
560 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

On Static Scheduling of Tasks in Real Time

Multiprocessor Systems: An Improved

GA-Based Approach

 Mohammad Ababneh, Salama Hassan, and Sulieman Bani-Ahmad

Prince Abdullah Bin Ghazi of Information Technology, Al-Balqa Applied University, Jordan

Abstract: Task execution Deadline Time (DL) in real-time systems is a critical constraint. Every task should have a Maximum

Computational Time (MCT) that is needed before reaching a given DL time. Scheduling jobs in real-time systems is thus a

nondeterministic polynomial NP problem. Three algorithms can be found in literature to solve these problems in a multi

processor environment; are the Earliest Deadline First (EDF), Genetic Algorithms (GA), Priority Genetic Algorithms (PGA).

In this research, the PGA is introduced and experimentally evaluated against already proposed algorithms in literature. It

works just like the GA algorithm introduced in Abraham et al. [1]. However, we do not only consider the DL in sorting the

tasks in the first population, but rather, we also include the MCT of individuals in the population to define the priority level of

these tasks. We have found that the proposed algorithm has a better average total system utilization, total system tasks

visibility compared with Genetic (G) and EDF algorithms. We have also found that this improvement becomes more and more

effective with the increase of problem size.

Keywords: Task scheduling, multiprocessor systems, GA.

Received December 10, 2012; accepted June 2, 2013; published online March 13, 2014

1. Introduction

Real time systems do not only care about correct results
of jobs. In fact, DeadLine time (DL) is a critical
constraint to any task. Every task should have a
Maximum Computational Time (MCT) that is needed
before reaching that given DL [10]. Scheduling jobs in
realtime systems is thus an NP-problem [22].

One of the static multi processor scheduling
problems is processor number, where multi processor
system that includes heterogeneous set of processors
with different specifications. Such systems can process
the task or job with different execution time [10].
Considering dependency between these tasks and
minimizing the probability of having deadlocks, are all
objectives of scheduling that can have Earliest Deadline
First (EDF) and Shortest Computation Time First
(SCTF) met [1].

Genetic Algorithms (GAs) or evolutionary
algorithms are random search techniques that are based
on the evolutionary ideas of natural selection. GAs can
be applied on the problem of scheduling in real time
multi processor tasks and enhance the GA operations to
reach better optimal solutions to this problem.

2. The Reflective Process

2.1. CPU Tasks Scheduling

Multi processor systems have evolved from the single-

processor systems to support multiprogramming

which aims to keep some processes running at all times.

In single-processor system, only one process (task)
allocates the CPU and the other processes (tasks)
should wait until the currently running process
finishes the Computational Time (CT) that it needs.
Although, sometimes this process may need to do
some I/O operations, the CPU will be idle as the
process does the I/O operation, this should
significantly reduce the CPU utilization and reduce the
served process in time period (that is the throughput of
the system) [8].

The main goal of multiprogramming is to protect

CPU from processes which reserve CPU all the time.

In such systems, all processes should be loaded into

the main memory, if the CPU is occupied by another

process, the new-fresh-process shall wait for the

operating system to take the CPU from the running

process and give it to the waiting processes that wait

in the ready queue [8, 24].
CPU scheduler is part of the operating system and

is responsible for managing the allocation of the CPU
among active processes [23].

The problem of CPU scheduling belongs to the NP-
Hard problems. In fact, the scheduling algorithm can
significantly affect the CPU utilization [7], therefore,
many scheduling algorithms have been proposed in
literature.

2.2. Real Time Systems

Real-time systems are applied and currently used in
many areas of our every-day life such as defense,
scientific research, transportation, management,

On Static Scheduling of Tasks in Real Time Multiprocessor Systems: An Improved GA-Based Approach 561

network communication, meetings through a web video
and/or audio etc., [12, 14].

Processes scheduling to resources in real time
systems face many challenges. The most important of
these challenges are:

1. Large Search Spaces: Generally, the scheduling
means assigning N tasks to one of M resources in
specific order. This means that there are
possibilities to make orderings of the N tasks on M
resources. Even if there is only one resource in the
system there will be different orderings of the N
tasks [19].

2. Dynamically Changing Problems: Almost all tasks
running in a real time system constantly receive
updates. These tasks vary in their level of priority.
This adds complexity to the problem of scheduling
in hand [19].

3. A Variety of Constraints: There are two types of
constraints in scheduling problems. The first type is
called “hard” and the second is called ‘soft’. Hard
constraints are the ones which should be satisfied for
the schedule to be considered legal, while soft
constraints are essentially preferable [19].

2.3. Multi Processor Real Time Scheduling

In some applications, using a single-processor is not

enough to work typically as it should, so many

problems such as long response time, low throughput

etc., will appear in such systems.
Sometimes, there is a need to have multi processor

system in which we distribute the computational load
efficiently among the available CPU's. For that, it is
necessary to divide the entire task into subtasks and to
properly arrange the order of the execution of these
subtasks [15].

Multi processor systems provide suitable
environment and are more powerful to run real time
applications than uniprocessor systems. That’s why
scheduling in multi processor system has been an active
field of research.

In such systems, every task in the multi processor
system works in a way, that makes it look like a
uniprocessor scheduling, centralized multiprocessor
scheduling and distributed scheduling [12].

There are complicated load calculations in multi
processor real-time scheduling. The scheduling in
multiprocessor system is not only to sort tasks, but also
to allocate them to processors. This means that
scheduling algorithms in multi processor systems are
much more complicated than those of uniprocessor
[12].

There are two strategies in multi processor
scheduling: Global scheme, and division scheme. In
global scheduling scheme, real-time tasks are run on
different processors every time. Tasks can be
preempted before their implementation and be
transferred among different processors. In division
scheduling, a task is run on the same processor in
different times. All tasks are assigned to processors by
task allocation algorithm in advance [16].

2.4. Dynamic vs. Static Multi Processor

Scheduling

There is a difference between dynamic and static multi
processor scheduling. While dynamic scheduling deals
with jobs when they arrive at the scheduler and can
deal with changing the numbers of processors, in static
scheduling, however, all necessary information about
the jobs and processors should be known before
scheduler runs an algorithm. For example, the
scheduler should know the Running times (RN). This
means that after some fixed time, the algorithm will be
re-executed. Also, in static scheduling, the number of
the processors available in the system is assumed to be
known as well as the number of tasks to be scheduled
[9].

2.5. Problem Specifications

The most important thing in real time CPU scheduling
is to make response time to the given process, which
requests a CPU to be as short as possible.

Real time CPU scheduler should serve the
processes before their DLs are reached. Also, it should
be clear to the CPU scheduler that serving the process
after its DL is expired will be meaningless because it
was out of time.

Every process has mainly three characteristics. The
first is the process Arrival Time (AT): That is, the
time when the process entered the ready queue. The
second is the process CT: That is, the fixed period of
time that process needs to be executed on resource.
The third is the process DL time: That the process
should finish the CT before reaching that DL [8].
Figure 1 describes the process characteristics.

According to the above three characteristics, any
process in ready queue should comply with the
following relations 0 < AT < DL and CT < DL – AT.

Figure 1. Characteristics of processes.

3. Literature Review

In the last few years, a number of papers were
published that cover the real time system scheduling
using GA.

Agarwal et al. [2] a group of researchers developed
a new technique, based on a GA depends on the
principles of evolution found in nature for finding an
optimal solution. GA is based on three operators:
Natural selection, crossover and mutation. In this
technique GA use static scheduling to find optimal
solution which proved to be efficient to find optimal
solution more than Heterogeneous Earliest Finish
Time (HEFT) with same length of problem size
focusing on the quality of solution and effect of
mutation probability on the performance of GA.

562 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

In [1] a group of researchers proposed GA to
generate dynamic real time tasks scheduling system
improve visibility than EDF and SCTF. The purpose of
this scheduling algorithm is to enhance the utilization
of the processors as it depends on the earliest DL first
to sort the tasks first population. In the researchers
approach, the GA consist of the following steps:

1. Generate a task queue.

2. Sort the tasks in the increasing order of their DLs.

3. Select a suitable number of tasks for a fixed

chromosome size.

4. Generate chromosomes for the population.

5. Sort the genes in each chromosome based on DL.

6. Determine the fitness value of each chromosome in

the population.

7. Sort the chromosomes within the population

depending on fitness value.

8. Apply GA operators for a number of iterations.

9. Choose the best chromosome.

A better performance is obtained by using GA with the

heuristic. The percentage of tasks that are feasible is 95

percent and above Abraham et al. [1].
ManChon et al. [18] a group of researchers proposed

new Real-Time system scheduler based on Genetic
Algorithm (GART) by applying DP-Wrap technique
trying to reduce the overhead due to preemption and
migration by rearranging the schedule so as to increase
the duration between preemption , this approach answer
two questions. First, what is the best heuristic? Second,
is the same heuristic best for all real-time systems? The
experimental results explained that this algorithms can
produce the best heuristic for all the systems
considered.

