
The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014 521

Parallel Method for Computing Elliptic Curve

Scalar Multiplication Based on MOF

Mohammad Anagreh, Azman Samsudin and Mohd Adib Omar

School of Computer Sciences, Universiti Sains Malaysia, Malaysia

Abstract: This paper focuses on optimizing the Elliptic Curve Cryptography (ECC) scalar multiplication by optimizing one of
the ECC calculations, which is based on the Mutual Opposite Form (MOF) algorithm. A new algorithm is introduced that
combines the add-subtract scalar multiplication algorithm with the MOF representation to speed-up the ECC scalar
multiplication. The implementation of the algorithm produces an efficient parallel method that improves the computation time.
The proposed method is an efficient ECC scalar multiplication that achieves a 90% speed-up compared to the existing
methods.

Keywords: ECC, MOF, circular buffer, parallel computing.

Received March 6, 2012; accepted April 27, 2013; published online March 13, 2014

1. Introduction

Known as one of the oldest sciences, cryptography is the
science of using mathematical rules to encrypt and
decrypt information. Many inventive cryptography
algorithms have been proposed and implemented over
the years. Among them are the asymmetric cipher
algorithms that are based on number theory and elliptic
curve.

Two researchers, Koblitz and Miller [8, 9]
independently introduce Elliptic Curve Cryptography
(ECC). ECC is one of the public key cryptography
methods, which depends on the Elliptic Curve Discrete
Logarithm Problem (ECDLP) of the elliptic curve. ECC
is commonly used in secure applications to achieve the
highest security level with shorter key size. In fact, the
ECC with 160 bit key length is as secure as 1024 bit key
length for RSA [14]. Shorter key size and yet strong is
desired for portable devices such as smart card, footprint
hardware, RFID, and others.

Many researchers have devoted their efforts in ECC

[1, 2, 3], although the scalar multiplication in ECC is an

expensive operation. Scalar multiplication (dP) is

known as an expansive operation in ECC, where d is an
integer converted to the binary representation, while p is
a point on the elliptic curve. Scalar multiplication

includes two main operations: Adding and doubling

points on the elliptic curve as shown in Figures 1 and 2.

Figure 1. Adding operation on elliptic curve.

Figure 2. Doubling operation on elliptic curve.

The numbers of these operations are based on the

length of scalar d, as well as the Hamming weight of

d [13]. The doubling operation is based on the
number of digits in scalar d. On the other hand,
adding operation is based only on the number of non-

zero bits of scalar d. Our work focuses on the
optimization of the ECC scalar multiplication for case

of the standard curve over the prime field FP. Several

researchers have been working on enhancing the

performance of the scalar multiplication by using

signed binary representation [4, 6, 9, 11, 12]. One of

the most common methods to compute the

exponentiation of random elements in an abelian

group is by applying the Mutual Opposite Form

(MOF) representation and sliding window schemes

for the w on MOF (wMOF) [11]. There have been

several methods proposed to speed-up the scalar

multiplication through parallelization [2, 3, 5, 7]. For

parallelization, two common methods are used: Data

decomposition and task decomposition. In this paper,

scalar multiplication performance is improved by

parallelizing the related ECC algorithm. Parallelizing

the conversion algorithm (from binary to MOF

representation) and scalar multiplication algorithm

has been identified in as one of the ways to improve

the overall ECC performance. This paper is organized

522 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

as follows: Section 1 briefly introduces ECC and scalar

multiplication algorithms. Section 2 briefly reviews

ECC and scalar multiplication algorithms. Section 3

reviews the related work. Section 4 describes the

proposed method. Section 5 presents result and

discussion. The last section concludes the proposed

method.

2. Elliptic Curve Cryptosystem Overview

Two main finite fields are used in ECC: Binary curves
over GF (2m), and prime curves over FP [9]. In our
work, the focus is on the prime curves over FP.

