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Abstract: This research presents the survey, analysis, comparisons and implementation of the most threatening new kind of 
cryptographic attacks known as fault attacks or implementation attacks against Advanced Encryption Standard (AES) 
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implementation. At the end it compares various types of attacks based on our devised criteria of efficiency, flexibility and 
usability of the attack methods. 
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1. Introduction 
Cryptography is concerned with protection of private 
and confidential information. Cryptographic techniques 
evolve constantly because of constant threats being 
posed against them. Different kinds of attacks are 
always discovered with the advancement of technology. 
We are particularly interested in fault attacks due to two 
reasons. First, these attacks are totally different in their 
methodology and pose greater security threats than 
other attacks. Secondly, they have deep potential. 
Advanced Encryption Standard (AES) algorithm is 
chosen because nowadays it has been in most security 
processes. Consequently, cryptographic algorithms and 
their implementations have to be constantly improved 
in order to withstand contemporary attacks. 

In 2000, NIST announced AES [11, 25] also, known 
as Rijndael (pronounced “Rhine-doll”) Algorithm 
developed by two Belgian cryptographers to protect 
digital information. Even some vendors (Checkpoint 
software Technologies Ltd, Cisco Systems Inc) planed 
to market AES based products firewalls before its 
announcement as a standard. 

Rijndael is secure against all known conventional 
cryptanalysis attacks, which are successful on other 
algorithms. AES is symmetric block cipher, have 
simple design, highly efficient in term of space, time 
and also, much flexible (can run on various platforms 
and can operate on different key sizes 128bit, 192bits, 
and 256bits). The most common implemented version 
is AES128 because this key length is sufficient to 
provide security and requires less processing time than 
bigger key length versions. Various approaches in the 

key generation and expansion process of AES has 
been proposed in literature [1]. 

This research article is about comparisons and 
implementations of the new kind of attacks known as 
fault attacks on well known cryptographic algorithm 
AES. In such attack an adversary induces/injects faults 
i.e. erroneous data when AES is executing on a device 
and observes the reaction. This observation reveals 
secret information, Thus fault attacks have become 
serious security concerns. 
  
2. Fault Based Attacks 
Generally, fault based attacks lie under the category of 
active attacks. These attacks could further be divided 
into two categories when applied to cryptographic 
algorithms: 
 

1. Simple Fault Attack (SFA). 
2. Differential Fault Attack (DFA). 
 

SFA was proposed in 1997, by Boneh et al. [9]. This 
attack was successfully applied against RSA 
cryptosystem. Several authors extended the idea and 
introduced various fault models.  

After some time, a new kind of attack called DFA 
attack was introduced by Biham and Shamir [7], and it 
was successfully applied on secret key cryptosystem 
DES [9]. 

Attacking philosophy of both types of attacks is 
same. To attack disturbed the execution of 
cryptosystem by inducing errors in some particular 
time at some particular location. Then collect faulty 
cipher-texts which can be analysed and compared with 
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correct cipher-text in order to get the secret 
information/key. Faults can be categorized in two ways: 

 

1. Permanent.  
2. Transient. 
 

Permanent faults are also, called destructive faults. 
Here device circuit or memory cell is permanently 
changed/damaged (e.g., cutting data bus wire, freeing 
memory cell to constant value) while in transient fault 
(also, called provisional fault) device is just disturbed 
during its processing. It recovers back to its original 
behaviour after reset when fault simulation ceases. 
With transient faults, the attacker can use the device 
again and again and the attack can be repeated multiple 
times in order to collect sufficient information. 

Faults induced on software are considered transient 
and such transient faults can be viewed from various 
angles. 

 

1. Error Type: What type of error is being induced? It 
can be of two types: 

 

a. Bit Error: Single bit has been flipped via XOR 
operation in software or freezing any memory cell 
to 0/1 value in hardware. 

b. Byte Error: Whole byte has been changed by 
XOR operation the byte with some random data 
or freezing multiple cells. 

 

2. Error Location: At which location, errors are being 
induced. Algorithm can contain many transformation 
and we can select any transformation for induction 
of wrong data in it. This location can be fixed or 
much flexible depending on the attack type. 

3. Time: Some faults require to be induced at specific 
time during computations while other does not 
impose such restrictions. 

 
3. Fault Based Cryptanalysis 
Cryptanalysis is the study of methods to break 
cryptosystem but usually excludes methods e.g., 
exhaustive search of attack that do not primarily target 
weaknesses in the actual cryptosystems. 

Most of the attacks and their cryptanalysis are based 
on the mathematical security of the cryptosystem. 
Modern attack take advantage of side channel 
information that can be derived from physical 
implementation of the cipher rather than exploiting 
some weakness of the cipher itself. 

Fault attacks are a kind of side channel attacks and 
they occur by injecting the faults in the implementation 
(hardware/software) of the cipher [4]. That is during 
execution of particular cipher, faults are induced. This 
disturbs the normal execution behaviour and results in 
creation of faulty output. The attacker can guess secret 
key after small number of the fault injections and 
analysing faulty cipher texts. These attacks work on 
both symmetric and asymmetric types of ciphers. They 

can also, break the system faster than any other kind 
of the physical attack. Fault attacks are being studied 
constantly since 1996 in smart card industry. Initially, 
most of the proposed attack models were theoretical 
however these days, theoretical faults attacks are being 
converted into practice due to advancement in 
technology. Firstly, in 2001, Skorobogatov and 
Anderson [28]. Performed a practical attack by 
flipping a bit in the memory cell via photoflash lamp. 

Various symmetric as well as public key 
cryptosystems are under the fault attacks in different 
ways. Bao et al. [3], presented transient fault to break 
a public key cryptosystem.  

