
268 The International Arab Journal of Information Technology, Vol. 11, No. 3, May 2014

Reduct Algorithm Based Execution Times

Prediction in Knowledge Discovery Cloud

Computing Environment

Kun Gao, Qin Wang, and Lifeng Xi

Computer and Information Technology College, Zhejiang Wanli University, China

Abstract: Cloud environment is a complex system which includes the matching between computation resources and data

resources. Efficient predicting services execution time is a key component of successful tasks scheduling and resource

allocation in cloud computing environment. In this paper, we propose a framework for supporting knowledge discovery

application running in cloud environment as well as a holistic approach to predict the application execution times. We use

rough sets theory to determine a reduct and then compute the execution time prediction. The spirit of the algorithm, which we

proposed comes from the number of attributes within a given discernibility matrix. We also propose to join dynamic data

related to the performances of various knowledge discovery services in the cloud computing environment for supporting the

prediction. This information can be joined as additional metadata stored in cloud environment. Experimental result verifies

that the proposed algorithm in this paper supply a general solution for the problem of web service execution time prediction in

cloud environment.

Keywords: Distributed computing, cloud computing, knowledge discovery, rough set.

Received April 5, 2012; accepted January 17, 2013; published online April 4, 2013

1. Introduction

Cloud computing is an Internet based super computing

model. A cloud computing environment can be made

up of tens of thousands of computer nodes [15].

Therefore, cloud computing has powerful

computational ability to simulate nuclear explosions,

predict climate change and market trend so much so

that make you experience the computing power with

10 trillion times per second. According to the

requirement of clients, they can employ the

computational resource in cloud environment by means

of computers, laptops, cell phones and so on [8].

The network which provides resources is called as

“Cloud Environment”. The narrow concept of cloud

computing refers to the delivery and usage patterns of

Information System (IS) infrastructure. From the user

perspective, the resources in Cloud Environment could

be scalable infinitely, accessible anytime anywhere,

used on demand whenever and charged according to

the amount of use [14]. The broad concept of cloud

computing refers to the delivery and usage of services.

This service can be the Information Technology,

software, applications based on Internet and other

services [7].

Cloud computing is the joint development result of

distributed computing, parallel computing and grid

computing [2, 4]. We can also consider that cloud

computing is the commercial implementation of these

computer science concepts. Basic principles of cloud

computing is that the computation is spread on a large

number of the distributed nodes rather than the local

computer or just only the remote central server. Cloud

computing allows enterprises allocate the resource to

the requisite applications and access the services and

storage system according to its need [12]. This is a

revolutionary change; it's like that the old single

generator model change to a centralized power supply

mode in power plant. It means that the computing

power can also be used as a commodity circulation,

like gas, electricity and water, accessible conveniently

and cost lowly. The main difference is that cloud

application is transmitted via the internet. Cloud

computing blueprint is already apparent: in the future,

only need a laptop or a mobile phone, everything what

we need to do can be done via Internet including

supercomputing applications. From this perspective,

the end user is the real owner of cloud computing [11].

Cloud environment is an efficient solution for both

computing intensive and data intensive applications, so

it is a natural platform for deploying a high

performance knowledge discovery application. In this

paper, we propose a distributed knowledge discovery

cloud environment called as Knowledge Discovery

Cloud environment (KDC), which specially execute

knowledge discovery application in distributed

environment.

A key issue of scheduling knowledge discovery

applications and resource allocation is the ability to

accurately predict the execution times of an

Reduct Algorithm Based Execution Times Prediction in Knowledge Discovery Cloud Computing Environment 269

application. Such technique can improve the

performance of scheduling algorithms and help predict

queue times in cloud computing environments. An

efficient cloud computing environment is a complex

system which includes the matching between

computation resources and data resources. For

example, the KDC environment provides a specialized

broker for distributed knowledge discovery

computation: given a knowledge discovery service in

cloud environment, the broker will perform resource

allocation and tasks scheduling, construct actual

implementation strategy and return the outcomes to the

client. The implementation plan must be developed to

meet certain conditions, such as cost efficient,

preference, cloud environment algorithm and so on.

