
The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014                                                    521 

 

 

Parallel Method for Computing Elliptic Curve 

Scalar Multiplication Based on MOF 
 

Mohammad Anagreh, Azman Samsudin and Mohd Adib Omar 

School of Computer Sciences, Universiti Sains Malaysia, Malaysia 

 
Abstract: This paper focuses on optimizing the Elliptic Curve Cryptography (ECC) scalar multiplication by optimizing one of 
the ECC calculations, which is based on the Mutual Opposite Form (MOF) algorithm. A new algorithm is introduced that 
combines the add-subtract scalar multiplication algorithm with the MOF representation to speed-up the ECC scalar 
multiplication. The implementation of the algorithm produces an efficient parallel method that improves the computation time. 
The proposed method is an efficient ECC scalar multiplication that achieves a 90% speed-up compared to the existing 
methods. 
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1. Introduction 

Known as one of the oldest sciences, cryptography is the 
science of using mathematical rules to encrypt and 
decrypt information. Many inventive cryptography 
algorithms have been proposed and implemented over 
the years. Among them are the asymmetric cipher 
algorithms that are based on number theory and elliptic 
curve. 

Two researchers, Koblitz and Miller [8, 9] 
independently introduce Elliptic Curve Cryptography 
(ECC). ECC is one of the public key cryptography 
methods, which depends on the Elliptic Curve Discrete 
Logarithm Problem (ECDLP) of the elliptic curve. ECC 
is commonly used in secure applications to achieve the 
highest security level with shorter key size. In fact, the 
ECC with 160 bit key length is as secure as 1024 bit key 
length for RSA [14]. Shorter key size and yet strong is 
desired for portable devices such as smart card, footprint 
hardware, RFID, and others.   

Many researchers have devoted their efforts in ECC 

[1, 2, 3], although the scalar multiplication in ECC is an 

expensive operation. Scalar multiplication (dP) is 

known as an expansive operation in ECC, where d is an 
integer converted to the binary representation, while p is 
a point on the elliptic curve. Scalar multiplication 

includes two main operations: Adding and doubling 

points on the elliptic curve as shown in Figures 1 and 2.  

 
Figure 1. Adding operation on elliptic curve.  

 

Figure 2. Doubling operation on elliptic curve. 
 

The numbers of these operations are based on the 

length of scalar d, as well as the Hamming weight of 

d [13]. The doubling operation is based on the 
number of digits in scalar d. On the other hand, 
adding operation is based only on the number of non-

zero bits of scalar d. Our work focuses on the 
optimization of the ECC scalar multiplication for case 

of the standard curve over the prime field FP. Several 

researchers have been working on enhancing the 

performance of the scalar multiplication by using 

signed binary representation [4, 6, 9, 11, 12]. One of 

the most common methods to compute the 

exponentiation of random elements in an abelian 

group is by applying the Mutual Opposite Form 

(MOF) representation and sliding window schemes 

for the w on MOF (wMOF) [11]. There have been 

several methods proposed to speed-up the scalar 

multiplication through parallelization [2, 3, 5, 7]. For 

parallelization, two common methods are used: Data 

decomposition and task decomposition. In this paper, 

scalar multiplication performance is improved by 

parallelizing the related ECC algorithm. Parallelizing 

the conversion algorithm (from binary to MOF 

representation) and scalar multiplication algorithm 

has been identified in as one of the ways to improve 

the overall ECC performance. This paper is organized 
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as follows: Section 1 briefly introduces ECC and scalar 

multiplication algorithms. Section 2 briefly reviews 

ECC and scalar multiplication algorithms. Section 3 

reviews the related work. Section 4 describes the 

proposed method. Section 5 presents result and 

discussion. The last section concludes the proposed 

method. 

 

2. Elliptic Curve Cryptosystem Overview 

Two main finite fields are used in ECC:  Binary curves 
over GF (2m), and prime curves over FP [9]. In our 
work, the focus is on the prime curves over FP. 