Fiat-Shamir and Schnorr proposed first theoretical 
active fault attack focussing on RSA cryptosystem [9]. 
This attack exploits Chinese Remainder Theorem 
(CRT) and Montgomery Multiplication method. It is 
easy to deploy. It requires single fault induction at any 
position to completely break signature device. Due to 
widespread use of RSA, it was real threat however 
wide range of paper explains countermeasures. Then 
focus of attacks shifted towards the cryptosystems 
whose security is based on the Discrete Logarithm 
problem. Thus, Elgamal Signature Scheme, Schnorr 
Signature scheme and DSA scheme were the prime 
targets under this category. 

The attack on Schnorr signature scheme was also, 
extended with modification of the identification 
scheme. Attacks on RSA montgomery were also, 
suggested employing them on the signing key instead 
of the message [23]. Joye and Quisqater [17], 
proposed the attacks in on Generalized RSA-type 
cryptosystem. After that most of the fault attacks 
proposed by Klima and Rosa. Successfully determined 
private key of RSA and secret key of DSA [18]. 

Klima and Rosa [19], presented another attack 
known as Bellcore attack on the Fiat-Shamir scheme 
is shown. However, the Fiat Shamir scheme defends 
against it. In [31], another attack proposed by 
Voyiatzis and Serpares is presented that succeeded 
against both classical and precautious Fiat-Shamir 
schemes. 

Fault attacks focus on changes from public to 
symmetric key system with Biham and Shamir [6]. 
This attack is known as DFA. It was succeeded 
against DES using only 50-200 faulty cipher texts. 
This attack is also, presented on an unknown 
algorithm of cryptosystem, called Skip Jack. This 
attack was also, performed on DES via permanent 
fault induction instead of transient fault induction. 
Unknown cryptosystems described in [26], are also, 
targeted by DFA attacks. 

Jacob et al.  [16], employ  the  faults  and  attack 
obfuscated ciphers in software and then secret material  
is  extracted  by  avoiding de-obfuscation of the 
program code. 

Various cryptographic algorithms are based on 
complex mathematical problems like discrete 
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logarithm and factoring calculations. Initially, it was 
thought that fault induction attacks can only succeed on 
such types of systems. Biehl et al. [5], performed DFA 
on Elliptic Curve Cryptosystems (ECC) and Zheng [32] 
attack modern random number generators with faults. 
Similar types of attacks are also, presented on ECC. 
One such attack is proposed by Biehl et al. [5], by 
extending the DFA attack on RSA cryptosystem.  

Fault attacks falls into two main categories of SFA 
and DFA. This research describes these fault attacks 
with specific example to get clear understanding. 
 
3.1. Simple Fault Attack on Secret and Public 

Cryptosystems 
Bell-core attack was proposed for a public key 
cryptosystem. With this attack an implementation of 
RSA which is based on CRT can be broken using a 
single wrong signature. Algorithm 1 shown the 
working.  
Algorithm 1. fault attack on DES. 

Input: d M, P, q 
Output: S=Mdmod p.q 
dp=d mod (p-1), 
dp=d mod (q-1) 
Compute 
Sp = Md mod p 
Compute 
Sq = Mdp modq 
S = CRT (Sp, Sq) 
Execute RSA-CRT Algorithm 
Without Faults 
Execute again and inject fault in computation of Sq 
Deduce a parameter P using correct result S and faulty 
result S’ 
S mod q ≠ S’ mod q 
S mod p = S’ mod q 
 

Now it is easy to know the factors of N by: 
  

   GCD (S-S’, N) = p                               (1) 
 

RSA security is based on factorization. After successful 
factorization, System has been broken. A SFA against 
secret key cryptosystem is against DES which is 
described in [28], DES secret key is stored in EEPROM 
when it is implemented in smart card. This key is 
transferred to memory during encryption and 
decryption. The attacker resets an entire byte of the key 
when key is being transferred to memory. If attacker 
could do it successfully, then the secret key can be 
obtained. For this eight steps need to be performed in 
order to get secret key as shown in Table 1. In each 
step, known plain text is encrypted with different 
number of bytes of the key. Consider cipher text S7 in 
the table. Attacker can extract the first byte of the secret 
key by checking all possible values of the first byte 
until S7 is obtained. Similarly, based on S6 second byte 
of the key can be found. This process continues until 
the attacker gets all 8bytes of the key. 

Table 1. Acquiring secret key. 
DES Key Output 

K0 = xx xx xx xx xx xx xx xx S0 
K1 = xx xx xx xx xx xx xx 00 S1 
K2 = xx xx xx xx xx xx 00 00 S2 
K3 = xx xx xx xx xx 00 00 00 S3 
K4 = xx xx xx xx 00 00 00 00 S4 
K5 = xx xx xx 00 00 00 00 00 S5 
K6 = xx xx 00 00 00 00 00 00 S6 
K7 = xx 00 00 00 00 00 00 00 S7 

 
3.2. Differential Fault Attack  
DFA attacks come after simple fault attacks. The idea 
was originated in 1996, when Boneh and Lipton from 
Bellcore conducted a new kind of cryptographic attack 
(DFA Attack) against public key cryptosystems. 
Biham and Shamir [6], showed that this attack can be 
extended to break almost any secret key algorithm.  

