures against
AES192, and AES256 versions. Currently, AES128 is
sufficient to use due to its strong security but in future
when more powerful processors would be available,
there would be definitely a need to shift to other long-
key length versions of the AES. Also, when we
combine various facets of approaches, we can device
some efficient approach to perform attack. Various
faults attacks methods can be combined to get the
secret information in more effective ways. Some work
has also, been started in this direction where
researchers are combining collision and fault attack
and tries to get the secret information without
obtaining faulty cipher text.

However, whatever fault model is proposed, due to
sophisticated fault injection equipment and complexity
of the process, it does not put AES aside. If there can
be any method that just analyse various cipher texts
produced without injection of fault and can give some
clues about the secret information then we think it
would completely cease AES. Similarly, rigorous side
channel analysis techniques are being combined with
mathematical analysis techniques to uncover secret
information.

References
[1] Ajlouni N., El-Sheikh A., and Rashed A., “A

New Approach in Key Generation and
Expension in Rijndael Algorithm,” International
Arab Journal of Information Technology, vol. 3,
no. 1 pp. 35-41, 2006.

[2] Anderson R. and Kuhn M., “Low Cost Attacks
Attacks on Tamper Resistant Devices,” in
Proceedings of Security Protocols Workshop,
Springer Lecture Notes in Computer Science,
France, vol. 1361, pp. 125-136, 1997.

[3] Bao F., Deng H., Han Y., Jeng B., Narasimhalu
D., and Ngair T., “Breaking Public Key
Cryptosystems on Tamper Resistant Devices In

Implementation and Comparative Analysis of the Fault Attacks on AES

The Presence of Transient Faults,” in Proceedings
of the 5th International Workshop on Security
Protocols, France, pp. 115-124. 1998.

[4] Bar-El H., Choukri H., Naccache D., Tunstall M.,
and Whelan C., “The Sorcerer’s Apprentice
Guide to Fault Attacks,” in Proceedings of IEEE,
vol. 94, no. 2, pp 370-382, 2006.

[5] Biehl I., Meyer B., and Muller V., “Differential
Fault Attacks on Elliptic Curve Cryptosystems,”
in Proceedings of the 20th Annual International
Cryptology Conference on Advances in
Cryptology, USA , pp. 131-146, 2000.

[6] Biham E. and Shamir A., “Differential Fault
Analysis of Secret Key Cryptosystems,” in
Proceedings of the 17th Annual International
Cryptology Conference on Advances in
Cryptology, Lectures Notes in Computer Science,
USA, vol. 1294, pp. 513-525, 1997.

[7] Biham E. and. Shamir A., “A New Cryptanalytic
Attack on DES: Differential Fault Analysis,”
avalible at: http:// cryptome.org/jya/dfa.htm, last
visited 1996.

[8] Blomer J. and Seifert P., “Fault Based
Cryptanalysis of the Advanced Encryption
Standard,” in Proceedings of Computer Aided
Verification the 15th International Conference,
USA, vol. 2742, pp. 162-181, 2003.

[9] Boneh D., Demillo A., and Lipton J., “on the
Importance of Checking Cryptographic Protocols
for Faults,” in Proceedings of the 16th annual
international conference on Theory and
application of cryptographic techniques, Berlin,
vol. 1233, pp. 37-51, 1997.

[10] Chien-Ning C. and Sung-Ming Y., “Differential
Fault Analysis on AES Key Schedule and Some
Countermeasures,” in Proceedings of the 8th

Australasian conference on Information security
and privacy, Australia, pp. 118-129, 2003.

[11] Daemen J. and Rijman V., “ The Block Cipher
Rijndael,” in Proceedings of Smart Card
Research and Applications, Lecture Notes in
Computer Science, Belgium, pp. 288-296, 2000.

[12] Daemen J. and Rijmen V., “AES Proposal
Rijndael, the First Advanced Encryption
Standard,” Candidate Conference, NIST, 1998.

[13] Dusart P., Letourneus G., and Vivolo O.,
“Differential Fault Analysis on AES,” in
Proceedings of the 1st International Conference
on Applied Cryptography and Network Security,
Lecture Notes in Computer Science, China, vol.
2846, pp. 293-306, 2003.

[14] Giraud C., “DFA on AES,” in Proceedings of the
4th International conference on Advanced
Encryption Standard, Germany, pp. 27-41, 2004.

[15] Gutmann P., “Data Remanence in Semiconductor
Devices,” in Proceedings of the 10th Conference
on USENIX Security Symposium, USA, vol. 10,
pp. 4, 2001.

[16] Jacob M., Boneh D., and Felten E., “Attacking
an Obfuscated Cipher by Injecting Faults” in
Proceedings of ACM workshop on Digital Rights
Management, USA, pp. 16-31, 2002.

[17] Joye M. and Quisquater J., “Attacks on Systems
using Chinese Remaindering,” Technical Report
CG 1996/9, Belgium, 1996.