Once the implementation plan is complete, it will be

delivered to cloud resource management service to

perform. Obviously, many diverse implementation

solutions can be developed, and the resource allocation

and execution management services will select the

most cost effective solution. In its decision making

process, this service has to accurately predict

applications execution times so as to help predict

queue times and improve the performance of allocation

and scheduling algorithms. Unfortunately, the

execution times depend on many factors: data size,

specific mining parameters provided by users and

actual status of the cloud environment etc.

Furthermore, the mutual relations between the data

source will essentially impact the response times of

knowledge discovery applications. Therefore, to

predict the execution time is very difficult.

The basic principle of proposed execution time

prediction algorithms is that similar services have the

similar features. So, we can construct a database that

includes some attributes of knowledge discovery

applications together with their respective execution

time. For predicting execution times of a knowledge

discovery service, firstly we can recognize the similar

services in the above database, and then calculate a

statistical prediction of these recognized services,

finally this statistical value can be as the predicted

execution time. Due to the lack of the dynamic

attribute of resource availability, we propose to build a

database about performance so as to best predict the

performance in dynamic environment. This component

regards monitoring information about previous

implementation of the various knowledge discovery

services on particular data sets.

The essential problem with this method is the

definition of similarity. There are many standards to

judge whether or not services are similar. For example,

we can consider two services are similar because they

come from the same account and the same network

node or because they have the same requirement and

run on the same data set. Therefore, we have to

research efficient method to recognize the similar

services. Such method should have the ability to

correctly select the features of services that best decide

similarity.

In this paper, we propose a holistic method to

prediction that employ reduct algorithm to decide a

similarity template and then calculate the execution

times prediction based on the recognized similar

services. The rest of this paper is organized as follows:

We introduce related works and point out the

limitations of some previous works in section 2. The

suitability of rough set to predict cloud services

execution times is discussed in section 3. In section 4,

we recall necessary rough set notions used in this

paper, and then present our reduct algorithm and

services execution times prediction algorithm. In

section 5, we present the KDC environment in which

the distributed knowledge discovery application can be

executed. In section 6, we conduct experiments to

evaluate the proposed algorithm. Finally, in section 7,

we conclude this paper.

2. Related Works

Some scientists proposed to make use of similarity

templates of jobs characteristics to make out similar

jobs recorded in the log [1, 3, 10]. A similarity

template is a set of characteristics that we employ to

compare jobs so as to decide whether or not jobs are

similar. Therefore, some scientists choose the queue

name as the feature to decide similarity in history

records from parallel and distributed workloads. They

thought that jobs allocated to the same queue were

similar. In other study, scientists employ some

templates for the same history records, including

client, task name, number of computers and age.

Selecting similarity templates by hand have the

following limitations: on one hand, recognizing the

features that best decide similarity isn't permanently

feasible; on the other hand, it's not universal: even

though a specific set of features might be suitable for

one field, it's not always suitable to other fields.

In [9], authors employ genetic algorithms and

greedy search techniques to automated definite and

search for templates. They obtain improved prediction

accuracy by means of this method.

In this paper, we propose a novel reduct algorithm

which bases on rough set theory to work out the

question of automatically choosing features that best

define similarity. In contrast to [9], our method

determines a reduct as template, instead of using

greedy and genetic algorithms and obtains the higher

accuracy. Rough sets theory offers a robust theory for

recognizing templates automatically. The whole

procedure of recognizing similarity templates and

matching services to similar services is based on rough

sets theory. Rough set theory supplies a suitable

solution with a robust mathematical foundation.

270 The International Arab Journal of Information Technology, Vol. 11, No. 3, May 2014

3. Rough Set Based Execution Times

Prediction

Rough set theory supply a robust theoretical

foundation to us for deciding the features that best

define similarity since it can efficient handle

uncertainty problem in data. Rough set theory only

needs the connotation of the data itself, no external

additional information. The history of data can be

described as an IS in which every instance are the

history tasks whose execution times and other

attributes have been stored. The attributes in the IS are

features of history tasks. In accordance with the terms

of rough set theory, tasks execution time is the decision

attribute, accordingly, the condition attributes are

composed of the other attributes. Rough set model is

intuitive and easy to draw causal relationship between

attributes, make it easier to determine the dependencies

between the stored attributes and the tasks execution

times. Therefore, we can recognize the similar task

according to the condition attributes that are

dependency and importance in deciding the execution

time. So, some attributes which strongly impact the

execution time can constitute a fine similarity template.