Adi Shamir implemented this attack on a personal 
computer and single bit faults were induced in all 
rounds randomly. Complete last sub key (48bits) was 
found in less than 200 cipher texts. To recover the 
complete key (56bit), a simple way is that to guess via 
exhaustive search missing 8bits in all 2^8=256 ways. 
This attack works as follows: 1). A single bit error is 
induced during the computation, suppose in round 16 
of DES. So, one bit in the right half of the data is 
flipped from 0 to 1 or vice versa. Now let the cipher 
text collected before the final permutation of DES. 
This will be faulty cipher text due to one bit error. 
Assuming we can also, collect correct cipher text (at 
the same point) without inducing error, only one bit in 
the right half of the cipher text will differ (before final 
permutation) between both of the cipher texts. 2). In 
final permutation, this single bit will enter in S-Box 
affecting the left half of the cipher text generated from 
one or two S-Boxes. Now if we see different 
distribution tables of these S-Boxes, the difference 
must be related to none zero entries. 3). At the end, the 
six key bit of each S-Box are guessed and any value 
disagreeing with the expected difference of these S-
Boxes is discarded. Due to this phenomenon, this 
attack is referred to as differential cryptanalysis. 
 
4. Fault Attacks on AES 
Rijndael [11, 12], was selected as the AES algorithm 
and it replaced the DES. AES was designed after 
introduction of the crypt analysis on secret key 
cryptosystems. So, AES was made resistant against all 
known cryptanalysis. As an example, the original 
proposal prevents all timing attacks. It was known that 
careless implementation of the AES may result in 
successful timing attacks and the secret key can be 
derived easily [2]. This key can be derived by 3000 
samples per key byte. The final proposal of the 
algorithm was aware of this and the attack was 
immune easily but fault attacks were proved 
successful even against AES. 
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Fault attacks can be induced permanently or 
temporarily in smart card. Examples of permanent fault 
include cutting data bus wire or freezing memory cells 
etc. Temporary faults include introducing abnormal 
voltages during AES execution. Faults can also, be 
induced at specific location (memory cell) or at specific 
time. Some of the attacks have been applied to smart 
cards in practice successfully. 

Further any round can be disturbed via induction of 
faulty data. For example, if one byte is changed in sub-
bytes operation, then this effect will cascade to all next 
three operations in the round. It will affect one to four 
bytes in output of that particular round resulting 
ultimately in faulty cipher-text. Faulty and fault free 
cipher texts can be collected and employ mathematical 
cryptanalysis to discover keys or portion of the keys. 
Some attacks also, belong to key expansion operation 
of Rijndael. 

There are various ways to induce faults in devices 
implementing AES. Some of them are voltage spikes, 
clock glitches, overheating via excessive temperature, 
exposing to radiations and light. Interested reader 
should consult [8, 15, 21]. The focus of this article is on 
fault attacks induced in the software implementation of 
AES. 

 
4.1. DFA Attacks on AES 
New types of faults attacks known as DFA succeeded 
against AES even it was considered to combat all 
known attack when proposed. Even though DFA 
attacks target initially was feistal structure like DES but 
Dusart et al. [13], applied it successfully against AES, 
even though it does not have such a structure. Blomer 
and Seifert [8], presented additional fault based attack 
on AES. 

Stricter model derives 128bit secret key by 
collecting 128bits faulty cipher texts, but require exact 
synchronization in time and space for errors injection.  
This model assumed that one can force the value of any 
chosen bit to Zero. It is shown by Biham and Shamir 
that applying this technique upon memory cells storing 
the key would make it trivial to get the key and the 
same is true for any other algorithm. The other less-
stricter model extracts keys after collecting 256 faulty 
cipher texts. This second attack is implementation 
dependent and its principle is to turn timing attack on 
AES suggested by Koeune and Quisqater [20]. Into a 
fault based cryptanalysis.   

In [14], Giraud discussed two fault attacks on AES. 
In the first one, assumption is that the faults can be 
induced on one bit before the last diffusion layer. About 
50 cipher texts are needed to retrieve the full key. A 
second attack proposed by Giraud is on the whole byte 
and is more realistic to perform. Here fault is induced at 
different places including the key schedule and in 250 
cipher texts. It would become possible to extract the 
key. Here it is assumed that attacker can choose the 

stage of the byte where the fault occurs but not exact 
location.  The calculation to determine   the   exact 
location takes 5 days. 

Dusart et al. [13], presented the four fault models 
and attack succeeded for all key sizes (128, 192, 
256bits). They showed that 128bit key can be created 
with 10 pairs of faulty/correct messages. These attacks 
take advantages of byte fault occurring after shift row 
layer of 9th round. Authors show that five well located 
faults are necessary to retrieve the four key bytes. 

There is also, another DFA attack against AES by 
Chien-Ning and Surg-Ming [10], that is very 
interesting and it covers all of the errors under its two 
fault models. For the first model they claimed that 
with only six faulty cipher texts, whole 128bit key can 
be found. However, the other fault model needs 1500 
cipher texts to cover all faults. When two models are 
combined, all faults can be covered those occur    in 
9th round of encryption algorithm of the AES 
cryptosystem. It is generalized method as it does not 
assume any specific location or values of the occurred 
faults. 

Chien-Ning and Sung-Ming focused on the fault 
attacks against AES key schedule by inducing single 
byte fault in round key instead of inducing faults in 
encryption or decryption algorithm. However, their 
fault model is based on the Giraud fault model. But 
with extension they were able to get keys in 22 faulty 
cipher texts and with less computational complexity. 
Also, they focus on countermeasures of their proposed 
attacks [22].  

Another similar attacks focussing on key 
scheduling is presented in [27]. Totally new approach 
is adopted in [30], by devising some rules to get 80 
bits of the secret key with just two pairs of correct and 
faulty cipher text. They claim that following these 
rules make the process efficient because we get rid of 
the solving complex simultaneous equations. They 
extended the attack and would be able to get extra 8bit 
of secret key just combining with previous attack, they 
are able to get 88bit of secret keys effectively [29]. 
Remaining 40bits are obtained by brute-force 
approach. 
 