Rashtbar et al. [21] a group of researchers developed
new Hybrid technique depends on GA based on
neighborhood search and tabu search for performing
Task Scheduling (HGTS). This technique focuses on
the results quality and execution time of algorithm, it
produce of appropriate task schedule by spending less
execution time since, there should be a balance between
solution space and execution time of algorithm.

Dandass [5] has developed a new hybrid technique
depending on List Scheduling (LS) with a GA for
constructing non-preemptive schedules for soft real-
time parallel applications. This technique consist ot two
phases: First one depends on hybrid GA and LS
approach is used to construct a preliminary schedule
based on a fixed estimate of task execution times. In
second phase the preliminary schedule consummated in
the first phase is converted into a stochastic schedule by
using PDF operations wich improve shorter schedules
than two popular LS approaches for a majority of
sample problems.

Ceyda and Ercan [3] a group of researchers have
applied a GA from multi-layer multiprocessor task
scheduling and introduce a new crossover operator.
Where this new crossover compared to PMX crossover
which is proofed to be the best performing crossover
technique.

Zhu et al. [25] a group of researchers have put
forward a task scheduling algorithm based on self-
adjusting GA and grid computing to schedul
heterogeneous collections of remote is essentially to
distribute N interdependent tasks to resources.
Generating a fitness function throught weighted least
connection algorithm then generating a new
population of individuals through genetic operation
(reproduction, crossover, mutation) where this
approach reduce task complete time. The result here is
more ideal than other scheduling algorithms.

Pooranian et al. [20] a group of researchers have
developed a novel task scheduling based on hybrid
GA and GELS algorithm. This technique have solved
grid scheduling problem and minimize missed tasks.
In this approach every chromosome represents visible
solution, and move (pick) solution after GA operation
that better than current solution using purpose function
(fitness function) and some of advantage of GLES
algorithm in random search. This algorithm proved
that can decreases the number of missed tasks more
than other algorithms.

Ilavarasan and Thambidurai [11] a group of
researchers have proposed a new task scheduling for
distributed heterogeneous computing system namely
GATS. This tasks provide optimal results for acyclic
graph, where the performance of this algorithm
(schedule length, speedup and efficiency) compared
with existing algorithms such as CPOP, HEFT and
PSGA where the final result show that the GATS
substantially outperforms these algorithms.

Man and Sai [17] a group of researchers have
proposed a new static scheduling approach for
heterogeneous systems using GA. That depends on
tasks executing on a number of heterogeneous
processors to reduce the energy consumption. The
simulation result show that this approach reduce the
energy consumption more than other three algorithm
namely EDF, longest-time-first and simulated-
anealing by an estimated 20% to 90% under different
system configurations.

Daoud and Kharma [6] a group of researchers have
proposed a new approach namely (GS) which uses a
customized GA. This approach is to produce high-
quality tasks schedules for Heterogeneous Distributed
Computing Systems (HeDCSs) and compare the terms
of average schedule length, speedup and efficiency in
the HEFT algorithm and the DLS algorithm where GS
significantly outperforms the traditional scheduling
algorithm.

Cheng and Huang [4] present a GA-based approach

with a feasible energy function that generate good-

quality schedules due the crossover and mutation

operators.
Kazem et al. [13] a group of researchers have

presented a GA for scheduling the independent tasks
in isochronal soft real-time systems. The suggested
algorithm is a TUF based scheduling algorithm that its
objective is maximizing the sum of utilities attained
by jobs. Different experiments indicate that the
proposed GA has not only high stability, but also high

On Static Scheduling of Tasks in Real Time Multiprocessor Systems: An Improved GA

convergence. Experiments also show that the proposed
GA produces schedules that the total utility accrued by
the system is high.

4. Implementation of Previous Attempts

Enhancing Real Time Multi Processor

Using Genetic Algorithm

As we mentioned before, many of researches on multi
processors tasks scheduling using GA were initiated.

Next, we will focus on the heuristics algorithm such
as EDF and we will compare the results with GA. The
feedback that we got will produce a new enhancement
for the GA, the complexity of system can be measured
by the CPUs number.

Some systems may contain few of CPUs (small
systems) and heterogeneous CPUs (large systems)
where some algorithms can be applied efficiently on
small systems and can’t deal with large systems
effectively. The complexity of system depends on the
number of CPUs but, it depends on the size of the
problem as well (number of tasks).

We will discuss the utilization and visibility of CPUs
that can be found through EDF and GA to find optimal
solution.

The GA has the iteration number to make an
enhancement for the current optimal solution when
applying GA operations, but this process will requir
longer time. The relation between the GA iteration and
execution time of the algorithm is a direct proportion, it
means when the iteration number for GA is increased,
we will get better optimal solution, but the algorithm
will take more time to be executed. However, keep in
mind that the time is a very important
time system.

4.1. Our Simulator

In this phase, a simulator is built using
Visual Basic.NET (MVB.NET) and external toolkit
called devexpress. This simulator is used to describe
the difference between the EDF and GA and to
represent the parameter as Figures 4-1 (e.g. total system
utilization) where we can see the effects of changing
some of GA operation on the optimal solution. This
simulator got most functions in GA. The input to our
simulator are: Number of processor, number of
processes (tasks) where it will be scheduled on
processor. Simulator takes the RN to generate random
tasks which its AT should be less than or equal to the
RN. The iteration number will repeat the genetic
operation N times. This simulator can take two
techniques to sort the first populations. The crossover
type (an input to our simulator) describes two types of
crossover while.

Our simulator supports three kinds of replacement
methods. The child chromosomes that are generated
after applying GA operations will be replaced by their
parents to proof the following factors (we will discuss
them later):

1. Total fitness function is best.

atic Scheduling of Tasks in Real Time Multiprocessor Systems: An Improved GA-Based Approach

convergence. Experiments also show that the proposed
GA produces schedules that the total utility accrued by

Previous Attempts to

Enhancing Real Time Multi Processor

As we mentioned before, many of researches on multi
processors tasks scheduling using GA were initiated.

we will focus on the heuristics algorithm such
as EDF and we will compare the results with GA. The

roduce a new enhancement
, the complexity of system can be measured

Some systems may contain few of CPUs (small
systems) and heterogeneous CPUs (large systems)
where some algorithms can be applied efficiently on

and can’t deal with large systems
effectively. The complexity of system depends on the

it depends on the size of the

We will discuss the utilization and visibility of CPUs
and GA to find optimal

The GA has the iteration number to make an
enhancement for the current optimal solution when
applying GA operations, but this process will requir
longer time. The relation between the GA iteration and

algorithm is a direct proportion, it
means when the iteration number for GA is increased,
we will get better optimal solution, but the algorithm
will take more time to be executed. However, keep in

 factor in the real

In this phase, a simulator is built using Microsoft
(MVB.NET) and external toolkit

called devexpress. This simulator is used to describe
the difference between the EDF and GA and to

1 (e.g. total system
utilization) where we can see the effects of changing

eration on the optimal solution. This
The input to our

umber of processor, number of
processes (tasks) where it will be scheduled on

to generate random
should be less than or equal to the

RN. The iteration number will repeat the genetic
operation N times. This simulator can take two
techniques to sort the first populations. The crossover
type (an input to our simulator) describes two types of

Our simulator supports three kinds of replacement
methods. The child chromosomes that are generated
after applying GA operations will be replaced by their
parents to proof the following factors (we will discuss

2. Each chromosome fitness function is best.
3. Ignore fitness, just replace.

The simulator supports the following selection
methods:

1. Randomly.
2. Incrementally.
3. Random and incremental.

This simulator can change the fitness fu
evaluate the chromosome, where there are three types
of fitness function:

1. Chromosome visibility.
2. Chromosome utilization and visibility.
3. Chromosome utilization.

4.2. Earliest Deadline First

Algorithms

In this section, we will discuss how the optimal
solution will be affected when some of GA operations
are changed in the same problem. Suppose that we
have the following problem: 18 tasks
equals to 60ns, we will use
find the best algorithm.

4.2.1. Earliest Deadline First

Figure 2-a shows the result that came using EDF
algorithm with system visibility 0.67, this system
executes only 67% tasks.

a) Total system tasks visibility
 using EDF algorithm.

c) Total system visibility using

Figure 2. EDF algorithm results

We got this result because all tasks are arranged in
task queue by their DL, as the task with the lowest
will be executed first on CPU. However, this
algorithm ignores AT and MCT for each task.

For example, assume that we have two tasks to be
scheduled, T1 and T2. These tasks have DLs equals to
7 and 8, MCTs equals to 1 and 5, ATs equals to 3 and
1 and the current time in CPU is zero. In this case the
CPU starts with task T1 because its DL here is less
than T2, the CPU will stay idle until CT equals to
Task T1 will be scheduled and will finish at time
MCT. After T1 finishes, the CT equals to 4, then the
CPU will try to execute T2 but time

T

as
k
s

v
is

ib
il

it
y

T
as

k
s

v
is

ib
il

it
y

Based Approach 563

Each chromosome fitness function is best.
Ignore fitness, just replace.