Having changed the question of tasks execution time as

a IS question, then we study the basis notions that are

appropriate in deciding the similarity template. The

function of similarity template in task execution time

prediction is to recognize a set of features on the

foundation of which we use to compare tasks.

A similarity template should be composed of the

higher significant attributes that decide the execution

time without any redundant attributes. A reduct set

should be composed of the minimal number of

condition properties which have the same

discriminating ability as the whole IS. Accordingly, the

similarity template is same as a reduct set which

consists of the important contribution attributes.

Obviously, if there are too many properties in the

template, it is not able to better identify similarities.

For example, if n features are included in the similarity

template, two tasks are similar only because they are

recognized according to all n features. However, this

method will largely restrict our capacity to detect

similar tasks since not all attributes are certainly

related in deciding the execution time. On the contrary,

this method will cause mistakes, since tasks that are

similarities very much may be measured dissimilar

even though they are different in one feature which had

little impact on the execution time.

Detecting a reduct set is equivalent to feature

selection question. All reduct set of a data set may be

got by building discernibility function. Many studies

about the reduct have been done: In [5], authors

present an algorithm which use significant of

properties as heuristics; in [13], authors used powerful

equivalence to facilitate discernibility function. More

studies show that detecting minimal reduct set is NP

hard problem and no general approach. This problem is

still open in the related field.

Rough sets theory has very apposite and proper

constructs for recognizing the attributes that best

define similarity for predicting tasks execution time. A

similarity template should contain properties which

largely impact the execution time and remove the

inappreciable factors. This makes sure that the

standards with which we compare tasks for similarity

have an important impact on deciding execution time.

Therefore, tasks that have the same features regarding

these standards will have similar execution time.

4. Heuristic Reduct Algorithm and Service

Execution Time Prediction Algorithm

In this section, we first review important rough set

concepts [6] used in this section, then present the

reduct algorithm and task execution time prediction

algorithm.

4.1. Related Rough Set Concepts

• Information System: An information system is an

ordered pair:

IS (U , C D, C D)ϕ= ∪ ∩ =

(1)

Where U is a non-empty finite set of instance

called the universe, the elements of the U are

called objects or instances. C is a non-empty,

finite set of conditional attributes such that

α:U→Vα for every α∈C. The set Vα is called the

value set of α and D is a decision attribute.

• Indiscernibility Relation: Let IS=(U,C∪D) be an

information system, every subset E⊆C defines an

equivalence relation IND(E), called an

indiscernibility relation, defined as:

IND (E) {(i , j) U U : (i) (j)}α α= ∈ × = (2)

• Positive Region: Given an information system,

IS=(U,C∪D), let I⊆U be a set of objects and

J⊆C a selected set of attributes. The lower

approximation of I with respect to J is:

* B
B (I) { i U : [i] I }= ∈ ⊆

(3)

The upper approximation of X with respect to B

is:

*

BB (I) { i U : [i] I }ϕ= ∈ ∩ ≠

(4)

The positive region of decision D with respect to

B is:

)}D(IND/UI:)I(*B{U)D(POSITIVEB ∈=
(5)

• Reduct: For any B⊆C, if POSITIVEB(D)=

POSITIVEB-{α}(D) then attribute α is dispensable.

Reduct Algorithm Based Execution Times Prediction in Knowledge Discovery Cloud Computing Environment 271

For any a set of attributes B’⊆B, if all attributes

α∈B-B are dispensable, and POSITIVEB(D)=

POSITIVEB’(D), then B’ is a ruduc of B’.

In IS, there exist numerous reduct sets. Detecting

minimal reduct and all reduct sets are NP hard

problem and no general approach. For the sake of

finding a proper reduct, it is necessary to introduce

the concept of discernibility matrix and

discernibility function.

• Discernibility Matrix and Function: Let is be an

IS with m instance. The discernibility matrix of

is is a symmetric m×n’ matrix with fij as given

below:

ij i jf { is | (y) (y)}

for i, j=1, …, n

α α α= ∈ ≠

(6)

A discernibility function fq for an IS is is a

Boolean function of m Boolean variables
* *

1 mc , ..., c (corresponding to the attribute c1, …,

cm) defined as follows:

* * *

s 1 m ij ijf (c , ..., c) { f | 1 j i m ,f }ϕ= ∧ ∨ ≤ ≤ ≤ ≠

(7)

Where }f|{c ij

**

ij ∈= αα .