5. Design of Algorithm 
The process explained by Dusart et al. [13], is 
mathematical and described in very complex way to 
find more difficulties for a computer science student 
to convert it into some proper procedure so that it can 
be implemented in easily in any programming 
language. 
 
5.1. Algorithm 1: From Dusart et al. [13] 
• First Step: The first step is to generate a set called 

E1 described as proposition 1 in [13]. This set 
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depends on the mapping E1=x2+ x. The way this set 
is computed is as follows: 
 

1. Select each value from x=1 to 255.  
2. Compute x2+x. 
3. Look to see if a new unique value is obtained. If 

yes store in an array E1.  
 

• Second Step: Now, next step is to generate a set 
called S(c,ε’) Scep. It is also, defined in [13], as 
proposition 1. The way this set is computed is as 
follows: 

 

1. First generate a set for each of the “'c” value and 
the corresponding “ε ′ ” value. 

a. “c” value refers to the {2, 1, 1, 3} for the first 
Mix Columns. 

b. “ε ′ ” refers to the “error” found between the 
no-error ciphertext and faulted ciphertext. 

 

2. There are 4 sets above- for each pair of “c” and 
“ε ′ ”. 

3. Now find a set y that is an intersection of all 4 
sets.  

4. Set y represents all potential faults. 
 

• Third Step: Now-for each value in the set S(c,ε’) Scep 
(called θ in proposition 5 [13]), we want to find a 
solution to the equations: 

            θ= t2+t                                     (2) 

These solutions are called α and β. They follow the 
relationship β=α +1. 

• Fourth Step: Now we are ready to generate potential 
values of K10 (key of 10th round) using the two 
solutions found above as α and β. one value of K10 
is=Sub_Byte(c*e*α). The other value 
is=Sub_Byte(c*e*β). Finally, store the potential K10 
keys and sort to find only the unique ones. This is 
now our list of potential K10 values. This process can 
be repeated with multiple attacks until only one 
value left that will be the correct key value. 

• Full Key recovery: Once a correct single K10 is 
generated it is possible to recover the entire key by 
reversing the key expansion algorithm. This is 
shown by Dusart et al. [13]. 

 
5.2. Algorithm 2: From Giraud [14] 
The main idea of the algorithm is a follows: 
 

1. Induce a bit fault in the final round of encryption. 
2. A bit fault means error on a single bit.  
3. Then analyse the results of final ciphertext and 

compare to fault free ciphertext. 
 

The algorithm proceeds as follows: 
1. Do an exhaustive search of possible M9 bytes (0-

255) and all possible bit faults (8total), where M9 is 
cipher after 9th round. 

2. Find the error value that is the difference between 
clean ciphertext (called C) and faulty ciphertext 
(called D). 

3. Store the list of potential values in an array. 
 

This is now repeated for each byte of 9th round cipher 
text. Then find the common value (intersection) of all 
possible values. That is: 
 

1. Calculate error value for each fault value. 
2. Find the “intersection” of potential M9 values. 
3. Once we have a single value of M9. 
4. Calculate K10 from equation below: 

 

9 10C = ShiftRows(SubBytes(M ))ÅK  
 

The process can be repeated for each byte of K10. Then 
finally the entire key is recovered. 
 
5.3. Algorithm 3: Moradi [24] 
The algorithm proceeds as follows: 
 

1. First Step: 
 

a. Generate the set called S1. This is the set where 
at least one of the faults bytes is zero. 
 

S 1 { : ( e ,e ,e ,e ) | e 0 ;( 1 i 4 ),1 2 3 4 i

: ( e ,e ,e ,e ) FM 1 ;1 2 3 4

MixColumn( ) ( )}

ε

ε ε

ε ε

′ ′= ∀ ≠ ≤ ≤

∃

′=

 

 

b. Using the possible fault bytes generate all 
possible first column vectors (column vector). 
 

If only byte fault then there are 256 vectors (0 to 
255 total byte values, each vector for each byte). 
 

2. Second Step: 

a. The most important part of the algorithm is the 
generation of the set called “I”. 

b. Since fault in the first column affects only the 
first column after the MixColumn step. It is 
possible to generate a complete set of potential 
values of M9. 

c. This is generated using the set S1 above. 
d. Do an exhaustive search of possible M9 columns. 
e. Once we have a single column we can compute 

K10 . 
f. Find the error value that is the difference 

between clean ciphertext (called C) and faulty 
ciphertext (called D). 

g. Store this list of potential values in an array. 

This is now repeated the above steps for each 
column. Then we find the common value 
(intersection) of all possible values of K10. Once we 
have K10 we use the key recovery from K10 to get 
the original key. 
 
 

(3)
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6. Implementation 
We have implemented the following algorithms to 
demonstrate that fault attacks really works. AES 
implementation is done before the implementation of 
below algorithms: 
 

1. Fault attack defined by Dusart et al. [13]. 
2. Fault attack defined by Giraud in [14]. 
3. Key recovery from bit fault attack defined by Giraud 

[14]. 
4. Key recovery defined by Moradi et al. [24]. 
5. Full Key recovery (Dusart) by assuming that partial 

key (round key) recovered in Dusart. 
 

This section briefly explains the implementation 
aspects for 1, 2, 3, and 4 and rest is based on same 
aspects. MATLAB is used in the implement of these 
algorithms. These algorithms manipulate the data in 
form of matrices and MATLAB is most suitable for this 
kind of work due to its matrix-orientation. 
 