2.1. Binary Filed Over GF (2
m
)

Elliptic curve over a finite field GF (2m), consists of 2m

elements. Both multiplication and addition operations
are defined over polynomials of elliptic curve [9]. The
proposed method uses a cubic equation as variables such
as x and y and coefficients a and b [9, 10]. The form of
cubic equation that is used for ECC is as follows:

2 2 2

y xy x ax b+ = + +

2.2. Prime Filed Over FP

The prime curves over FP make use of the cubic
equation as identified in Equation 1 with Cartesian
coordinate variables (x, y) and coefficients (a, b) as
elements of FP. All the values are integers and
calculated by performing modulo p [14]. The cubic
equation with coefficient (a, b) and variables (x, y) for
the elliptic curves over FP are as follows:

2 2 2

y mod = (x + ax + b) mod p

Now, let P = (x1, y1) and Q = (x2, y2) be in the elliptic
curve set of EP (a, b). In addition, let O be the infinity
point. The rules for adding operation in elliptic curve is
as follows:

 P + O = P

• Given P and Q, if x1 = x2 and y2 = - y1 then:

 P + Q = O

• If Q ≠ P, then R = Q + P, where R = (x3, y3) is
defined as follows:

2

2 1 2x = λ - x - x mod p

 3 1 3 2y = λ(x - x) - y mod p

2

y 2 y 1
mod p , if p Q

x 2 x 1

3 x a
mod p , if p Q

2 y 1

λ

−
≠

−
=

+
≠

  
  
  
 
  
    

3. Related Work

3.1. Mutual Opposite Form Representation

The MOF was proposed by Okeya et al. [11] to convert

the binary representation to signed binary

representation, where it can be computed in any order

(left-to-right and right-to-left). MOF obtained the first

left-to-right signed exponent recoding scheme by

applying a sliding window conversion on MOF.

Each integer has a unique scalar in the MOF

representation, which is at most one bit longer than its

binary representation. The MOF representation of the

binary string d is obtained by copying the binary
string, shifting d one bit to the right, followed by
bitwise subtraction.

Many algorithms have been designed to convert

binary to signed binary representation in order to

reduce the Hamming weight, in which MOF

representation is one of them. MOF representation

satisfies the following properties:

1. MOF can implement sliding window method with

width w, but some other existing methods [4, 6,

13] cannot be implemented with the sliding

window scheme.

2. Less storage is required compared to other existing

algorithms [11].

3. MOF method can be computed in both directions:

left-to-right and right-to-left.

4. MOF eases the conversion from binary to signed

binary representation.

3.1.1. Right-to-Left MOF

Algorithm 1 distinguishes the Right-to-Left MOF
representation from the binary representation. The
MOF representation has one bit longer than its binary
counterpart.

Algorithm 1: Right-to-Left Binary to MOF

Input: A non-zero n-bit binary string d = d
n−1

, …, d
1, d0

.
Output: MOF mdn, …, md1, d0 of d.
1. md

0
← −d

0

2. For i = 1 to n-1 do
3. md

i
← d

i−1
-d

i

4. End for
5. md

n
← d

n−1
6. Return (mdn, …, md1, d0

)

3.1.2. Left-to-Right MOF

Algorithm 2 shows the Left-to-Right MOF

representation converted from the binary

representation. Similar to the representative found in

Algorithm 1, the MOF representation in Algorithm 2

has one bit longer than the binary counterpart.

Algorithm 2: Left-to Right Binary to MOF

Input: A non-zero n-bit binary string d = d
n−1

, …, d
1
, d

0.
Output: MOF mdn, …, md1, d0 of d.
1. md

n
← −d

n−1
2. For i = n-1 to 1 do
3. md

i
← d

i−1
−d

i
4. End for
5. md

0
← −d

0
6. Return (mdn, …, md1, d0

)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Parallel Method for Computing Elliptic Curve Scalar Multiplication Based on MOF 523

3.2. Addition-Subtraction Scalar Multiplication

(ASSM)

The scalar multiplication is an operation of adding a

point P to itself d times and denoted as Q=dP.
Algorithm 3 is used to compute the scalar multiplication

based on the binary representation. The occurrence of

bit `1' in the scalar d will be processed as the addition

operation, which approximately asymptotic to
�

�
, while

the number of doubling operations in the algorithm is n-
1, where n is the length of d in bits.

Algorithm 3: Binary Scalar Multiplication algorithm

Input: A non-zero n-bit binary string in 1
i 0d 2 d { 0 ,1}−
=∑= ∈

Output: MOF Q = dP

1. Q = 0,R = P

2. For i = n-1 to 1 do
3. R=2R
4. If (di==1) then Q = Q+R
5. End for
6. Return Q based on MOF

Given that the MOF representation is one of the signed

binary representations, we can compute the scalar

multiplication by applying Algorithm 4.