The set of all prime implicants of fS determines the

set of all reducts of IS.

4.2. Heuristic Reduct Algorithm

The essence of the heuristic reduct algorithm lies

in: when a reduct set intersect discernibility matrix,

the result set cannot be Φ. Instance i and j will be

indiscernible if the intersection of cij with any

reduct is Φ. If so, it will be in contradiction with

the definition of reduct.

 We can build this heuristic algorithm based on the

following plain and direct way: Let original reduct

set REDUCT=Φ, and scan each element of

discernibility matrix. If their intersection is Φ, a

haphazard attribute from the matrix will be selected

and added in REDUCT, else pass the element. Redo

this process until whole elements are scanned. Once

all the elements in the matrix have been processed,

we will get a coarse reduct.

 Although, this algorithm is most straightforward,

the below shortcoming is not overcome. For

instance, there are 3 elements in the discernibility

matrix: {s1, s3}, {s2, s3}, {s3}. Based on above

algorithm, the reduct set is {s1, s2, s3}. In fact, the

reduct is obviously only {s3}. The reason leading to

this problem is that the above algorithm for

computation reduct is only necessary condition but

not sufficient condition. This algorithm does not

take into account that a reduct should be a

minimum number of data set.

For obtaining reduct, or even the lesser reduct,

we have to add in more conditions.

An effortless but efficient approach is to order

the sequence of elements in the matrix. We can

understand if there is just only one element in the

matrix then this element should be a member of the

reduct set. For a reduct set, we think that fewer

elements in the set and more frequent occurrences

in the matrix will have more ability to classify.

Having ordered the cij, we will select the more

contribution elements to prevent the shortcoming

from happening again.

The final version of the heuristic algorithm has

two significant ideas: one is that the more

frequently the element, the more possible it is a

member of reduct set; the other is to introduce a

weighting mechanism, properties emerged in fewer

element will obtain higher weight. The main

procedure of the algorithm is presented as follows:

First, all the same elements in cij are integrated and

their frequency is marked. Then the matrix is

arranged sequence based on the length of each

element. If some elements have the same length,

give priority to the more frequent element. The

frequency of each property is counted while

building the discernibility matrix. The frequencies

are utilized in assisting selecting property when it

is required to select one property from some

element to join in the reduct. Algorithm 1 is the

pseudo code of our reduct algorithm.

Algorithm 1:

1. Let an IS information system IS = (U,C∪D,C∩D=φ).

2. Let REDUCT=Φ, count (ai) = 0, where A=∪ai, i = 1,

…, n.

3. Build discernibility matrix MATRIX and calculate

frequency of each property(ai);

4. For discernibility matrix MATRIX, integrate and

arrange sequence;

5. For each element e in MATRIX do

a. If (e∩REDUCT==Φ)

 Select property a with maximal count(a) in e;

b. REDUCT=REDUCT∪{a}

End if

6. Return REDUCT

4.3. Service Execution Times Prediction

Algorithm

In this section, we will review the prediction

algorithm on the whole. The input of this algorithm

is past record of services features accumulated

during some period, especially covering real

execution times, and a service with known

parameters whose execution time we want to

predict. We present the detailed description of this

algorithm as follows:

• Partition the past record into condition attributes

and decision attributes. The recorded execution

time is the decision property and the others are

the condition properties.

272 The International Arab Journal of Information Technology, Vol. 11, No. 3, May 2014

• Utilize the heuristic reduct algorithm to the past

record and recognizing the similarity template.

• Combine the current service CT with the past

service PT to build a current past CPT.

• Decide the equivalence classes related to the

recognized similarity templates from CPT.

• Recognize the equivalence class EC to which CT

belongs.

• Calculate the mean of the execution times of the

instances: EC∩PT.

Algorithm 2 shows a formal view of the prediction

algorithm. As we illustrated above, the whole

procedure of recognizing similarity template and

matching current services to similar services is

based on rough sets theory. Thus the algorithm

supplies a proper method with a sound

mathematical foundation.

Algorithm 2:

1. Let past services = PT, Current Service = CT.

2. Partition PT such that the execution time is the

decision attribute and others features are the

condition attributes.