1. Fault Attack Implementation (K9 Attack) Defined by 
Dusart: How to induce fault into any state byte is 
defined theoretically in section 2.1.1 of this report. 
For implementation, we set mode bit in aes_main 
file to 1. Fault induction is done in this way: 

K9byte=bin2dec(‘00011110’)                      (4) 
After checking that round is 9 then we add this into the 
first byte of state at position (1, 1) via this change of 
code 
 

        if (mode==1) 
           if (i_round == 9), 
               state(1,1) = bitxor( state(1,1), k9byte); 
          end 
        end 
 

2. Fault Attack Implementation Defined by Giraud: 
How to induce just one bit fault in any location is 
tricky process. How to change one bit? It can be 
done via XOR operation that bit with 1. Let suppose 
we want to change a bit in a byte at location bfa_i 
and bfa_j. The code snippet is given below: 

 

      bfa=bin2dec(‘10000000’); 
   when we want to change any bit in any byte, we will 

bitxor with  this value of bfa. 
      mode variable will be set to  2 for this attack. 
      % If BFA is done -- Bit fault attack 
      if mode==2,  
         state(bfa_i,bfa_j) = bitxor( state(bfa_i,bfa_j), bfa); 
     end 

3. Key Recovery from Bit Fault Attack defined by 
Giraud: The main file from Giraud attack recovery 
is Get_K10_BFA.m 
 

C10 is cipher output, D10 is the faulty output. If any 
byte is faulty, we can find it by XOR of C10 and D10. 
In our code, we simply take byte (1, 1) and induce three 
error cases for it. Thus faulty bytes in D matrix are 
D10_1, D10_2, and D10_3. We find the error (Err) for 
each of them by XOR operation corresponding bytes.  

This is done using following code: 
 

% First compute the Err vector 
nerr = 3; 
Err = 0*ones(nerr,1); 
Err(1) = bitxor(C10(1,1),D10_1(1,1)); 
Err(2) = bitxor(C10(1,1),D10_2(1,1)); 
Err(3) = bitxor(C10(1,1),D10_3(1,1)); 
disp('Error bytes for the attacks are ...'); 
disp(' '); 
disphex10('Error bytes =  ',Err); 
disp(' '); 

 

‘disphex’ converts integer values into hexadecimal 
format. Errors values are calculated via ‘bitxor’ of 
correct and faulty bytes and stored in three locations 
of the array. ‘ebit_hex’ is an array representing 8-
possibilities of 1 bit error in a byte. 
 

ebit_hex = {'01' '02' '04' '08' '10' '20' '40' '80' }; 
ebit = hex2dec(ebit_hex); 

 

We iterate through all possible values of M9 byte 
(0…255) and through all possibilities of bit error 
(1…8). Then for all possibilities, we have calculated 
their substitution bytes via subbyte () and store the 
results in B1. Similarly, for each inducing of error bits 
in M9 byte, we determined subbytes values and store 
the results into B2. Then ‘ecal’ determines error value 
by XOR operation between correct and faulty B1 and 
B2 arrays as shown below: 
 

for k=1:nerr,       
// loop over all possibilities 
   for i=1:2^8, 
   // i loops over all possible values of M9 (1..255) 
     for j=1:8,  
        // j loops over all possible values of bit err 
       //so let M9_pos be the potential M9 byte 
      M9_pos= i-1; 
       // the corresponding "C" byte (i.e. without fault) 
       B1=sub_bytes( M9_pos, s_box); 

       // the corresponding D byte (i.e., with faults) 
      B2=sub_bytes( bitxor(M9_pos, ebit(j)), s_box); 
      //so the error with this M9_pos and this 
      // bit error is ecal 
      ecal=bitxor( B1, B2); 

 

Also, we check for each value if the calculated error in 
the error stored in ‘Err’ array. If this is the case, store 
the error value along with its position and then 
determine potential M9 bytes (for each error induced, 
their will be many values as potential candidates for 
M9 byte). This is done via adding these lines to 
previous code snippet 
 

// if the calculated error IS the error then we have 
potential M9 
// jth position is being stored as well along with potential 
bytes 

           if (ecal == Err(k)), 
                nf(k) = nf(k)+1; 
                M9list(nf(k),k) = M9_pos; 
                Elist(nf(k),k) = ebit(j); 
            end 
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At end we intersect all sets of potential candidates and 
common value of M9 will be the actual byte (because 
all errors are originating from M9 byte) as shown 
below: 
 

// Now find the intersection of the potential M9 byte and find 
the intersection of the sets  
xx = intersect(M9list(1:nf(1),1),M9list(1:nf(2),2)); 
M9_found = intersect(xx,M9list(1:nf(3),3)); 
 

Now we can find one byte of key K10 via applying the 
equation given in paper like this: 
K10_1_1 = bitxor( sub_bytes( M9_found, s_box), C10(1,1)); 

After we find K10 (1, 1), it shows that this is correct 
value. In the same way, we can find other key bytes by 
applying bit errors in other locations. Once we find the 
complete K10 (Last round key), we can get initial 
secret key by implementing the pseudo-code given at 
last page of Dusart’s paper.  

4. Key Recovery Defined by Moradi: Moradi algorithm 
is based on generalized attack i.e., any fault attack 
that changes at most three bytes in first column of 
mixcolumns. Each byte in input to mixcolumn 
affects four bytes in its output. 