[18] Klima V. and Rosa T., “Further Results and
Considerations on Side Channel Attacks on
RSA,” in Proceedings of the 4th International
Workshop Redwood Shores Cryptographic
Hardware and Embedded Systems-CHES, USA,
pp. 244-259, 2002.

[19] Klima V. and Rosa T., “Attack on Private
Signature Keys of the Open PGP Format,”
available at: http://eprint.iacr.org/2002/076. pdf,
last visited 2004.

[20] Koeune F. and Quisquater J., “A Timing Attack
Against Rijndael,” Technical Report CG-1999/1,
Universite Catolique de Louvain, 1999.

[21] Maher P., “Fault Induction Attacks, Tamper
Resistance, and Hostile Reverse Engineering in
Perspective,” in Proceedings of the 1st
International Conference on Financial
Cryptography, Lectures Notes in Computer
Science, British West Indies, vol. 1318, pp. 109-
121, 1997.

[22] Malkin G., Standaert X., and Yung M., “A
Comparative Cost/Security Analysis of Fault
Attack Countermeasures,” in Proceedings of the
2nd Workshop on Fault Detection and Tolerance
in Cryptography Edinburgh, UK, pp. 109-123,
2005.

[23] Marc J. and Jean-Jacques Q., “Faulty RSA
Encryption,” Technical Report CG-1997/8, UCL
Crypto Group, 1997.

[24] Moradi A., Mohammad T., Manzuri S., and
Mahmoud S., “A Generalized Method of
Differential Fault Attack Against AES
Cryptosystem,” in Proceedings of the 8th

International Workshop Cryptographic
Hardware and Embedded Systems-CHES, Japan,
pp. 91-100, 2006.

[25] NIST, “Advanced Encryption Standard,”
Federal Information Processing Standards
Publication FIPS-1997, 2001.

[26] Paillier P., “Evaluating Differential Fault
Analysis of Unknown Cryptosystems,” in
Proceedings of the 2nd International Workshop
on Practice and Theory in Public Key
Cryptography, Japan, pp. 235-244, 1999.

[27] Peacham D. and Thomas B., “A DFA Attack
Against the AES Key Schedule,” Available at
http://www.siventure.com/pdfs/AES_KeySchedu
le_DFA_whitepaper.pdf, last visited 2011.

[28] Skorobogatov P. and Anderson R., “Optical
Fault Induction Attack,” in Proceedings of the
4th International Workshop Redwood Shores

The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

Cryptographic Hardware and Embedded
Systems-CHES , vol. 2523, pp. 13-15, 2002.

[29] Takahashi J. and Fukunaga T., “Differential Fault
Analysis on the AES Key Schedule,” available at:
http://eprint.iacr.org/2007/480. pdf, last visited
2007.

[30] Takahashi J., Fukunaga, T., and Yamakoshi K.,
“DFA Mechanism on the AES Key Schedule,” in
Proceedings of Workshop on Fault Diagnosis
and Tolerance in Cryptography, Vienna, pp. 62-
74, 2007.

[31] Voyiatzis G. and Serpanos N., “A Fault Injection
Attack on Fiat-Shamir Cryptosystems,” in
Proceedings of the 24th International Conference
on Distributed Computing Systems Workshops,
pp. 618-621, 2004.

[32] Zheng Y., “Breaking Real World
Implementations of Cryptosystems by
Manipulating Their Random Number
Generation,” in Proceedings of the 29th

Symposium on Cryptography and Information
Security, Japan, pp. 1-7, 1997.

Saleem Raza received his MSc
degree in computer and network
security from Middlesex
University London. He also, did
PGCert in Engineering-Advanced
computing from University of the
Bristol, UK. He has been teaching

for four years at various national and international
institutions and colleges in UK and Pakistan. His
research interests include network security and
cryptography. Also, interested in enhancing learning of
university students, improvements in curriculum, and
databases.

Malik Najmus Saqib received his
MS degree in software engineering
from COMSATS Institute of IT
Pakistan, in 2003. He completed his
PhD studies from Vienna University
of Technology Austria in 2009. His
PhD work was on security issues in

mobile/multi agent system. He also worked as a
research in University of California at Davis, USA. He
is in technical program committee of international
conferences and invited speakers in various workshops.
His research focuses information security, security
issues in wireless sensor network.

Azfar Shakeel is working as
Lecturer in Computer Sciences
Department, COMSATS Institute of
Information Technology, Pakistan.
He has done MS-IT from NUST,
SEECS, MCS from University of
Arid Agriculture Rawalpindi and

MBA from International Islamic University
Islamabad. He has several years of university level
teaching experience and has research interests in
information security, cryptography and cellular
automata and its applications.

Majid Iqbal Khan received his
BSc degree with majors in
Mathematics and Physics in 2001
and MS in software engineering in
2004. He obtained his PhD in
wireless sensor networks from
University of Vienna, Austria, in

2009. He has been enjoying a distinguished carrier in
both research and academics. He is author of several
research articles. He is a member editorial board of
reputed international conferences. His research interest
includes network optimization, network security and
internet of things.