3. Utilize the Heuristic Reduct Algorithm to the past

record and produce a similarity template ST.

4. Let CPT = CT + PT, where CT and PT are union

compatible.

5. Calculate equivalence classes of CPT related to ST.

6. Recognize equivalence class EC to which CT belongs.

7. Calculate the mean of the recorded execution time

PET in HT for all instances EC∩PT.

5. KDC-Knowledge Discovery Cloud

Cloud computing environment is a natural platform for

deploying a high performance knowledge discovery

application because this kind of application is both

information and computation intensive. Once

knowledge discovery transplant into cloud computing

environment, it will spreads information data, software

and computation on distributed cloud nodes, delivers

the computation as a service, shares resources and

regards the software and information as utilities. Since

the resource in Cloud environment can be extended

unlimitedly, so this kind of information service lets

organizer make their functions increased and

performance enhanced more rapidly. Correspondingly,

the resources in this environment will need simpler

management and less maintenance. The applications of

cloud computing will also further rapidly regulate

information technology to adapt to the instability and

irregular business requirements.

In this section, we present the KDC environment

which specially process knowledge discovery in

distributed environment. The main purpose to design

and develop the KDC system is to make the distributed

knowledge discovery possible and improve its

performance. Clients can execute the knowledge

discovery application in a transparent way, that is, the

concrete system structure, operation and characteristic

in the Cloud environment is to be hidden. The features

of KDC are list as follows:

• KDC adopts the standard, common and open Cloud

service mode, and offers unified support to the

knowledge discovery applications. According to the

existing networks system structure, KDC use the

Cloud service to realize communication, operates

each other and resource management.

• KDC is open and supports various knowledge

discovery tools and algorithms. Various applications

can be imported through the uniform interface of

Web service.

• KDC has strong scalability. Its performance can be

enhanced by increasing network node, high

performance computing node and cluster.

• KDC can process distributed large volumes of high

dimensional dataset, support heterogeneity data

source.

Figure 1 describes the distributed system framework

that we designed and developed. It is mainly made up

by following components:

• KDC Client Node: In consideration of ease of use,

the system adopts Browser/Server mode. Cloud

client exchanges information with cloud portal

through Web browser. Users submit the requirement

of knowledge discovery and receive the final result

at cloud client.

• KDC Portal Node: It provides a single access way

to distributed knowledge discovery application

based cloud. Users can make use of the whole cloud

resource transparently through the cloud portal. This

component is responsible for translating users'

demand into the language Resource Specification

Language (RSL) that can be recognized by cloud.

This component is also used for cloud resource

discovery and cloud resource allocation

management. The final result is returned to cloud

portal first, and then returned to users by the portal.

• KDC Resource Allocation Broker Node and KDC

Services Scheduling Broker Node: User’s

knowledge discovery requirement has driven cloud

resource discovery. According to users' demand

condition, KDC resource broker looks for the

resources which meet the condition in a large

number of cloud resources, including algorithms,

computing capability and data resource. It is an

important job that finds appropriate resource. As to

any application based on cloud, it is first to find

appropriate resource, then allocate services and

management them. It is conceivable that there may

be many nodes which fit a condition. Resource

broker is used for finding available resource among

Meta Directory Service (MDS); mapping between

data resource and computing resource, i. e., the

Reduct Algorithm Based Execution Times Prediction in Knowledge Discovery Cloud Computing Environment 273

service allocation broker is responsible for

dispatching a certain service on a certain node.

• Cloud Node: The cloud nodes are made up of

personal computer, high performance computer and

cluster. They are the data carrier and the

computation implementation entity.

Figure 1. Knowledge discovery cloud architecture.

6. Experiments and Results

This experiment aims to validate the prediction

accuracy of our reduct algorithm in KDC environment

and investigate the impact on predicting performance

by changing the number of condition attributes. We

adjust the test case from the past records by removing

the execution time attribute and changing the number

of condition attributes. Therefore, an experiment case

is composed of all attributes but the recorded execution

time. This experimental design is to determine a

predicted execution time via our prediction technology

and contrast it with the real execution time.

We collect past record of knowledge discovery

services by performing several knowledge discovery

algorithms and recording statistics about the

parameters. We conduct several experiments of

knowledge discovery services by changing the

parameters of the services such as the knowledge

discovery algorithm, network parameters, data set, data

size and so on.