 

2.1. Binary Filed Over GF (2
m
) 

Elliptic curve over a finite field GF (2m), consists of 2m
 

elements. Both multiplication and addition operations 
are defined over polynomials of elliptic curve [9]. The 
proposed method uses a cubic equation as variables such 
as x and y and coefficients a and b [9, 10]. The form of 
cubic equation that is used for ECC is as follows: 

                                 
2 2 2

y xy x ax b+ = + +                           

2.2. Prime Filed Over FP 

The prime curves over FP make use of the cubic 
equation as identified in Equation 1 with Cartesian 
coordinate variables (x, y) and coefficients (a, b) as 
elements of FP. All the values are integers and 
calculated by performing modulo p [14]. The cubic 
equation with coefficient (a, b) and variables (x, y) for 
the elliptic curves over FP are as follows: 
 

                      
2 2 2

y mod = (x + ax + b) mod p                   
 

Now, let P = (x1, y1) and Q = (x2, y2) be in the elliptic 
curve set of EP (a, b). In addition, let O be the infinity 
point. The rules for adding operation in elliptic curve is 
as follows: 

                                  P + O = P     
                            

• Given P and Q, if x1 = x2 and y2 = - y1 then:  
 

                                 P + Q = O                                                                   
                             

• If Q ≠ P, then R = Q + P, where R = (x3, y3) is 
defined as  follows: 

 

                                        
2

2 1 2x = λ - x - x mod p                               
 

                       3 1 3 2y = λ(x - x ) - y mod p
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3. Related Work 

3.1. Mutual Opposite Form Representation 

The MOF was proposed by Okeya et al. [11] to convert 

the binary representation to signed binary 

representation, where it can be computed in any order 

(left-to-right and right-to-left). MOF obtained the first 

left-to-right signed exponent recoding scheme by 

applying a sliding window conversion on MOF. 

Each integer has a unique scalar in the MOF 

representation, which is at most one bit longer than its 

binary representation. The MOF representation of the 

binary string d is obtained by copying the binary 
string, shifting d one bit to the right, followed by 
bitwise subtraction. 

Many algorithms have been designed to convert 

binary to signed binary representation in order to 

reduce the Hamming weight, in which MOF 

representation is one of them. MOF representation 

satisfies the following properties:  

1. MOF can implement sliding window method with 

width w, but some other existing methods [4, 6, 

13] cannot be implemented with the sliding 

window scheme.   

2. Less storage is required compared to other existing 

algorithms [11].  

3. MOF method can be computed in both directions: 

left-to-right and right-to-left.  

4. MOF eases the conversion from binary to signed 

binary representation. 

 

3.1.1. Right-to-Left MOF 

Algorithm 1 distinguishes the Right-to-Left MOF 
representation from the binary representation. The 
MOF representation has one bit longer than its binary 
counterpart. 
 

Algorithm 1: Right-to-Left Binary to MOF 

Input: A non-zero n-bit binary string d = d
n−1

, …, d
1, d0

. 
Output: MOF mdn, …, md1, d0 of d.  
1.  md

0 
← −d

0 

2.    For i = 1 to n-1 do 
3.        md

i 
← d

i−1
-d

i 

4.   End for 
5.   md

n 
← d

n−1 
6. Return (mdn, …, md1, d0

) 

 
3.1.2. Left-to-Right MOF 

Algorithm 2 shows the Left-to-Right MOF 

representation converted from the binary 

representation. Similar to the representative found in 

Algorithm 1, the MOF representation in Algorithm 2 

has one bit longer than the binary counterpart. 
 

Algorithm 2: Left-to Right Binary to MOF 

Input: A non-zero n-bit binary string d = d
n−1

, …, d
1
, d

0. 
Output: MOF mdn, …, md1, d0 of d. 
1. md

n 
← −d

n−1 
2.    For i = n-1 to 1 do 
3.        md

i 
← d

i−1
−d

i 
4.  End for 
5.    md

0 
← −d

0 
6. Return (mdn, …, md1, d0

) 

(1) 

(2) 

 

(3)   

(4)   

(5)   

(6)   

(7)   
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3.2. Addition-Subtraction Scalar Multiplication 

(ASSM)  

The scalar multiplication is an operation of adding a 

point P to itself d times and denoted as Q=dP. 
Algorithm 3 is used to compute the scalar multiplication 

based on the binary representation. The occurrence of 

bit `1' in the scalar d will be processed as the addition 

operation, which approximately asymptotic to 
�

�
, while 

the number of doubling operations in the algorithm is n-
1, where n is the length of d in bits. 
 

Algorithm 3: Binary Scalar Multiplication algorithm 

Input: A non-zero n-bit binary string in 1
i 0d 2 d { 0 ,1}−
=∑= ∈  

Output: MOF Q = dP 

1. Q = 0,R = P 

2.  For  i = n-1 to 1 do 
3.        R=2R 
4.       If (di==1) then Q = Q+R 
5.  End for 
6. Return Q based on MOF 
 

Given that the MOF representation is one of the signed 

binary representations, we can compute the scalar 

multiplication by applying Algorithm 4. 

Algorithm 4: The Add-Subtract Scalar Multiplication algorithm  

Input: A nonzero n-bit binary string in 1
i 0d 2d { 1 ,0 ,1}−
=∑= ∈ − . 