The simulator supports the following selection

Random and incremental.

This simulator can change the fitness function to
evaluate the chromosome, where there are three types

Chromosome visibility.
Chromosome utilization and visibility.
Chromosome utilization.

Earliest Deadline First vs. Genetic

In this section, we will discuss how the optimal
solution will be affected when some of GA operations
are changed in the same problem. Suppose that we

the following problem: 18 tasks, 3 CPUs and RN
equals to 60ns, we will use GA and EDF algorithms to

Earliest Deadline First Algorithm

shows the result that came using EDF
algorithm with system visibility 0.67, this system

b) Total system utilization
 using EDF algorithm.

Total system visibility using GA.

EDF algorithm results.

We got this result because all tasks are arranged in
, as the task with the lowest DL

will be executed first on CPU. However, this
algorithm ignores AT and MCT for each task.

For example, assume that we have two tasks to be
d, T1 and T2. These tasks have DLs equals to

7 and 8, MCTs equals to 1 and 5, ATs equals to 3 and
1 and the current time in CPU is zero. In this case the
CPU starts with task T1 because its DL here is less
than T2, the CPU will stay idle until CT equals to 3.
Task T1 will be scheduled and will finish at time CT +

. After T1 finishes, the CT equals to 4, then the
CPU will try to execute T2 but time CT + MCT is,

C
P

U
s

U
ti

li
za

ti
o
n
s

564 The International Arab Journal of Information Technology, Vol. 11, No.

obviously, greater than the DL of T2. As a result, we
end up ignoring T2 and that will decrease
system visibility and utilization because CPU will stay
idle until CT reaches the AT of T1.

This will effect the CPU utilization as it's value will
become 75% as shown in Figure 2-b.

4.2.2. Genetic Algorithm

If we are trying to solve a problem using
chromosome visibility is the fitness function to judge
the single level crossover operation (the probability to
make mutation is 0%), the result will be as follows:
Figure 2-c shows the total system visibility when using
GA which equals to 72%.

We got this result because all tasks are arranged in
first population by their DL. The task with the lowest
DL got the priority to be executed first on CPU.
the first population, the genetic operations will b
excuted randomly (crossover and selection) and it will
use the fitness function to calculate the CPU visibility
for the new chromosome, if it was better than the oldest
one then it will be replaced with the new chromosome
ignoring the MCT and AT for each task.

Figure 3-a shows the total system CPU utilization
average is 80% and this could be a result of the first
population sorted by tasks DL with ignoring the MCT
and AT for each task. CPUs visibility c
represented in Figure 3-b where CPU No. 1, 2 and 3
execute 4,5 and 4 tasks in sequence.

a) Total system utilization

 using GA.
 b) CPUs visibility using

Figure 3. System utilization and CPUs visibility

The GA is a random search which means it may
have another solution. This solution could be better
than the current one.

Figure 4-a represents this behavior when system
utilization equals to 83%. Figure 4-b shows the CPUs
visibility produced by GA where CPU No: 0,
is 5, 5 and 3 tasks in sequence.

 a) Total system utilization

 using GA. b) CPUs visibility using

Figure 4. System utilization and CPUs visibility

4.3. Genetic Algorithm Crossover Operation

The genetic operations are: Selection
mutation. The simulator ignores the probability of

C
P

U
s

U
ti

li
za

ti
o
n
s

C
P

U
s

U
ti

li
za

ti
o
n
s

T
as

k
s

v
is

ib
il

it
y

T

as
k
s

v
is

ib
il

it
y

The International Arab Journal of Information Technology, Vol. 11, No.

obviously, greater than the DL of T2. As a result, we
end up ignoring T2 and that will decrease the total
system visibility and utilization because CPU will stay

This will effect the CPU utilization as it's value will

If we are trying to solve a problem using GA and the
chromosome visibility is the fitness function to judge
the single level crossover operation (the probability to
make mutation is 0%), the result will be as follows:

bility when using

We got this result because all tasks are arranged in
. The task with the lowest

got the priority to be executed first on CPU. After
the first population, the genetic operations will be
excuted randomly (crossover and selection) and it will
use the fitness function to calculate the CPU visibility
for the new chromosome, if it was better than the oldest
one then it will be replaced with the new chromosome

task.
shows the total system CPU utilization

average is 80% and this could be a result of the first
with ignoring the MCT

and AT for each task. CPUs visibility can be
where CPU No. 1, 2 and 3

CPUs visibility using GA.

visibility at 80%.

The GA is a random search which means it may
have another solution. This solution could be better

represents this behavior when system
shows the CPUs

produced by GA where CPU No: 0, 1 and 2

CPUs visibility using GA.

visibility at 83%.

Genetic Algorithm Crossover Operation

Selection, crossover and
mutation. The simulator ignores the probability of

mutation operation and it focuses on selection and
crossover operation and how these operations affect
the optimal solution.

a) Total system visibility using

 multi-point crossover

 operation through GA.

c) CPUs visibility using multi-point crossover operation through GA

Figure 5. Two types of crossover operations.

There are two types of crossover operations, GA
will try to solve the last problem (3
applying multi point crossover operation using GA.

Figure 5-a represents the total system visibility
72% which is the same result as in the single point
crossover operation. Figure
system utilization is 85%. Figur
for each CPU, where CPU No. 0, 1 and 2 can execute
the total number of tasks 5, 4 and 4 in sequence .

The closed results that we got from the single point
and multi point crossover operations are produced
because of the population so

5. Priority Genetic Algorithm

The GA guarantees more visibility of tasks than EDF
algorithm as we mentioned in the previous chapter.
But, we need to demonstrate the impact of sorting first
population on the optimal solution in a diffe
that the normal GA uses.

We will find an alternative task DL to sort the first
population and see the new effect on the optimal
solution where there may be probability to increase
the total system visibility and utilization in optimal
solution.

5.1. Enhance Genetic Algorithm

 If the property of task MCT is mixed with DL to sort
first population, the following equation (
MCT)*DL) calculates the new task property called
Priority (P). After sorting the first population by
priority of tasks we call this algorithm
Algorithm (PGA). The output of the previous problem
that mentioned in section 4 shown in the next figure
Figure 6-b shows the system visibility increased
beyond the EDF and equal the GA which is 72%
while Figure 6-b shows the system utiliza
gives 93% and Figure 6-c
that gives CPU No: 0, 1 and 2 values

C
P

U
s

U
ti

li
za

ti
o
n
s

T
as

k
s

v
is

ib
il

it
y

The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

mutation operation and it focuses on selection and
crossover operation and how these operations affect

 b) Total system utilization using

 multi-point crossover

 operation through GA.

point crossover operation through GA.

Two types of crossover operations.

There are two types of crossover operations, GA
will try to solve the last problem (3 CPU, 18 tasks) by
applying multi point crossover operation using GA.

represents the total system visibility
72% which is the same result as in the single point
crossover operation. Figure 5-b shows that the total
system utilization is 85%. Figure 5-c shows visibility
for each CPU, where CPU No. 0, 1 and 2 can execute
the total number of tasks 5, 4 and 4 in sequence .

The closed results that we got from the single point
and multi point crossover operations are produced
because of the population sorted by tasks’ DL .

5. Priority Genetic Algorithm

The GA guarantees more visibility of tasks than EDF
algorithm as we mentioned in the previous chapter.

we need to demonstrate the impact of sorting first
population on the optimal solution in a different way

We will find an alternative task DL to sort the first
population and see the new effect on the optimal
solution where there may be probability to increase
the total system visibility and utilization in optimal

Enhance Genetic Algorithm

If the property of task MCT is mixed with DL to sort
first population, the following equation (P=(DL-

) calculates the new task property called
Priority (P). After sorting the first population by
priority of tasks we call this algorithm Priority Genetic

(PGA). The output of the previous problem
4 shown in the next figures.

shows the system visibility increased
beyond the EDF and equal the GA which is 72%

shows the system utilization that
 shows the CPUs visibility

1 and 2 values equals to 4, 4

C
P

U
s

U
ti

li
za

ti
o
n
s

On Static Scheduling of Tasks in Real Time Multiprocessor Systems: An Improved GA

and 5 in sequence. This optimal solution is better than
the EDF and GA. The reason behind that will be
discussed in the next example.

 a) Total System visibility

 using PG algorithm.

 b) Total system utilization

 using PG algorithm.

c) CPUs visibility using PG algorithm

Figure 6. System visibility using PG algorithm

Suppose that two tasks T1 and T2 have DLs 7 and 8,
MCTs 1 and 5, ATs 3 and 1 in sequence and the current
time in CPU is 0. In this case the scheduler will
calculate the priority through the equation
MCT)*DL. This gives P values that equals to
24, respectively. The scheduler then starts with the task
T2 because its P is less than T1 so it will start first, the
CPU will stay idle until CT equals to 1 and the CT will
be equals to CT+MCT for T2. After finishing with T2,
the CT will be equals to 6, the CPU will execute T1,
where DL for T1>CT, CT>AT and also
T1≤ DL for T1. As a result, the system utilization and
visibility will be increased because the CPU will not be
idle until CT reaches the AT of T1.