Algorithm 4: The Add-Subtract Scalar Multiplication algorithm

Input: A nonzero n-bit binary string in 1
i 0d 2d { 1 ,0 ,1}−
=∑= ∈ − .

Output: MOF Q = dP.

1. Q = 0,R = P

2. For i = n-1 to 1 do
3. R = 2R
4. If (di==1) then Q = Q+R

5. If (di==−1) then Q = Q−R
6. End for
7. Return Q based on MOF

4. Proposed Method

In our work, we propose a combination ASSM-MOF of

the MOF representation algorithm with the add- subtract

scalar multiplication algorithm to constitute one

algorithm for calculating the scalar multiplication based

on the MOF representation without any conversion from

binary to signed binary representation.

4.1. Combination Mutual Opposite Form and

Scalar Multiplication

First, we propose a new serial multiplication algorithm,

ASSM-MOF, to calculate scalar multiplication based on

the MOF representation. The algorithm combines the

ASSM algorithm with the MOF algorithm. Algorithms 2

and 4 show two iteration loops: Each loop for each

algorithm. When the integer d is generated, it should be
converted to the MOF representation by applying the

MOF algorithm. Then, we use the scalar multiplication

algorithm to compute dP, where d is a MOF

representation and P is a point on the elliptic curve. We

calculate the scalar multiplication directly prior to

comparing the scalar 2d and d. Two possibilities for the

binary scalar, that is either bit `0' or bit `1'. If the

scalar 2di is `0' and di is `1', we calculate both

doubling (ECCDBL) and subtracting (ECCSUB),

because 2diθdi is already `1', where `θ' is a bitwise
subtraction. If 2di is `1' and di is `1', we calculate
doubling (ECCDBL) and adding (ECCADD),

because 2diθdi is already `1'. Other cases, we

calculate only the doubling (ECCDBL) for all n-bits,

because 2diθdi is already `0'. Algorithm 5 shows the

proposed combination algorithm (ASSM-MOF) of

the MOF algorithm and scalar multiplication

algorithm.

Algorithm 5: Combination algorithm (ASSM-MOF)

Input: A non-zero n-bit binary string in 1
i 0d 2 d { 0 ,1}−
=∑= ∈

Output: MOF Q = dP based on MOF representation.

1. Q = 0 ,R = P

2. For i = n-1 to 1 do
3. If (2di == 1 & di == 0) then Q = Q+R

4. If (2di == 0 & di = = 1)then Q = Q−R

5. R = 2R
6. End for
7. Return Q based on MOF

4.2. Parallel Scalar Multiplication Based on

MOF

Second, parallelize the proposed method by using two

processors. The proposed method for calculating the

dP based on the MOF uses two processors, one for

the execution of doubling operation, ECCDBL-

Processor, and the other for adding operation,

ECCADD-Processor. The adding operation uses a

point from doubling operations. The algorithm works

based on the task decomposition principal which

means two processors work together to calculate dP.
It is important to note that there is dependency in both

main basic operations (doubling and the other side

adding and subtracting) which means the execution of

the adding operation is based on data that comes from

the doubling operation. However, we need to achieve

data independent requirement before decomposing

the task into two independent sub-tasks. To achieve

this, a circular buffer is used to transmit data between

processors. The proposed algorithm is divided into

two sections. The two main sections should be

executed at the same time. The doubling operation is

executed in the ECCDBL-Processor while adding and

subtracting operations are executed in the ECCADD-

Processor. It is important to note that each processor

has a single thread. The circular buffer is the

communicating channel between the two processors

used to transmit the doubling point to the other

processor as shown in Figure 3.

We also have to make sure the MOF scalar is not

zero before calling the ECCADD-Processor. Notably,

we make sure the maximum size of circular buffer is

enough to accommodate doubling points before the

computations begin. The ECCDBL-Processor reads

524 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

the given point P and then begins performing the

doubling operations. The ECCDBL-Processor fills up

the buffer with diP when the di is a non-zero bit. The
ECCADD-Processor reads the value diP and calculates
the addition or subtraction. According to this method,

both processors are working simultaneously at any

given time. Another thing to note is that, when the

ECCADD-Processor begins consuming the point from

the buffer, we should check whether the buffer is empty

or not. It should be noted as well, that the index of the

push operation to the circular buffer should be more

than the index of the pop operation to avoid data

starvation problems. The parallel code used section

directives to write the parts for each processor. The

parallel code consists of two main parts (ECCDBL-

Processor and ECCADD-Processor) as described below:

pragma omp sections
 {

 # pragma omp section //For ECCDBL-Processor
 {

 Calculate the doubling operations.
 Fill circular buffer when the MOF is non-zero bits.
 }