Moradi does not define any specific fault attack 
because it is general model. It just says that if fault in 
effecting first column of mixcolumn in 9th round, then 
the key recovery procedure explained in paper can 
determine the correct key bytes. So, we based the 
implementation by taking fault model described in 
Dusart’s paper. We took all relevant correct faulty 
bytes given in Dusart’s paper. So, code snippet is: 
 

// Faulted bytes from the encryption algorithm in dusart 
fb_hex={'de' '3b' 'c2' '62'}; 
fb=hex2dec(fb_hex); // a column vector 
nfb=max(size(fb)); 
// Fault free bytes -- from the encryptoin Appendix B in 
standard 
fc_hex= {'39' '6a' '85' 'fb'}; 
fc= hex2dec(fc_hex); % a column vector 
nfc = max(size(fc)); 
// Faults – also, from the encryption algorithm (called 
"epp" in Moradi) 
epp_hex= {'e7' '51' '47' '99'}; 
epp= hex2dec(epp_hex);      % a column vector 
nepp=max(size(epp)); 

 

// The correct “B” vector bytes –first column at start of 
round 10 encryption algorithm 
B10_hex={'eb' '40' 'f2' '1e'}; 
B10 = hex2dec(B10_hex); 

 

So, the focus is on key recovery assuming faulted bytes 
and error primes are known. This algorithm works on 
exhaustive search methodology. We calculate all values 
of applying mixcoumn operation on all possible bytes 
for the first coulumn of input to MixColumn via genS1 
function. The important code snippet is: 
 

% for each potential byte error compute a column of S1,j is 
index into cmat array 
%cmat contain the 4 constant values used in MixColumn 
operation for mixing the first column of input state matrix 
for i=1:255, 
    for j=1:4, 
        S1(j,i) = poly_mult( i, cmat(j), mod_pol); 
    end 
end 
 

Now we need to generate I matrix shown in equation 
21 [14], with the help of equation 20 [14]. Then 
generates the set E1 and helps to create I matrix. Now 
it is iterated through all possible values of I matrix and 
check if we can find correct B vector values (for single 
column of M9). Once the correct B vector is found, 
we can apply equation 22 [14], and equation 23 [14] to 
determine Key byte.  The process is repeated until the 
key for 10th round (K10) is found. Once K10 is found, 
we trace back the key expansion algorithm to find the 
original key. 
 
7. Comparisons of Algorithms 
The implemented fault attack algorithms are compared 
based on the following criteria. 
 
7.1. Flexibility 
It is defined as an ability to change the components of 
the attacks (i.e., encryption, decryption and key 
scheduling), their location (i.e., function or round) and 
timings.  

The attacks presented by Dusrat el al. [13], cover 
both components these are encryption/decryption and 
key scheduling. Their second attack actually presents 
three sub models to cover more fault models. One sub 
model applies on key expansion and the other two 
applies on plain text at round 8 and round 9 
respectively. 

The attacks presented by A. Moradi et al. [24], 
claims to cover all attacks in its two general models. 
All attacks up to MixColumns of 9th rounds are 
covered under their generalized models. It is the most 
flexible attacks of all kind because it presents the 
attacks under generalized models. The models cover 
all faults that can occur in 9th round of encryption. 
Giraud’s presented attack in [14], is not much general 
as the above two and cover simple model of static 
attack but it includes other merits. 

Flexibility can be expanded to include AES three 
modes (128, 192 and 256bits). Giraud’s attack works 
for all modes while Moradi et al. attack has been 
implemented just to recover 128bit key. 
 
7.2. Efficiency 
The efficiency could be space-wise and time-wise. 
Space wise efficiency is less focused when attacks are 
demonstrated but time is much critical. Some attack 
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models can recover secret information faster than other 
models. This is usually measured by considering that 
how many cipher or plaintext pairs are needed to get 
secret key information from any model. 

Attacks presented by Moradi et al. [24], are 
generalized First model require just six faulty texts to 
get secret key information for the last round key. The 
time to get this is less than 10 seconds. However, the 
second model requires 1495 faulty texts. Comparing 
this with Giraud’s presented attacks later is the most 
efficient as for its two models. It just requires 50 and 
less than 250 cipher texts respectively to determine 
secret key information. 

Note that we are considering external efficiency 
instead of internal. It would be possible to run the key 
recovery algorithm for long time but we would need to 
input just two cipher text in it to get required key. It 
would be assumed to be more efficient but there might 
be contrary results if algorithms spends considerable 
amount of time internally to perform all operations. 
 
7.3. Feasibility 
Feasibility is the determination that a procedure can be 
successfully accomplished in the required time frame. 
Almost all attacks are feasible that have been 
performed but we would need to define less or more 
feasible. 

Giraud et al., defines two attack models. First attack 
is Bit Fault Attack (BFA) that is less feasible as very 
sophisticated hardware is needed to induce just one bit 
fault at proper location while in the same paper the 
second attacks model was actually put into practice on 
smart cards. There is also, an attack by Dusart et al. that 
is less feasible in hardware and takes 5 days to get 
exact location of error induced. But if we could find the 
location, then it is much flexible after that and can 
recover keys within minutes. 
 
8. Conclusions 
Although, AES is prominent crypto standard widely 
used nowadays in various applications and is secure 
against all conventional cryptanalytic attacks, yet fault 
based cryptanalysis poses serious threats against it. By 
implementing various attacks and comparing different 
fault models, it is clear that such kind of attacks is 
practical. Most of the attack models allow us to obtain 
full AES-128bit key. 

Although, we have observed that most of the models 
are difficult to implement and in theory they are 
analysed to show that these attacks work. We have 
observed that most of such work is evolved 
theoretically. In this work we have implemented some 
fault attacks, which are theoretical in literature, to 
check their practicability. With rapid evolution of 
technologies, it would be possible in future to convert 
those theoretical models into practical ones so it is 

important that counter work should be done side by 
side.  