It is concluded from above that the effect of sorting
first population on optimal solution could be noticed,
but we should remember that the GA operations are
consisted of selection, crossover and mutation that are
repeated for N time (iteration).

Increasing iteration in GA may be produce
optimal solution but, this depends on available time that
can repeat the GA operations. In other words, GA could
reach the optimal solution that PGA reached by
increasing the iteration.

a) Total system utilization

 using PG algorithm.
b) CPUs visibility using PG

 algorithm

Figure 7. New optimal solution results

Figures 7-a and 7-b shows the new optimal solution,
where Figure 7-a shows the total system utilization
increasing and reaches 94% and Figure
CPUs visibility that gives CPU No: 0,1 and 2 values
equals to 4, 4 and 5 in sequence.

C
P

U
s

U
ti

li
za

ti
o
n
s

C
P

U
s

U
ti

li
za

ti
o
n
s

T
as

k
s

v
is

ib
il

it
y

T
as

k
s

v
is

ib
il

it
y

 T
as

k
s

v
is

ib
il

it
y

atic Scheduling of Tasks in Real Time Multiprocessor Systems: An Improved GA-Based Approach

. This optimal solution is better than
. The reason behind that will be

system utilization

PG algorithm.

CPUs visibility using PG algorithm.

using PG algorithm.

have DLs 7 and 8,
, ATs 3 and 1 in sequence and the current

time in CPU is 0. In this case the scheduler will
calculate the priority through the equation P=(DL-

. This gives P values that equals to 42 and
, respectively. The scheduler then starts with the task

ecause its P is less than T1 so it will start first, the
CPU will stay idle until CT equals to 1 and the CT will

for T2. After finishing with T2,
the CT will be equals to 6, the CPU will execute T1,

and also CT+MCT for
for T1. As a result, the system utilization and

visibility will be increased because the CPU will not be

It is concluded from above that the effect of sorting
first population on optimal solution could be noticed,
but we should remember that the GA operations are
consisted of selection, crossover and mutation that are

Increasing iteration in GA may be produces a better
this depends on available time that

can repeat the GA operations. In other words, GA could
reach the optimal solution that PGA reached by

CPUs visibility using PG

algorithm

solution results.

shows the new optimal solution,
shows the total system utilization

Figure 7-b shows the
CPUs visibility that gives CPU No: 0,1 and 2 values

Before explaining the effect of GA operation on
optimal solution, we should discus
function that takes the responsibilty to accept or refuse
the new chromosome. In all previous examples, we
assumed that the total fitness function is already
specified to accept new chromosomes, then the
previous optimal solutions resulted as

Table 1 shows the optimal solutions when we
change the fitness function to be single for problem
consists of 18 tasks, 3 processors, the RN is supposed
to be equals to 20 ns and the total number of iteration
for repeating the genetic operation is
the single fitness means every chromosome after
crossover operation selected by its fitness value, if this
fitness is equal to or greater than the older one, it will
be accepted in the population, and if any other value
of fitness is less than the oldest chromosome, the new
chromosome will be ignored

Table 1. CPUs visibility using PG algorithm

 Genetic Algorithm GA

 Try 1 Try 2
 Utilization Visibility Utilization Visibility

Total

chromos

ome

fitness

85% 72% 80% 72%

Single

chromos

ome

fitness

75% 67% 75% 67%

 Priority Genetic Algorithm PGA

 Try 1 Try 2

 Utilization Visibility Utilization Visibility

Total

chromos

ome

fitness

93% 72% 93% 72%

Single

chromos

ome

fitness

90% 56% 90% 56%

From the previous table, the average of utilization
decreased from 82% to 75% after updating the fitness
function and visibility decreased from 72% to 67%
using GA, also when using PGA the average of
system utilization decreased from 83% to 80% and the
average of system visibility from 72% to 56%,
however, the fitness function can be used to enhance
the GA.

In the next sections, the effects of fitness function
will be considered to produce optimal solution and to
try the best fitness function that maximize
solution.

In this chapter, there are three methods to accept
new chromosomes in population and take them in
algorithm consideration, these methods are:

1. New Total Fitness Value
parent chromosomes fitness value wil
compared with the new total fitness value of child
chromosomes, if it was greater or equal to the
oldest value, it would accept the new chromosomes
to be in the population, in this case the oldest one
will be deleted.

2. New Single Fitness Value Best
for the new chromosomes here should be greater
than or equal to the oldest value for each
chromosome to be accepted in the population, if
any fitness value for the new chromosomes is less
than the oldest fitness value, the new chromosomes

Based Approach 565

Before explaining the effect of GA operation on
optimal solution, we should discuss the fitness
function that takes the responsibilty to accept or refuse
the new chromosome. In all previous examples, we
assumed that the total fitness function is already
specified to accept new chromosomes, then the
previous optimal solutions resulted as shown.

Table 1 shows the optimal solutions when we
change the fitness function to be single for problem
consists of 18 tasks, 3 processors, the RN is supposed

ns and the total number of iteration
for repeating the genetic operation is 100 ns, where
the single fitness means every chromosome after
crossover operation selected by its fitness value, if this
fitness is equal to or greater than the older one, it will
be accepted in the population, and if any other value

n the oldest chromosome, the new
chromosome will be ignored.

CPUs visibility using PG algorithm.

Genetic Algorithm GA

Try 3 Average

Visibility Utilization Visibility Utilization Visibility

72% 81% 72% 82% 72%

67% 75% 67% 75% 67%

Priority Genetic Algorithm PGA

Try 3 Average

Visibility Utilization Visibility Utilization Visibility

72% 93% 72% 93% 72%

56% 90% 56% 90% 56%

From the previous table, the average of utilization
decreased from 82% to 75% after updating the fitness
function and visibility decreased from 72% to 67%
using GA, also when using PGA the average of
system utilization decreased from 83% to 80% and the

rage of system visibility from 72% to 56%,
however, the fitness function can be used to enhance

In the next sections, the effects of fitness function
will be considered to produce optimal solution and to
try the best fitness function that maximize the optimal

In this chapter, there are three methods to accept
new chromosomes in population and take them in
algorithm consideration, these methods are:

Total Fitness Value is Best: In this method, the
parent chromosomes fitness value will be
compared with the new total fitness value of child
chromosomes, if it was greater or equal to the
oldest value, it would accept the new chromosomes
to be in the population, in this case the oldest one

Single Fitness Value Best: The fitness value
for the new chromosomes here should be greater
than or equal to the oldest value for each
chromosome to be accepted in the population, if
any fitness value for the new chromosomes is less
than the oldest fitness value, the new chromosomes

566 The International Arab Journal of Information Technology, Vol. 11, No.

will never be considered in the algorithm.
3. Do Not Care Fitness Value: The couple of new

chromosomes enter the population and delete the
oldest one every time after the crossover operation,
in this case the fitness value will be ignored.

5.2. Genetic Algorithm Operation

The proposed algorithm will ignore the probability of
mutation operation and it focuses on the selection and
crossover operations.

5.2.1. Multi Point Crossover Operation

Genetic Algorithms

When the scheduler uses the PGA in the same problem

(18 tasks, 3 CPUs), it will produce optimal solution

with total system visibility equals to 67% as shows in

Figure 8-a, total system utilization equals to 94% as in

Figure 8-b and the CPU visibility for CPU No: 0, 1, 2

are 4, 3 and 5 in sequence as in Figure 8

 a) Total system visibility using

multi-point crossover

operation through PGA.

 b) Total system utilization

 multi-point

 operation through PGA.

c) CPUs visibility using multi-point crossover operation through PGA.

Figure 8. Optimal solution using PGA

This result shown in Figures 8-a

because the first population is sorted by the task

priority that is combination of main task property

(MCT and DL) the result came out equals or less than

the result that came out from the single point crossover

operation, therefore, the proposed algorith

ignore the multi point crossover operation.

5.2.2. Selection Operation

Selection is one of the genetic operations that is

responsible for determining the parent chromosome to

enhance it by using crossover operation. In proposed

method (PGA), there are three types to select the

desired chromosomes:

• Random Selection: This technique depends on

random number that represents chromosomes

number where the minimal one is zero (0) and the

maximum one is the number of chromosomes

subtract one (1) represented in following

5

4

3

2

1

0

 2 1 0

C
P

U
s

U
ti

li
za

ti
o
n
s

T
as

k
s

v
is

ib
il

it
y

T
as

k
s

v
is

ib
il

it
y

The International Arab Journal of Information Technology, Vol. 11, No.

will never be considered in the algorithm.
The couple of new

chromosomes enter the population and delete the
oldest one every time after the crossover operation,
in this case the fitness value will be ignored.