 # pragma omp section //For ECCADD-Processor
 {

 Check the circular buffer.
 If the buffer is not empty, read the value.
 To check the MOF bit representation:
 - If the MOF bit is ‘1’, calculate the adding

operations.
 - If the MOF bit is‘‾1’, calculate the subtracting

operations.
 }

}

Figure 3. Parallel ASSM-MOF using circular buffer.

5. Result and Discussion

The performance of the propose algorithm (ASSM-

MOF) is measured according to the data size as well as

the occurrence of the non-zero bits in the MOF

representation of the scalar d. The performance depends

on the ratio of N=Num of ECCADD/Num of ECCDBL.
We assume that every bit of the MOF representation

is non-zero bit; thus, the number of adding and doubling

operations are the same. It means the performance of the

proposed algorithm is good because the two processors

are busy. Let further assume that the most bits of the

MOF representation are zeros. Under this assumption,

the execution time of the proposed method is similar to

the standard method. This is because the idle time of the

ECCADD-Processor is very big. However, it is

important to note that the Hamming weight of the

MOF representation is hardly to be zero.

For ASSM-MOF algorithm, it is important to

produce the optimal serial code so that the best serial

performance for overall ECC application is achieved.

We use Visual C++ .Net in the implementation to

write the serial code of the combination algorithm

(ASSM-MOF). We use the Open MP Library that is

supported in Visual C++. Package to parallelize serial

code. It is also important to note that we use the

Visual Studio.Net 2008 environment to facilitate the

dual-processor implementation using Microsoft

Windows 7 Professional Edition. All codes are tested

on the same machine.

We use the Intel Pentium machine to implement

the algorithm. The specification of the Intel Pentium

is: Dual-Core T4500 Processor (2.30 GHz, 1 MB L2

cache). The total operations are performed 10 times

and the average execution time is taken as a result for

both sequential and parallel codes. The execution

times for both codes are represented in millisecond in

Table 1.

Table 1. Result for the proposed parallel method against the
standard method.

Key Size

(bits)
N

Serial

(ms)

Parallel

(ms)
Speed-up Efficiency

160
1
1/2

0.0240
0.0135

0.0126
0.0082

1.90
1.64

95%
82%

192
1
1/2

0.0259
0.0185

0.0142
0.0115

1.83
1.61

91%
80%

224
1
1/2

0.0311
0.0223

0.0168
0.0138

1.85
1.61

92%
80%

256
1
1/2

0.0421
0.0244

0.0220
0.0149

1.91
1.64

95%
82%

384
1
1/2

0.0880
0.0613

0.0470
0.0434

1.87
1.41

94%
71%

512
1
1/2

0.2256
0.1686

0.1269
0.1155

1.78
1.46

89%
73%

The result shows the difference between serial and

parallel implementation of the algorithm for various

data size: 160 bit, 192 bit, 224 bit, 256 bit, 384 bit and

512 bit. The execution time of the proposed method is

better than existing method, which reached 90%

speed-up for 160 bit data size. The speed-up and

efficiency also shows that the performance for

various data sizes are different according to the idle

time when the number of adding operation less than

number of doubling operation (when N 1
=

2

).

The domain of the speed-up is between 1.41 to 1.9

times. According to the result in Table 1 we can note

that the best case is when the key size is short (160

bit) and the worst case when the key size is long (512

bit). This is the benefit of our method because the

best case of the result fit with nature of ECC, which

has a shorter key size compared with other algorithms

such as RSA.

Parallel Method for Computing Elliptic Curve Scalar Multiplication Based on MOF 525

6. Conclusions

In this work, an efficient parallel method has been

designed and implemented by parallelizing the

combination of the add-subtract ECC scalar

multiplication and the MOF algorithm. The result shows

that the parallelized combination algorithm is an

efficient method where the execution time has been

reduced. All efforts in this work lie mainly on

optimizing the ECC scalar multiplication based on the

MOF algorithm on standard curves over prime filed.