Output: MOF Q = dP. 

1.  Q = 0,R = P 

2.  For i = n-1 to 1 do 
3.      R = 2R 
4.       If (di==1 ) then Q = Q+R 

5.       If (di==−1) then Q = Q−R 
6.  End for 
7.  Return Q based on MOF 

 

4. Proposed Method 

In our work, we propose a combination ASSM-MOF of 

the MOF representation algorithm with the add- subtract 

scalar multiplication algorithm to constitute one 

algorithm for calculating the scalar multiplication based 

on the MOF representation without any conversion from 

binary to signed binary representation.  

 

4.1. Combination Mutual Opposite Form and 

Scalar Multiplication 
 

First, we propose a new serial multiplication algorithm, 

ASSM-MOF, to calculate scalar multiplication based on 

the MOF representation. The algorithm combines the 

ASSM algorithm with the MOF algorithm. Algorithms 2 

and 4 show two iteration loops: Each loop for each 

algorithm. When the integer d is generated, it should be 
converted to the MOF representation by applying the 

MOF algorithm. Then, we use the scalar multiplication 

algorithm to compute dP, where d is a MOF 

representation and P is a point on the elliptic curve. We 

calculate the scalar multiplication directly prior to 

comparing the scalar 2d and d. Two possibilities for the 

binary scalar, that is either bit `0' or bit `1'. If the 

scalar 2di is `0' and di is `1', we calculate both 

doubling (ECCDBL) and subtracting (ECCSUB), 

because 2diθdi is already `1', where `θ' is a bitwise 
subtraction. If 2di is `1' and di is `1', we calculate 
doubling (ECCDBL) and adding (ECCADD), 

because 2diθdi is already `1'. Other cases, we 

calculate only the doubling (ECCDBL) for all n-bits, 

because 2diθdi is already `0'. Algorithm 5 shows the 

proposed combination algorithm (ASSM-MOF) of 

the MOF algorithm and scalar multiplication 

algorithm.  
 

Algorithm 5: Combination algorithm (ASSM-MOF) 

Input: A non-zero n-bit binary string in 1
i 0d 2 d { 0 ,1}−
=∑= ∈  

Output: MOF Q = dP based on MOF representation. 

1. Q = 0 ,R = P 

2.   For  i = n-1 to 1 do 
3.        If (2di == 1 & di == 0) then Q = Q+R 

4.        If (2di == 0 & di = = 1 )then Q = Q−R 

5.      R = 2R 
6.   End for 
7. Return Q based on MOF 

 

4.2. Parallel Scalar Multiplication Based on 

MOF  
 

Second, parallelize the proposed method by using two 

processors. The proposed method for calculating the 

dP based on the MOF uses two processors, one for 

the execution of doubling operation, ECCDBL-

Processor, and the other for adding operation, 

ECCADD-Processor. The adding operation uses a 

point from doubling operations. The algorithm works 

based on the task decomposition principal which 

means two processors work together to calculate dP. 
It is important to note that there is dependency in both 

main basic operations (doubling and the other side 

adding and subtracting) which means the execution of 

the adding operation is based on data that comes from 

the doubling operation. However, we need to achieve 

data independent requirement before decomposing 

the task into two independent sub-tasks. To achieve 

this, a circular buffer is used to transmit data between 

processors. The proposed algorithm is divided into 

two sections. The two main sections should be 

executed at the same time. The doubling operation is 

executed in the ECCDBL-Processor while adding and 

subtracting operations are executed in the ECCADD-

Processor. It is important to note that each processor 

has a single thread. The circular buffer is the 

communicating channel between the two processors 

used to transmit the doubling point to the other 

processor as shown in Figure 3. 

We also have to make sure the MOF scalar is not 

zero before calling the ECCADD-Processor. Notably, 

we make sure the maximum size of circular buffer is 

enough to accommodate doubling points before the 

computations begin. The ECCDBL-Processor reads 
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the given point P and then begins performing the 

doubling operations. The ECCDBL-Processor fills up 

the buffer with diP when the di is a non-zero bit. The 
ECCADD-Processor reads the value diP and calculates 
the addition or subtraction. According to this method, 

both processors are working simultaneously at any 

given time. Another thing to note is that, when the 

ECCADD-Processor begins consuming the point from 

the buffer, we should check whether the buffer is empty 

or not. It should be noted as well, that the index of the 

push operation to the circular buffer should be more 

than the index of the pop operation to avoid data 

starvation problems. The parallel code used section 

directives to write the parts for each processor. The 

parallel code consists of two main parts (ECCDBL-

Processor and ECCADD-Processor) as described below: 
 

# pragma omp sections 
 { 

        # pragma omp section //For ECCDBL-Processor 
     { 

               Calculate the doubling operations. 
               Fill circular buffer when the MOF is non-zero bits. 
     } 

       # pragma omp section //For ECCADD-Processor 
     { 

                Check the circular buffer. 
                If the buffer is not empty, read the value. 
               To check the MOF bit representation: 
                   - If the MOF bit is ‘1’, calculate the adding       

operations. 
                   - If the MOF bit is‘‾1’, calculate the subtracting 

operations. 
     } 

} 

 
Figure 3. Parallel ASSM-MOF using circular buffer. 