Genetic Algorithm Operation

The proposed algorithm will ignore the probability of
mutation operation and it focuses on the selection and

Multi Point Crossover Operation vs. Priority

the PGA in the same problem

(18 tasks, 3 CPUs), it will produce optimal solution

with total system visibility equals to 67% as shows in

, total system utilization equals to 94% as in

and the CPU visibility for CPU No: 0, 1, 2

8-c.

system utilization using

point crossover

operation through PGA.

point crossover operation through PGA.

using PGA.

a, 8-b and 8-c

because the first population is sorted by the task

priority that is combination of main task property

(MCT and DL) the result came out equals or less than

the result that came out from the single point crossover

refore, the proposed algorithm PGA will

ignore the multi point crossover operation.

Selection is one of the genetic operations that is

responsible for determining the parent chromosome to

enhance it by using crossover operation. In proposed

method (PGA), there are three types to select the

technique depends on

random number that represents chromosomes

number where the minimal one is zero (0) and the

maximum one is the number of chromosomes

following equation

 0≤ Random≤ number of ckomosomes

• Incremental Selection:

method selects chromosomes based on the iteration

number, where in iteration number zero (0) will

select couple of chromosomes zero, one (0,

in the next iteration it will be in (1,

chromosomes until GA iteration is complete.

• Incremental and Random

selection method depends on merging the previous

two types of selection, where the couple of

chromosomes can be selected depending on

iteration number and random

iteration number zero (0) will select chromosome

zero (0) and random chromosome selected

randomly from population by equation

Random≤ number of ckomosomes

The previous problem (18 tasks, 3 CPUs) will be

resolved in different selecti

Table 2 represents the optimal solutions for GA and

PGA that can be produced.

Table 2. Affects the type of selection operation on optimal
solutions.

 Genetic Algorithm GA

Try 1 Try 2

 Utilization Visibility Utilization Visibility

Random 82% 72% 84%

Incremental 75% 67% 75%

Random and

Incremental
81% 72% 80%

 Priority Genetic Algorithm PGA

Try 1 Try 2

 Utilization Visibility Utilization Visibility

Random 93% 72% 93%

Incremental 90% 56% 90%

Random and

Incremental
92% 72% 94%

The reason behind this result that we got in the

incremental selection is the small search space, where

the random is better than incremental but

sections it will fail because the space of search will

become bigger and it is hard to find the optim

solution randomly in a large search space.

5.3. Fitness Function

It's a function that calculates the weight of the current

solution to decide if it's better than the previous

solution. There are no rules for determining how the

fitness function calculates this weight (value) but

should focus on ability to find optimal solution, if the

proposed method aims at increasing the system

visibility, the fitness function should calculate the

visibility for each chromosome within the population

before and after crossover operation is being done.

The fitness function that is used in this chapter so

far to increas the visibility of the system. In this

section the PGA uses two new types of fitness

function as follows:

• Chromosome Visibility:

function here depends on the total tasks that can

finish the execution MCT

UV

The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

number of ckomosomes-1.

 This type of selection

method selects chromosomes based on the iteration

number, where in iteration number zero (0) will

select couple of chromosomes zero, one (0, 1) and

in the next iteration it will be in (1, 2)

chromosomes until GA iteration is complete.

Incremental and Random Selection: This type of

selection method depends on merging the previous

two types of selection, where the couple of

chromosomes can be selected depending on

iteration number and random number where in

iteration number zero (0) will select chromosome

zero (0) and random chromosome selected

randomly from population by equation 0≤

number of ckomosomes-1.

The previous problem (18 tasks, 3 CPUs) will be

resolved in different selection operations type, where

2 represents the optimal solutions for GA and

the type of selection operation on optimal

Genetic Algorithm GA

Try 2 Try 3 Average

Visibility Utilization Visibility Utilization Visibility

72% 83% 72% 83% 72%

67% 75% 67% 75% 67%

72% 83% 72% 81% 72%

Priority Genetic Algorithm PGA

Try 2 Try 3 Average

Visibility Utilization Visibility Utilization Visibility

72% 93% 72% 93% 72%

56% 90% 56% 90% 56%

72% 92% 72% 93% 72%

reason behind this result that we got in the

incremental selection is the small search space, where

the random is better than incremental but, in the next

sections it will fail because the space of search will

become bigger and it is hard to find the optimal

solution randomly in a large search space.

It's a function that calculates the weight of the current

solution to decide if it's better than the previous

solution. There are no rules for determining how the

calculates this weight (value) but, it

should focus on ability to find optimal solution, if the

proposed method aims at increasing the system

visibility, the fitness function should calculate the

visibility for each chromosome within the population

and after crossover operation is being done.

The fitness function that is used in this chapter so

far to increas the visibility of the system. In this

section the PGA uses two new types of fitness

: The value of the fitness

function here depends on the total tasks that can

finish the execution MCT on resource before

On Static Scheduling of Tasks in Real Time Multiprocessor Systems: An Improved GA

reaching it is DL and we used this method to solve

all previous examples.

• Chromosome Utilization: The value of the fitness

function here is depending on the CPU utilization

which represented in this schedule.

• Chromosomes Utilization and Visibility

of the fitness function in this part is a combination of

the previous two types as it depends

chromosome visibility and utilization.

 If we try solve a real time multi processor tasks

scheduling problem consists of 4 CPUs and 40 tasks

with RN equals to 200 ns and iteration number is 400

using single point crossover and three types of fitness

function by EDF, GA and PGA the optimal solution

can be represented as follows.

Figure 9-a shows that the total system visibility can

be reached using EDF algorithm where system

visibility is 82%, total system utilization equals 57%

represented in Figure 9-b and CPU No: 0, 1, 2 and 3

can succeed to execute total tasks 7, 9, 8 and 9 in

sequence as represented in Figure 9-c.

 a) Total system visibility
 using EDF algorithm

b) Total system utilization
 using EDF

c) CPUs visibility using EDF algorithm

Figure 9. System results using EDF at 82%.

Table 3. The effect of fitness function on optimal solution using GA
and PGA.

 Genetic algorithm

Try 1 Try 2 Try 3

 Utilization Visibility Utilization Visibility Utilization Visibility

CPU

utilization
60% 82% 58% 82% 57%

CPU

visibility
60% 90% 62% 90% 63%

CPU

utilization

and

visibility

62% 88% 63% 88% 63%

 Priority genetic algorithm

Try 1 Try 2 Try 3

 Utilization Visibility Utilization Visibility Utilization Visibility

CPU

utilization
63% 82% 66% 82% 65%

CPU

visibility
74% 92% 70% 92% 71%

CPU

utilization

and

visibility

72% 92% 72% 92% 70%

When trying to solve the previous problem (40 tasks,

4 CPUs) using GA and PGA, the optimal solutions for

UV

8

6

4

2

0

 3 2 0 1

C
P

U
s

u
ti

li
za

ti
o
n
s

T
as

k
s

v
is

ib
il

it
y

 T

as
k
s

v
is

ib
il

it
y

atic Scheduling of Tasks in Real Time Multiprocessor Systems: An Improved GA-Based Approach

reaching it is DL and we used this method to solve

The value of the fitness

function here is depending on the CPU utilization

Visibility: The value

of the fitness function in this part is a combination of

the previous two types as it depends on

chromosome visibility and utilization.

If we try solve a real time multi processor tasks

scheduling problem consists of 4 CPUs and 40 tasks

ns and iteration number is 400

using single point crossover and three types of fitness

unction by EDF, GA and PGA the optimal solutions

shows that the total system visibility can

be reached using EDF algorithm where system

visibility is 82%, total system utilization equals 57%

and CPU No: 0, 1, 2 and 3

can succeed to execute total tasks 7, 9, 8 and 9 in

system utilization

using EDF algorithm.

CPUs visibility using EDF algorithm.

EDF at 82%.

The effect of fitness function on optimal solution using GA

 Average

Visibility Utilization Visibility

82% 58% 82%

88% 62% 89%

88% 63% 88%

 Average

Visibility Utilization Visibility

78% 65% 81%

92% 72% 92%

90% 71% 91%

When trying to solve the previous problem (40 tasks,

4 CPUs) using GA and PGA, the optimal solutions for

system visibility and total system utilization generally

increase. Table 3 above shows optimal solutions that it

can reach with different types of fitness functions.

It is obvious from Table

PGA has better optimal solution more than GA in

different types of fitness function, and it’s noticed that

the effects of fitness function in optimal solution that

the algorithm can reach.

5.4. Scheduler Runing Time SRN

The RT should be known to the scheduler but until

now RN effects have no result measures. This section

clarifies what happens to scheduling algorithm if the

RN is increased.