Numerous countermeasures have been proposed to 
avoid, prevent or detect fault attacks. Malkin et al. 
[22], has provided a good comparison of various fault 
attack countermeasure. It also, provides a thorough 
overview of known strategies, with an emphasis on 
AES, to thwart fault attacks. But, attacks models 
outweigh counter attack methods and with rapid 
development of technology, there will be more threats 
than we face today. 
 
9. Future Work 
The attacks always improve and new approaches are 
coming into existence. This work can be extended to 
propose countermeasures against fault attacks.  

Another work that can be done in future is to 
propose fault models and countermeasures against 
AES192, and AES256 versions. Currently, AES128 is 
sufficient to use due to its strong security but in future 
when more powerful processors would be available, 
there would be definitely a need to shift to other long-
key length versions of the AES. Also, when we 
combine various facets of approaches, we can device 
some efficient approach to perform attack. Various 
faults attacks methods can be combined to get the 
secret information in more effective ways. Some work 
has also, been started in this direction where 
researchers are combining collision and fault attack 
and tries to get the secret information without 
obtaining faulty cipher text.  

However, whatever fault model is proposed, due to 
sophisticated fault injection equipment and complexity 
of the process, it does not put AES aside. If there can 
be any method that just analyse various cipher texts 
produced without injection of fault and can give some 
clues about the secret information then we think it 
would completely cease AES. Similarly, rigorous side 
channel analysis techniques are being combined with 
mathematical analysis techniques to uncover secret 
information.  
 
References 
[1] Ajlouni N., El-Sheikh A., and Rashed A., “A 

New Approach in Key Generation and 
Expension in Rijndael Algorithm,” International 
Arab Journal of Information Technology, vol. 3, 
no. 1 pp. 35-41, 2006. 

[2] Anderson R. and Kuhn M., “Low Cost Attacks 
Attacks on Tamper Resistant Devices,” in 
Proceedings of Security Protocols Workshop, 
Springer Lecture Notes in Computer Science, 
France, vol. 1361, pp. 125-136, 1997.  

[3] Bao F., Deng H., Han Y., Jeng B., Narasimhalu 
D., and Ngair T., “Breaking Public Key 
Cryptosystems on Tamper Resistant Devices In 



Implementation and Comparative Analysis of the Fault Attacks on AES 
 

The Presence of Transient Faults,” in Proceedings 
of the 5th International Workshop on Security 
Protocols, France, pp. 115-124. 1998. 

[4] Bar-El H., Choukri H., Naccache D., Tunstall M., 
and Whelan C., “The Sorcerer’s Apprentice 
Guide to Fault Attacks,” in Proceedings of IEEE, 
vol. 94, no. 2, pp 370-382, 2006. 

[5] Biehl I., Meyer B., and Muller V., “Differential 
Fault Attacks on Elliptic Curve Cryptosystems,” 
in Proceedings of the 20th Annual International 
Cryptology Conference on Advances in 
Cryptology, USA , pp. 131-146, 2000. 

[6] Biham E. and Shamir A., “Differential Fault 
Analysis of Secret Key Cryptosystems,” in 
Proceedings of the 17th Annual International 
Cryptology Conference on Advances in 
Cryptology, Lectures Notes in Computer Science, 
USA, vol. 1294, pp. 513-525, 1997. 

[7] Biham E. and. Shamir A., “A New Cryptanalytic 
Attack on DES: Differential Fault Analysis,” 
avalible at: http:// cryptome.org/jya/dfa.htm, last 
visited 1996. 

[8] Blomer J. and Seifert P., “Fault Based 
Cryptanalysis of the Advanced Encryption 
Standard,” in Proceedings of Computer Aided  
Verification the 15th International Conference, 
USA, vol. 2742, pp. 162-181, 2003.  

[9] Boneh D., Demillo A., and Lipton J., “on the 
Importance of Checking Cryptographic Protocols 
for Faults,” in Proceedings of the 16th annual 
international conference on Theory and 
application of cryptographic techniques, Berlin, 
vol. 1233, pp. 37-51, 1997. 

[10] Chien-Ning C. and Sung-Ming Y., “Differential 
Fault Analysis on AES Key Schedule and Some 
Countermeasures,” in Proceedings of the 8th 

Australasian conference on Information security 
and privacy, Australia, pp. 118-129, 2003. 

[11] Daemen J. and Rijman V., “ The  Block Cipher 
Rijndael,” in Proceedings of Smart Card 
Research and Applications, Lecture Notes in 
Computer Science, Belgium, pp. 288-296, 2000. 

[12] Daemen J. and Rijmen V., “AES Proposal 
Rijndael, the First Advanced Encryption 
Standard,” Candidate Conference, NIST, 1998.  

[13] Dusart P., Letourneus G., and Vivolo O., 
“Differential Fault Analysis on AES,” in 
Proceedings of  the 1st International Conference 
on Applied Cryptography and Network Security, 
Lecture Notes in Computer Science, China, vol. 
2846, pp. 293-306, 2003. 

[14] Giraud C., “DFA on AES,” in Proceedings of  the 
4th International conference on Advanced 
Encryption Standard, Germany, pp. 27-41, 2004. 

[15] Gutmann P., “Data Remanence in Semiconductor 
Devices,” in Proceedings of  the 10th Conference 
on USENIX Security Symposium, USA, vol. 10, 
pp. 4, 2001. 

[16] Jacob M., Boneh D., and Felten E., “Attacking 
an Obfuscated Cipher by Injecting Faults” in 
Proceedings of ACM workshop on Digital Rights 
Management, USA, pp. 16-31, 2002. 