 

5. Result and Discussion 

The performance of the propose algorithm (ASSM-

MOF) is measured according to the data size as well as 

the occurrence of the non-zero bits in the MOF 

representation of the scalar d. The performance depends 

on the ratio of N=Num of ECCADD/Num of ECCDBL.  
We assume that every bit of the MOF representation 

is non-zero bit; thus, the number of adding and doubling 

operations are the same. It means the performance of the 

proposed algorithm is good because the two processors 

are busy. Let further assume that the most bits of the 

MOF representation are zeros. Under this assumption, 

the execution time of the proposed method is similar to 

the standard method. This is because the idle time of the 

ECCADD-Processor is very big. However, it is 

important to note that the Hamming weight of the 

MOF representation is hardly to be zero. 

For ASSM-MOF algorithm, it is important to 

produce the optimal serial code so that the best serial 

performance for overall ECC application is achieved. 

We use Visual C++ .Net in the implementation to 

write the serial code of the combination algorithm 

(ASSM-MOF). We use the Open MP Library that is 

supported in Visual C++. Package to parallelize serial 

code. It is also important to note that we use the 

Visual Studio.Net 2008 environment to facilitate the 

dual-processor implementation using Microsoft 

Windows 7 Professional Edition. All codes are tested 

on the same machine.  

We use the Intel Pentium machine to implement 

the algorithm. The specification of the Intel Pentium 

is: Dual-Core T4500 Processor (2.30 GHz, 1 MB L2 

cache). The total operations are performed 10 times 

and the average execution time is taken as a result for 

both sequential and parallel codes. The execution 

times for both codes are represented in millisecond in 

Table 1. 
 

Table 1. Result for the proposed parallel method against the 
standard method. 

Key Size 

(bits) 
N 

Serial 

(ms) 

Parallel 

(ms) 
Speed-up Efficiency 

160 
1 
1/2 

0.0240 
0.0135 

0.0126 
0.0082 

1.90 
1.64 

95% 
82% 

192 
1 
1/2 

0.0259 
0.0185 

0.0142 
0.0115 

1.83 
1.61 

91% 
80% 

224 
1 
1/2 

0.0311 
0.0223 

0.0168 
0.0138 

1.85 
1.61 

92% 
80% 

256 
1 
1/2 

0.0421 
0.0244 

0.0220 
0.0149 

1.91 
1.64 

95% 
82% 

384 
1 
1/2 

0.0880 
0.0613 

0.0470 
0.0434 

1.87 
1.41 

94% 
71% 

512 
1 
1/2 

0.2256 
0.1686 

0.1269 
0.1155 

1.78 
1.46 

89% 
73% 

 

The result shows the difference between serial and 

parallel implementation of the algorithm for various 

data size: 160 bit, 192 bit, 224 bit, 256 bit, 384 bit and 

512 bit. The execution time of the proposed method is 

better than existing method, which reached 90% 

speed-up for 160 bit data size. The speed-up and 

efficiency also shows that the performance for 

various data sizes are different according to the idle 

time when the number of adding operation less than 

number of doubling operation (when N 1
=

2

). 

The domain of the speed-up is between 1.41 to 1.9 

times. According to the result in Table 1 we can note 

that the best case is when the key size is short (160 

bit) and the worst case when the key size is long (512 

bit). This is the benefit of our method because the 

best case of the result fit with nature of ECC, which 

has a shorter key size compared with other algorithms 

such as RSA.  
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6. Conclusions 

In this work, an efficient parallel method has been 

designed and implemented by parallelizing the 

combination of the add-subtract ECC scalar 

multiplication and the MOF algorithm. The result shows 

that the parallelized combination algorithm is an 

efficient method where the execution time has been 

reduced. All efforts in this work lie mainly on 

optimizing the ECC scalar multiplication based on the 

MOF algorithm on standard curves over prime filed. 

The future works could then focus on parallelizing the 

sliding window scheme for general width wMOF. This 

can be applied to parallelize the signed binary 

representation methods or any related algorithm with the 

ECC scalar multiplication. 
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