The EDF, GA and PGA will re

problem (3 CPUs, 18 tasks and iteration nu

equals to 240) but, suppose that the 18 tasks arrives

before time equals 200 ns (RN equal to 200), where

MCT for each task selected randomly is represented

by the following equation 0<

The EDF algorithm can execute 78% from total

tasks represented in Figure

the total system utilization which is equals to 25% and

Figure 10-c show the tasks that can be executed

successfully on each processor where CPU No: 0,1

and 2 execute the total tasks 5,

 a) Total system visibility
 using EDF algorithm.

c) CPUs visibility using EDF

Figure 10. System results u

From the previous result, we can say that the

difference between the total system visibility and total

system utilization is quite large, and that’s because

EDF algorithm sorts the tasks by its

CPUs time is wasted by waiting the system time

reaching the AT for other tasks.

The GA beats the EDF algorithm which gives

better optimal solution where the total of system

visibility increased to reach 78% that represented in

Figure 11-a, as well as the total system utilization

increased to reach 25% shown in

CPU No: 0, 1 and 2 execute the total tasks 5, 4 and 5

in sequence represented in Figure

T
as

k
s

v
is

ib
il

it
y

T
as

k
s

v
is

ib
il

it
y

Based Approach 567

system visibility and total system utilization generally

shows optimal solutions that it

can reach with different types of fitness functions.

Table 3 that the proposed method

PGA has better optimal solution more than GA in

different types of fitness function, and it’s noticed that

the effects of fitness function in optimal solution that

Scheduler Runing Time SRN

should be known to the scheduler but until

now RN effects have no result measures. This section

clarifies what happens to scheduling algorithm if the

The EDF, GA and PGA will re-execute the first

18 tasks and iteration number

suppose that the 18 tasks arrives

ns (RN equal to 200), where

MCT for each task selected randomly is represented

0< MCT≤ 30ns.

The EDF algorithm can execute 78% from total

Figure 10-a. Figure 10-b represent

the total system utilization which is equals to 25% and

show the tasks that can be executed

successfully on each processor where CPU No: 0,1

and 2 execute the total tasks 5, 4 and 5.

 b) Total system utilization
 using EDF algorithm.

CPUs visibility using EDF algorithm.

results using EDF at 78%.

From the previous result, we can say that the

difference between the total system visibility and total

system utilization is quite large, and that’s because

EDF algorithm sorts the tasks by its DLs where almost

wasted by waiting the system time

for other tasks.

The GA beats the EDF algorithm which gives

better optimal solution where the total of system

visibility increased to reach 78% that represented in

, as well as the total system utilization

increased to reach 25% shown in Figure 10-b where

CPU No: 0, 1 and 2 execute the total tasks 5, 4 and 5

Figure 10-c.

C
P

U
s

U
ti

li
za

ti
o
n
s

568 The International Arab Journal of Information Technology, Vol. 11, No.

 a) Total system visibility
 using GA.

 b) Total system
 using GA.

c) CPUs visibility using GA.

Figure 11. System results using

PGA defeats both EDF and GA, as it guarantees
more better optimal solution and increase total system
visibility to reach 89% as shown in Figure
total system utilization increased to reach 36% as
shown in Figure 12-b where CPU No: 0, 1 and 2
execute the total tasks 6,4 and 6 in sequence
represented in Figure 12-c.

a) Total system visibility using
 PGA.

b) Total system utilization
 using PGA

c) CPUs visibility using PGA.

Figure 12. System results using GA at 89%

5.5. Ability of Priority Genetic Algorithm to

Solve Large Scheduling Problem

The following Table 4 shows the ability of simulator to

solve large scheduling problem consists of 2000 tasks,

100 processors, RN equals to 400 ns and the total

number of iteration to repeat the genetic operation is

8000.

Table 4. Result of simulater for large scheduling problem

 Chromosome visibility as fitness function replacement

method is total fitness of chromosome is best

 Utilization Visibility

EDF 55% 86%

GA 62% 92%

PGA 69% 97%

From the Table 4 PGA defeats both EDF and GA, as

it guarantees more better optimal solution and increase

total system visibility to reach 97%, and total system

utilization increased to reach 69%.

T
as

k
s

v
is

ib
il

it
y

T

as
k
s

v
is

ib
il

it
y

C
P

U
s

U
ti

li
za

ti
o
n
s

C
P

U
s

U
ti

li
za

ti
o
n
s

T
as

k
s

v
is

ib
il

it
y

T

as
k
s

v
is

ib
il

it
y

The International Arab Journal of Information Technology, Vol. 11, No.

otal system utilization

using GA.

results using GA.

PGA defeats both EDF and GA, as it guarantees
more better optimal solution and increase total system

Figure 12-a, and
total system utilization increased to reach 36% as

where CPU No: 0, 1 and 2
te the total tasks 6,4 and 6 in sequence

system utilization

using PGA.

sing GA at 89%.

Ability of Priority Genetic Algorithm to

Large Scheduling Problem

4 shows the ability of simulator to

solve large scheduling problem consists of 2000 tasks,

ns and the total

number of iteration to repeat the genetic operation is

for large scheduling problem.

visibility as fitness function replacement

method is total fitness of chromosome is best

Visibility

86%

92%

97%

4 PGA defeats both EDF and GA, as

it guarantees more better optimal solution and increase

total system visibility to reach 97%, and total system

5.6. Earliest Deadline First

Priority Genetic Algorithms

In this section we proposed three different real time

multi processor tasks scheduling problems, we will try

to solve these problems using the EDF,

to improve the visibility and utilization for systems.

The proposed problems consist of the following:

• Problem 1: This problem consists of 18 tasks, 3
processors, the RN is supposed to be equals to 20
ns and the total number of iteration for repeating
the genetic operation is 100

• Problem 2: This problem consists of 40 tasks, 4
processors, the RN is supposed to be equals to 200
ns and the total number of iteration for repeating
the genetic operation is 200.

• Problem 3: This problem consists of 150
processors, the RN is supposed to be equals to 250
ns and the total number of iteration for repeating
the genetic operation is 200.

The GA and PGA will shows different optimal
solutions when use different fitness functions and
different replacement methods, but assumes that
genetic and PG algorithm use the incremental and
random technique as a selection method, the following
tables explain all results that can be produced. All
tasks properties supposed to prove the following
equations:

1. AT > 0 for any task in population

2. AT < DL.

3. AT + MCT ≤ DL.

4. 0< MCT ≤ 30 ns.

5.6.1. Problem 1: 18 Tasks

Table 5. Result for problem 1 using chromosome visibility as

fitness function and replacement method is total fitness of
chromosome is best.

 Problem 1: Chromosome visibility as fitness function replacement method is total

fitness of chromosome is best

Try 1 Try 2

 Utilization Visibility Utilization Visibility

EDF 60% 82% 58%

GA 60% 90% 62%

PGA 62% 88% 63%

Table 6. Result for problem 1 using chromosome utilization as

fitness function and replacement method is total fitness of

chromosome is best.

 Problem 1: Chromosome utilization as fitness function replacement method is total

fitness of chromosome is best

Try 1 Try 2

 Utilization Visibility Utilization Visibility

EDF 80% 44% 80% 44%

GA 87% 56% 88% 56%

PGA 90% 56% 87% 56%

Table 7. Result for problem 1 using chromosome visibility and

utilization as fitness function and replacement method is total

fitness of chromosome is best.

Problem 1: Chromosome visibility and utilization as fitness function replacement method

is total fitness of chromosome is best

Try 1 Try 2

 Utilization Visibility Utilization Visibility

EDF 80% 44% 80% 44%

GA 87% 56% 90% 56%

PGA 88% 56% 87% 56%

The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

Earliest Deadline First vs. Genetic vs.

Algorithms

In this section we proposed three different real time

multi processor tasks scheduling problems, we will try

to solve these problems using the EDF, GA and PGAs

to improve the visibility and utilization for systems.

The proposed problems consist of the following:

This problem consists of 18 tasks, 3
processors, the RN is supposed to be equals to 20
ns and the total number of iteration for repeating
the genetic operation is 100 ns.

This problem consists of 40 tasks, 4
processors, the RN is supposed to be equals to 200
ns and the total number of iteration for repeating
the genetic operation is 200.

This problem consists of 150 tasks, 8
processors, the RN is supposed to be equals to 250
ns and the total number of iteration for repeating
the genetic operation is 200.

The GA and PGA will shows different optimal
solutions when use different fitness functions and

ent methods, but assumes that
genetic and PG algorithm use the incremental and
random technique as a selection method, the following
tables explain all results that can be produced. All
tasks properties supposed to prove the following

any task in population.