The simulated environment is similar to an actual

cloud environment. It is composed of fifteen machines.

Those machines have different physical configurations

(CPU, memory, disk, and network adaptor etc.,),

operating systems (windows, Mac OS X, Linux and

Unix) and bandwidth of network. We used histories

with 100 and 150 records and each experimental run

consisted of 25 tests.

Figure 2 shows the actual execution time versus

predicted execution time of services; Figure 3

illustrates the impact on prediction performance by

varying the number of condition attributes.

Figure 3. Attributes numbers vs. prediction performance.

Figure 2. Actual versus predicted execution time.

Knowledge
Discovery Cloud

Request

 User Portal Interface

Parse

Resource Broker
Monitoring &
Discovery
Service

Services Scheduling

Service Requirement

Index
Information
Service

GRIS

KDC Node

Resource Allocat ion

Scheduler

Data Access & Integration

KDC Node

Resource Allocat ion

Scheduler

Data Access & Integration

Cloud Services

Scheduling

Broker Node

Knowledge

DIscovery

CLoud Node

Data Service
Catalogue

Computat ion
Service
Catalogue

Network
Information
Servvice

…

…...

KDC Node

RA

Scheduler

DAI

Execution Plan

Cloud

Resource

Allocatonb

Broker Node

Cloud

Client Node

K
D

C

In
fo

rm
a

tio
n

S
e

rvic
e

Data

Parameter

Algorithm

Data
Resource

...

Computing
Resource

Cloud

Portal Node

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

M
ea
n
 E
rr
o
r/
M
ea
n
 R
u
n
 T
im
es
(%
)

Experiment Serial Number

Impact of Varying Condition Attributes on Prediction Performance

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

S
er
v
ic
e
E
x
ec
u
ti
o
n
 T
im
e
(M

in
u
te
s)

Experimental Serial Number

Estimate Actual

274 The International Arab Journal of Information Technology, Vol. 11, No. 3, May 2014

Another criterion used for contrast is the percentage

of the mean error to the mean execution times, that is,

(Mean Error)/ (Mean Execution Time). The lower this

value is, the better prediction accuracy it has. For the

San Diego Supercomputer Center data set SDSC95 and

SDSC96, we do 10 times the experiment. For each test

case, we recorded the reduct set, the predicted

execution time and the real execution time. In [9],

authors have published their experimental results for

their greedy search and genetic algorithm techniques.

We present comparison results of three technologies,

which is greedy search, genetic algorithm and Reduct

Algorithm, in Figure 4. The experimental result

indicates that we obtained more accuracy prediction

than other technologies in most cases.

Figure 4. Accuracy contrast.

Since reduct algorithm fully operate on the

foundation of history records and need no other

information, thus the more abundant the information

related to performance, the more accurate the

prediction is.

7. Conclusions

We have proposed a KDC system for supporting

knowledge discovery application running in cloud

environment as well as a holistic approach to predict

the service execution times. In order to meet the needs

of the system to improve performance, we propose a

reduct algorithm for predicting the services execution

time in cloud computing environment. Our hypothesis

that rough sets are suitable for predicting Web Service

execution time in cloud environment is validated by

the experimental results, which demonstrate the good

prediction accuracy of our approach. The prediction

technique presented in this paper is generic and can be

applied to other optimization problems.

Acknowledgement

This work is supported by Zhejiang Province Public

Technology Research and Industrial Project (No.

2011C31005, and Ningbo Science and Technology

Bureau Project (No. 2010C80064).

References

[1] Allen B., “Predicting Queue Times on Space-

Sharing Parallel Computers,” in Proceedings of

the 11
th
 International Symposium on Parallel

Processing, Geneva, Switzerland, pp. 209-218,

1997.

[2] Daniel N., Rich W., Chris G., Obertelli G.,

Soman S., Youseff L., and Zagorodnov D., “The

Eucalyptus Open-Source Cloud-Computing

System,” in Proceedings of the 9
th
 IEEE/ACM

International Symposium on Cluster Computing

and the Grid, Shanghai, China, pp. 124-131,

2009.

[3] Gibbons R., “A Historical Application Profiler

for Use by Parallel Schedulers,” in Proceedings

of Job Scheduling Strategies for Parallel

Processing, Lecture Notes in Computer Science,

Berlin, Germany, vol. 1291, pp. 58-77, 1997.