[17] Joye M. and Quisquater J., “Attacks on Systems 
using Chinese Remaindering,” Technical Report 
CG 1996/9, Belgium, 1996. 

[18] Klima V. and Rosa T., “Further Results and 
Considerations on Side Channel Attacks on 
RSA,” in Proceedings of the 4th International 
Workshop Redwood Shores Cryptographic 
Hardware and Embedded Systems-CHES, USA, 
pp. 244-259, 2002.  

[19] Klima V. and Rosa T., “Attack on Private 
Signature Keys of the Open PGP Format,” 
available at: http://eprint.iacr.org/2002/076. pdf, 
last visited 2004. 

[20] Koeune F. and Quisquater J., “A Timing Attack 
Against Rijndael,” Technical Report CG-1999/1, 
Universite Catolique de Louvain, 1999. 

[21] Maher P., “Fault Induction Attacks, Tamper 
Resistance, and Hostile Reverse Engineering in 
Perspective,” in Proceedings of the 1st 
International Conference on Financial  
Cryptography, Lectures Notes in Computer 
Science, British West Indies, vol. 1318, pp. 109-
121, 1997. 

[22] Malkin G., Standaert X., and Yung M., “A 
Comparative Cost/Security Analysis of Fault 
Attack Countermeasures,” in Proceedings of  the 
2nd Workshop on Fault Detection and Tolerance 
in Cryptography Edinburgh, UK, pp. 109-123, 
2005. 

[23] Marc J. and Jean-Jacques Q., “Faulty RSA 
Encryption,” Technical Report CG-1997/8, UCL 
Crypto Group, 1997. 

[24] Moradi A., Mohammad T., Manzuri S., and 
Mahmoud S., “A Generalized Method of 
Differential Fault Attack Against AES 
Cryptosystem,” in Proceedings of the 8th 

International Workshop Cryptographic 
Hardware and Embedded Systems-CHES, Japan, 
pp. 91-100, 2006. 

[25] NIST, “Advanced Encryption Standard,” 
Federal Information Processing Standards 
Publication FIPS-1997, 2001. 

[26] Paillier P., “Evaluating Differential Fault 
Analysis of Unknown Cryptosystems,” in 
Proceedings of the 2nd International Workshop 
on Practice and Theory in Public Key 
Cryptography, Japan, pp. 235-244, 1999. 

[27] Peacham D. and Thomas B., “A DFA Attack 
Against the AES Key Schedule,” Available at 
http://www.siventure.com/pdfs/AES_KeySchedu
le_DFA_whitepaper.pdf, last visited 2011. 

[28] Skorobogatov P. and Anderson R., “Optical 
Fault Induction Attack,” in Proceedings of the 
4th International Workshop Redwood Shores 



The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013 
 

Cryptographic Hardware and Embedded 
Systems-CHES , vol. 2523, pp. 13-15,  2002. 

[29] Takahashi J. and Fukunaga T., “Differential Fault 
Analysis on the AES Key Schedule,” available at: 
http://eprint.iacr.org/2007/480. pdf, last visited 
2007. 

[30] Takahashi J., Fukunaga, T., and Yamakoshi K., 
“DFA Mechanism on the AES Key Schedule,” in 
Proceedings of  Workshop on Fault Diagnosis 
and Tolerance in Cryptography, Vienna, pp. 62-
74, 2007. 

[31] Voyiatzis G. and Serpanos N., “A Fault Injection 
Attack on Fiat-Shamir Cryptosystems,” in 
Proceedings of  the 24th International Conference 
on Distributed Computing Systems Workshops, 
pp. 618-621, 2004. 

[32] Zheng Y., “Breaking Real World 
Implementations of Cryptosystems by 
Manipulating Their Random Number 
Generation,” in Proceedings of the 29th 

Symposium on Cryptography and Information 
Security, Japan, pp. 1-7, 1997. 

 
Saleem Raza received his MSc 
degree in computer and network 
security from Middlesex 
University London. He also, did 
PGCert in Engineering-Advanced 
computing from University of the 
Bristol, UK.  He has been teaching 

for four years at various national and international 
institutions and colleges in UK and Pakistan. His 
research interests include network security and 
cryptography. Also, interested in enhancing learning of 
university students, improvements in curriculum, and 
databases. 
 

Malik Najmus Saqib received his 
MS degree in software engineering 
from COMSATS Institute of IT 
Pakistan, in 2003. He completed his 
PhD studies from Vienna University 
of Technology Austria in 2009. His 
PhD work was on security issues in 

mobile/multi agent system. He also worked as a 
research in University of California at Davis, USA. He 
is in technical program committee of international 
conferences and invited speakers in various workshops. 
His research focuses information security, security 
issues in wireless sensor network. 
 
 
 
 
 
 
 

Azfar Shakeel is working as 
Lecturer in Computer Sciences 
Department, COMSATS Institute of 
Information Technology, Pakistan. 
He has done MS-IT from NUST, 
SEECS, MCS from University of 
Arid Agriculture Rawalpindi and 

MBA from International Islamic University 
Islamabad. He has several years of university level 
teaching experience and has research interests in 
information security, cryptography and cellular 
automata and its applications. 
 

Majid Iqbal Khan received his 
BSc degree with majors in 
Mathematics and Physics in 2001 
and MS in software engineering in 
2004. He obtained his PhD in 
wireless sensor networks from 
University of Vienna, Austria, in 

2009.  He has been enjoying a distinguished carrier in 
both research and academics. He is author of several 
research articles. He is a member editorial board of 
reputed international conferences. His research interest 
includes network optimization, network security and 
internet of things. 

 
 