Tasks/ 3 Processors

for problem 1 using chromosome visibility as

fitness function and replacement method is total fitness of

visibility as fitness function replacement method is total

Try 2 Try 3 Average
Visibility Utilization Visibility Utilization Visibility

82% 57% 82% 58% 82%

90% 63% 88% 62% 89%

88% 63% 88% 63% 88%

for problem 1 using chromosome utilization as

fitness function and replacement method is total fitness of

utilization as fitness function replacement method is total

Try 3 Average

Visibility Utilization Visibility Utilization Visibility

44% 80% 44% 80% 44%

56% 90% 56% 88% 56%

56% 87% 56% 87% 56%

for problem 1 using chromosome visibility and

utilization as fitness function and replacement method is total

visibility and utilization as fitness function replacement method

Try 3 Average

Visibility Utilization Visibility Utilization Visibility

44% 80% 44% 80% 44%

56% 88% 56% 88% 56%

56% 90% 56% 88% 56%

On Static Scheduling of Tasks in Real Time Multiprocessor Systems: An Improved GA-Based Approach 569

Table 8. Result for problem 1 using chromosome visibility as fitness

function and replacement method is single fitness of chromosome is
best.

 Problem 1: Chromosome visibility as fitness function replacement method is single

fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 80% 44% 80% 44% 80% 44% 80% 44%

GA 80% 44% 80% 44% 80% 44% 80% 44%

PGA 86% 50% 86% 50% 86% 50% 86% 50%

Table 9. Result for problem 1 using chromosome utilization as

fitness function and replacement method is single fitness of
chromosome is best.

Problem 1: Chromosome utilization as fitness function replacement method is single

fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 80% 44% 80% 44% 80% 44% 80% 44%

GA 87% 50% 86% 50% 88% 50% 87% 50%

PGA 86% 50% 86% 50% 86% 50% 86% 50%

Table 10. Result for problem 1 using chromosome visibility and

utilization as fitness function and replacement method is single
fitness of chromosome is best.

 Problem 1: Chromosome visibility and utilization as fitness replacement method is

single fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 80% 44% 80% 44% 80% 44% 80% 44%

GA 80% 44% 80% 44% 80% 44% 80% 44%

PGA 86% 50% 86% 50% 86% 50% 86% 50%

From the previous six tables, the average of the total
system utilization and visibility that we got from GA
and PGA are almost the same.

5.6.2. Problem 2: 40 Tasks/ 4 Processors

Table 11. Result for problem 2 using chromosome visibility as

fitness function and replacement method is total fitness of
chromosome is best.

 Problem 2: Chromosome visibility as fitness function replacement method is total fitness

of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 80% 44% 80% 44% 80% 44% 80% 44%

GA 62% 88% 63% 88% 62% 88% 62% 88%

PGA 69% 92% 68% 92% 68% 92% 68% 92%

Table 12. Result for problem 2 using chromosome utilization as

fitness function and replacement method is total fitness of
chromosome is best.

 Problem 2: Chromosome utilization as fitness function replacement method is total fitness

of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 57% 82% 57% 82% 57% 82% 57% 82%

GA 53% 82% 61% 88% 57% 82% 57% 84%

PGA 63% 82% 67% 85% 67% 88% 66% 85%

Table 13. Result for problem 2 using chromosome visibility and

utilization as fitness function and replacement method is total

fitness of chromosome is best.

 Problem 2: Chromosome visibility and utilization as fitness function replacement method

is total fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 57% 82% 57% 82% 57% 82% 57% 82%

GA 64% 90% 63% 88% 61% 88% 57% 84%

PGA 68% 92% 71% 92% 71% 92% 70% 92%

Table 14. Result for problem 2 using chromosome visibility as

fitness function and replacement method is single fitness of
chromosome is best.

 Problem 2: Chromosome visibility as fitness function replacement method is single

fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 57% 82% 57% 82% 57% 82% 57% 82%

GA 57% 82% 57% 82% 57% 82% 57% 82%

PGA 67% 88% 67% 88% 67% 88% 67% 88%

Table 15. Result for problem 2 using chromosome utilization as

fitness function and replacement method is single fitness of
chromosome is best.

 Problem 2: Chromosome utilization as fitness function replacement method is single

fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 57% 82% 57% 82% 57% 82% 57% 82%

GA 59% 82% 63% 88% 60% 82% 61% 84%

PGA 69% 88% 70% 88% 69% 90% 69% 89%

Table 16. Result for problem 2 using chromosome visibility and

utilization as fitness function and replacement method is single
fitness of chromosome is best.

 Problem 2: Chromosome visibility and utilization as fitness function replacement

method is single fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 57% 82% 57% 82% 57% 82% 57% 82%

GA 59% 82% 59% 82% 59% 82% 59% 82%

PGA 67% 88% 67% 88% 67% 88% 67% 88%

The PGA beats the GA in the previous six tables.

We got the best result from PGA when we’ve used

chromosome visibility and utilization as fitness

function and replacement method as total fitness of

chromosome is best.

5.6.3. Problem3: 150 Tasks/ 8 Processors

Table 17. Result for problem 3 using chromosome visibility as

fitness function and replacement method is total fitness of
chromosome is best.

 Problem 3: Chromosome visibility as fitness function replacement method is total fitness

of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 59% 69% 59% 69% 59% 69% 59% 69%

GA 65% 71% 66% 73% 65% 73% 65% 72%

PGA 76% 76% 75% 75% 77% 77% 76% 76%

Table 18. Result for problem 3 using chromosome utilization as

fitness function and replacement method is total fitness of

chromosome is best.

 Problem 3: Chromosome utilization as fitness function replacement method is total

fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 59% 69% 59% 69% 59% 69% 59% 69%

GA 61% 68% 62% 69% 57% 67% 60% 68%

PGA 69% 69% 73% 70% 73% 71% 71% 70%

Table 19. Result for problem 3 using chromosome visibility and

utilization as fitness function and replacement method is total
fitness of chromosome is best.

 Problem 3: Chromosome visibility and utilization as fitness function replacement

method is total fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 59% 69% 59% 69% 59% 69% 59% 69%

GA 66% 73% 67% 73% 68% 74% 67% 73%

PGA 75% 74% 76% 75% 73% 74% 75% 74%

Table 20. Result for problem 3 using chromosome visibility as

fitness function and replacement method is single fitness of
chromosome is best.

 Problem 3: Chromosome visibility as fitness function replacement method is single

fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 59% 69% 59% 69% 59% 69% 59% 69%

GA 56% 66% 56% 66% 56% 66% 56% 66%

PGA 71% 72% 69% 71% 71% 72% 70% 71%

570 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

Table 21. Result for problem 3 using chromosome utilization as

fitness function and replacement method is single fitness of

chromosome is best.

 Problem 3: Chromosome utilization as fitness function replacement method is single

fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 59% 69% 59% 69% 59% 69% 59% 69%

GA 62% 70% 63% 71% 61% 71% 62% 71%

PGA 82% 68% 84% 70% 84% 70% 83% 70%

Table 22. Result for problem 3 using chromosome visibility and

utilization as fitness function and replacement method is single

fitness of chromosome is best.

 Problem 3: Chromosome visibility and utilization as fitness function replacement method

is single fitness of chromosome is best

Try 1 Try 2 Try 3 Average

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility

EDF 59% 69% 59% 69% 59% 69% 59% 69%

GA 56% 66% 56% 66% 56% 66% 56% 66%

PGA 71% 72% 69% 71% 71% 72% 70% 71%

The PGA beats the GA in the previous six tables.

We got the best result from PGA when we’ve used

chromosome visibility as fitness function and

replacement method as total fitness of chromosome is

best.

From the previous tables, The GA defeats the EDF

algorithm for all supposed systems and the PGA defeat

both EDF and GA in these systems. These results occur

because the proposed algorithm focused on the first

population and how it should be sorted and does not

stop to sort it by tasks DL where MCT involved into

calculating additional property represented as P where

the first population is sorted by it.

After all, We got the best result from PGA and GA

when we have used chromosome visibility or visibility

and utilization as fitness function and replacement

method as total fitness of chromosome is best. As this

organize the search space.

6. Conclusion and Recommendations

At the end, we can say that the EDF, GA and PG

algorithms are techniques created to solve the real time

multi processor tasks scheduling problems as genetic

defeats the EDF algorithm, and the PG defeats EDF and

GAs.

The PGA is a random search technique that applies

some operations to repeat N iterations. These

operations can be evaluated by fitness function to

determine the weight of the new child is better than its

parent. It is worth mentioning that most of algorithms

ignore the effects of sorting the first population on the

optimal solution.
Results prove that, the fitness function has a major

effect on enhancing the optimal solutions as needed. It
can be used to improve the system utilization, system
visibility or both.

 Table 23 shows the overall average results for the
discussed three problems. From this table we see that
suggested algorithm PGA has better performance for
three discussed cases.

Table 23. Overall average of optimal solutions for the discussed

three problems.

 Problem 1 Problem 2 Problem 3

 Overall

utilization

Overall

visibility

Overall

utilization

Overall

visibility

Overall

utilization

Overall

Visibility

EDF 58% 82% 80% 44% 59% 69%

GA 80.83% 56.5% 58.83% 84% 61% 69.33%

PGA 82.66% 58.3% 67.83% 89% 74.16% 72%

Finally, we can conclude that PGA and GA give
better optimal solution using the following parameters
with the respected values:

• Fitness function with chromosome visibility or
visibility and utilization.