[4] Hassan M. and Abdullah A., “A New Grid

Resource Discovery Framework,” the

International Arab Journal of Information

Technology, vol. 8, no. 1, pp. 99-107, 2011.

[5] Herawan T., Deris M., and Abawajy J., “A

Rough Set Approach for Selecting Clustering

Attribute,” Knowledge-Based Systems, vol. 23,

no. 3, pp. 220-231, 2010.

[6] Komorowski J., Pawlak Z., Polkowski L., and

Skowron A., “Rough Sets: A Tutorial,” in

Proceedings of Rough-Fuzzy Hybridization: A

New Trend in Decision Making, Berlin,

Germany, pp. 3-98, 1998.

[7] Luis M., Luis R., Juan C., and Maik L., “A Break

in the Clouds: Towards a Cloud Definition,”

ACM SIGCOMM Computer Communication

Review, vol. 39, no. 1, pp. 50-55, 2008.

[8] Michael A., Armando F., Rean G., Joseph A.,

Katz R., Konwinski A., Lee G., Patterson D.,

Rabkin A., Stoica I., and Zaharia M., “A View of

Cloud Computing,” Communications of the

ACM, vol. 53, no. 4, pp. 50-58, 2010.

[9] Smith W., Foster I., and Taylor V., “Predicting

Application Runtimes Using Historical

Information,” in Proceedings of Job Scheduling

Strategies for Parallel Processing, Lecture Notes

in Computer Science, Berlin, Germany, vol.

1459, pp. 122-142, 1998.

[10] Smith W., Taylor V., and Foster I., “Using Run-

Time Predictions to Estimate Queue Wait Times

and Improve Scheduler Performance,” in

Proceedings of Job Scheduling Strategies for

Parallel Processing, Lecture Notes in Computer

Science, Berlin, Germany, vol. 1659, pp. 202-

229, 1999.

[11] Vecchiola C., Pandey S., and Buyya R., “High-

Performance Cloud Computing: A View of

Scientific Applications,” in Proceedings of the

10
th
 IEEE Computer Society, the International

0

10

20

30

40

50

60

70

80

90

Rough Best Rough

Worst

Rough

Avg.

Rough Best Rough

Worst

Rough

Avg.

M
ea
n
 E
rr
o
r

Genetic Algorithm Best Greedy Search Best Rough

Reduct Algorithm Based Execution Times Prediction in Knowledge Discovery Cloud Computing Environment 275

Symposium on Pervasive Systems, Algorithms

and Networks, Kaohsiung, Taiwan, pp.4-16,

2009.

[12] Wang C., Wang Q., Ren K., and Lou W.,

“Privacy-Preserving Public Auditing for Data

Storage Security in Cloud Computing,” in

Proceedings of IEEE INFOCOM, San Diego,

USA, pp. 1-9, 2010.

[13] Wang X., Yang J., Teng X., Xia W., and Jensen

R., “Feature Selection Based on Rough Sets and

Particle Swarm Optimization,” Pattern

Recognition Letters, vol. 28, no. 4, pp. 459-471,

2007.

[14] Yu S., Wang C., Ren K., and Lou W.,

“Achieving Secure, Scalable, and Fine-Grained

Data Access Control in Cloud Computing,” in

Proceedings of IEEE INFOCOM, San Diego,

USA, pp. 1-9, 2010.

[15] Zhang Q., Cheng L., and Boutaba R., “Cloud

Computing: State-of-the-Art and Research

Challenges,” Journal of Internet Services and

Applications, vol. 1, no. 1, pp. 7-18, 2010.

Kun Gao received his Master degree

and PhD from Jilin University and

Donghua University, respectively.

He is a researcher at the School of

Computer Science and Information

Technology in Zhejiang Wanli

University, China. His research

interests include distributed and parallel computing,

cloud computing, knowledge discovery, rough set and

so on.

Qin Wang is working as an associate

professor in the School of Computer

Science and Information Technology

in Zhejiang Wanli University, China.

Her research interests include

computer networks, algorithms and

soft computing.

Lifeng Xi is working as a professor

in the School of Computer Science

and Information Technology in

Zhejiang Wanli University, China.

His research interests include

algorithms analysis, complexity and

image processing.