The future works could then focus on parallelizing the

sliding window scheme for general width wMOF. This

can be applied to parallelize the signed binary

representation methods or any related algorithm with the

ECC scalar multiplication.

References

[1] Al-Daoud E., “An Improved Implementation of

Elliptic Curve Digital Signature by using Sparse

Elements,” the International Arab Journal of
Information Technology, vol. 1, no. 2, pp. 203-
208, 2004.

[2] Al-Somani T. and Ibrahim M., “Generic-Point

Parallel Scalar Multiplication without

Precomputation,” IEICE Electronics Express, vol.
6, no. 24, pp. 1732-1736, 2009.

[3] Ansari B. and Wu H., “Parallel Scalar

Multiplication for Elliptic Curve Cryptosystems,”

in Proceedings of International Conference on
Communications, Circuits and Systems, Ontario,
Canada, vol. 1, pp. 71-73, 2005.

[4] Balasubramaniam P. and Karthikeyan E., “Fast

Simultaneous Scalar Multiplication,” Applied
Mathematics and Computation, vol. 192, no. 2, pp.
399-404, 2007.

[5] Gutub A., “Remodeling of Elliptic Curve

Cryptography Scalar Multiplication Architecture

Using Parallel Jacobian Coordinate System,”

International Journal of Computer Science and
Security, vol. 4, no. 4, pp. 409-425, 2010.

[6] Huang X., Shah P., and Sharma D., “Minimizing

Hamming Weight Based on l’s Complement of

Binary Numbers Over GF(2
m
),” in Proceedings of

the 12th International Conference on Advanced
Communication Technology, Piscataway, USA,
pp. 1226-1230, 2010.

[7] Izu T. and Takagi T., “A Fast Parallel Elliptic

Curve Multiplication Resistant Against Side

Channel Attacks,” in Proceedings of the 5th
International Workshop on Practice and Theory in
Public Key Cryptosystems, Paris, France, vol.
2274, pp. 280-296, 2002.

[8] Koblitz N., “Elliptic Curve Cryptosystem,”

Mathematics of Computation, vol. 48, no. 173, pp.
203-209, 1987.

[9] Miller V., “Use of Elliptic Curves in

Cryptography Advances,” in Proceedings of
Cryptology, Lecture Notes in Computer Science,
Berlin, Germany, vol. 218, pp. 417-426, 1986.

[10] Nicolas R., ICSA Guide to Cryptography,
McGraw Hill, New York, USA, 1999.

[11] Okeya K., Samoa K., Spahn C., and Takagi T,

“Signed Binary Representations Revisited,” in
Proceeding of Annual International Cryptology
Conference Advances in Cryptology Crypto,
Santa Barbara, USA, pp. 123-139, 2004.

[12] Pathak H. and Sanghi M., “Speeding-up

Computation of Scalar Multiplication in Elliptic

Curve Cryptosystem,” International Journal on
Computer Science and Engineering, vol. 2, no.
4, pp. 1024-1028, 2010.

[13] Purohi G. and Rawat A., “Efficient

Implementation of Arithmetic Operations in

ECC Over Binary Field,” International Journal
of Computer Applications, vol. 6, no. 2, pp. 5-9,
2010.

[14] Stalling M., Cryptography and Network
Security, Prentice Hill, USA, 2000.

Mohammad Anagreh received his

BSc degree in computer science

from Irbid National University,

Jordan. In 2012, he received his

MSc in computer sciences from

Universiti Sains Malysia, Malaysia.

His current research interests are

parallel computing and information security.

Azman Samsudin is an associate

professor at the School of

Computer Sciences, Universiti

Sains Malaysia. He earned his BSc

in computer science from

University of Rochester, USA, in

1989. Later, he received his MSc in

computer science in 1993 and his PhD in computer

science in 1998, both from University of Denver,

USA. His research interests include cryptography,

switching networks and distributed computing.

Mohd Adib Omar completed his

BSc artificial intelligence and MSc

computer networks in computer

science from American University,

Washington DC, USA in 1996 and

1997 respectively. He received his

PhD in Collaborative Computing

from University Sains Malaysia, in 2009. Currently,

he is a senior lecturer at School of Computer

Sciences, USM. His research interests include

wireless networks, collaborative and service

computing, distributed and parallel computing, and

information security.