• Selection method with incremental and random.
• Replacement method with total fitness of

chromosome is best.

The performance of the proposed algorithm (PGA)
may be improved by:

1. Organizing and increasing the search space,
through using a combination of incremental and
random selection operation.

2. When the SRN is large in system respectively to
the total task number, if may be better to use EDF
algorithm because it’s going to give an
approximately the same result of optimal solution
that is given by GA and PGA, and the EDF has a
less complexity.

3. Combining the PGA with Partially Matched
Crossover (PMX) may give better results.

References

[1] Abraham A., Dahal K., Hossain A., Daradoumis
A., Varghese B., and Xhafa F., “Scheduling in
Multi processor System Using Genetic
Algorithms,” in Proceedings of the 7

th
 Computer

Information Systems and Industrial Management
Applications, Ostrava, Czech Republic, pp. 281-
286, 2008.

[2] Agarwal G., Gupta S., and Kumar V., “Task
Scheduling in Multi Processor System Using
Genetic Algorithm,” in Proceedings of the 2

nd

International Conference on Machine Learning
and Computing, Bangalore, Karnataka, pp. 267-
271, 2010.

[3] Ceyda O. and Ercan M., “A Genetic Algorithm
for Multilayer Multi Processor Task
Scheduling,” in Proceedings of IEEE Region 10
Conference, vol. 2, pp. 168-170, 2004.

[4] Cheng S. and Huang Y., “Dynamic Real-Time
Scheduling for Multi Processor Tasks Using
Genetic Algorithm,” in Proceedings of the 28

th

Annual International Computer Software and
Applications Conference, Hong Kong, China,
vol. 1, pp. 154-160, 2004.

[5] Dandass Y., “Genetic List Scheduling for Soft
Real-Time Parallel Applications,” in
Proceedings of Congress on Evolutionary
Computation, Portland, USA, vol. 1, pp. 1164-
1171, 2004.

On Static Scheduling of Tasks in Real Time Multiprocessor Systems: An Improved GA-Based Approach 571

[6] Daoud M. and Kharma N., “An Efficient Genetic
Algorithm for Task Scheduling in Heterogeneous
Distributed Computing Systems,” in Proceedings
of IEEE Congress on Evolutionary Computation,
Vancouver, Canada, pp. 3258-3265, 2006.

[7] Deshpande N. and Kamalapur S., “Efficient CPU
Scheduling: A Genetic Algorithm based
Approach,” in Proceedings of International
Symposium on Ad-Hoc and Ubiquitous
Computing, Surathkal, India, pp. 206-207, 2006.

[8] Galvin P., Gagne G., and Silberschatz A.,
Operating System Concepts, Wiley Knowledge
for Generations, USA, 2005.

[9] Graham R., “Static Multi-processor Scheduling
with Ant Colony Optimisation and Local Search,”
Master of Science, University of Edinburgh, UK,
2003.

[10] Hnang Z. and Wu Z., “A Deadlock-Free
Scheduling Method for Automated Manufacturing
Systems Using Dynamic-Edge Graph with
Tokens,” in Proceedings of the IEEE
International Conference on Control
Applications, Taipei, Taiwan, vol. 2, pp. 1398-
1403, 2004.

[11] Ilavarasan E. and Thambidurai P., “Genetic
Algorithm for Task Scheduling on Distributed
Heterogeneous Computing System,” World
Academy of Science, Engineering and
Technology, vol. 1, no. 3, pp. 233-242, 2006.

[12] Jie l., Ruifeng G., and Zhixiang S., “The Research
of Scheduling Algorithms in Real-time System,”
in Proceedings of International Conference on
Computer and Communication Technologies in
Agriculture Engineering, Chengdu, China, vol. 1,
pp. 333-336, 2010.

[13] Kazem A., Seifzadeh H., Kargahi M., Movaghar
A., and Lotfi S., “Maximizing the Accrued Utility
of an Isochronal Soft Real-Time System Using
Genetic Algorithms,” in Proceedings of the 8

th

IEEE/ACIS International Conference on
Computer and Information Science, Shanghai,
China, pp. 65-69, 2009.

[14] Kumar R. and Gill S., “An Impact of Crossover
Operator on the Performance of Genetic
Algorithm Under Operating System Process
Scheduling Problem,” in Proceedings of
International Conference on Communication
Systems and Network Technologies, Katra,
Jammu, pp. 704-708, 2011.

[15] Lin C. and Luh J., “Scheduling of Parallel
Computation for a Computer-Controlled
Mechanical Manipulator Systems,” Man and
Cybernetics, vol. 12, no. 2, pp. 214-234, 1982.

[16] Mahmood A., “A Hybird Genetic Algorithm for
Task Scheduling in Multi Processor Real-Time
Systems,” in Proceedings of Studies in
Informatics and Control, pp. 207-218, 2009.

[17] Man L. and Sai M., “A Genetic Algorithm for
Energy Aware Task Scheduling in Heterogeneous
Systems,” Parallel Processing Letters, vol. 15,
no. 4, pp. 439-449, 2005.

[18] ManChon U., Chiahsun H., Funk S., and
Rasheed K., “A Genetic Algorithm Based Real-
Time System Scheduler,” in Proceedings of
IEEE Congress on Evolutionary Computation,
New Orleans, USA, pp. 886-893, 2011.

[19] Montana D., Bidwell G., and Moore S., “Using
Genetic Algorithms for Complex, Real-Time
Scheduling Applications,” in Proceedings of
IEEE Network Operations and Management
Symposium, New Orleans, USA, vol. 1, pp. 245-
248, 1998.

[20] Pooranian Z., Harounabadi A., Shojafar M., and
Hedayat N., “New Hybrid Algorithm for Task
Scheduling in Grid Computing to Decrease
Missed Task,” World Academy of Science,
Engineering and Technology, vol. 5, no. 7, pp.
959-963, 2011.

[21] Rashtbar S., Isazadeh A., and Khanly L., “A
New Hybrid Approach for Multi processor
System Scheduling with Genetic Algorithm and
Tabu Search (HGTS),” in Proceedings of the 3

rd

International Conference on Information
Sciences and Interaction Sciences, Chengdu,
China, pp. 626-631, 2010.

[22] Sachi G., Gaurav A., and Vikas K., “Task
Scheduling in Multi Processor System Using
Genetic Algorithm,” in Proceedings of the 2

nd

International Conference on Machine Learning
and Computing, Bangalore, Karnataka, pp. 267-
271, 2010.

[23] Suranauwarat S., “A CPU Scheduling Algorithm
Simulator, Frontiers In Education Conference -
Global Engineering,” Knowledge Without
Borders, vol. 7, no. 37, pp. 19-24, 2007.

[24] Zhong Y. and Yang J., “A Genetic Algorithm for
Tasks Scheduling in Parallel Multi Processor
Systems,” in Proceedings of the International
Conference on m Machine Learning and
Cybernetics, vol. 3, pp. 1785-1790, 2003.

[25] Zhu C., Dai S., and Zhi L., “Task Matching and
Scheduling by Using Self-Adjusted Genetic
Algorithms,” in Proceedings of the 5th IEEE
International Conference on Cognitive
Informatics, Beijing, China, vol. 3, pp. 908-911,
2006.

Mohammad Ababneh received his

PhD in computer engineering from

Cairo University, Egypt in 2000. He

is an associate professor of

computer engineering, he is an

instructor in Computer Information

Systems, Balqa Applied University,

Jordan. Teaching different subjects like,

microprocessors, computer organization, computer

architecture, image processing, algorithms, compilers,

programming, etc., he also held administration

positions as dean, vice dean, dean assistance, and head

of department. Published around 17 papers in different

computer deciplines.

572 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

Salama Hassan received his

bachelor degree in computer science

from prince Abdullah Bin Ghazi

Faculty of Information Technology-

Amman, Jordan in 2008. He has also

received his from the same school in

2012. Currently, he is working for the

Health Insurance Directorate, Jordan as ORACLE

programmer.

Sulieman Bani-Ahmad received his

BSc degree in electrical engineering/

computer engineering from the

Department of Electrical

Engineering, Jordan University of

Science and technology in 1999. He

received an MSc in computer science

from the School of Information Technology at Al-

albayt University in Jordan, in 2001. He received his

PhD degree in computing and information systems

from the Department of Electrical Engineering and

Computer Science at Case Western Reserve University,

Cleveland-Ohio, USA, in 2008. He is presently a

professor at Al-Balqa Applied University, Jordan. His

research interests include web-computing and online

literature digital libraries. More specifically, he is

interested in social network analysis of literature

citation graphs, domain-specific citation-behavior in

literature citation networks, and research development

models of literature. He has also, works in the area of e-

learning and technology-based teaching. Finally, he

works in the area of parallel computing. More

specifically, he worked on the topics of processor

allocation and job scheduling.

