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Abstract: Task execution Deadline Time (DL) in real-time systems is a critical constraint. Every task should have a Maximum 

Computational Time (MCT) that is needed before reaching a given DL time. Scheduling jobs in real-time systems is thus a 

nondeterministic polynomial NP problem. Three algorithms can be found in literature to solve these problems in a multi 

processor environment; are the Earliest Deadline First (EDF), Genetic Algorithms (GA), Priority Genetic Algorithms (PGA). 

In this research, the PGA is introduced and experimentally evaluated against already proposed algorithms in literature. It 

works just like the GA algorithm introduced in Abraham et al. [1]. However, we do not only consider the DL in sorting the 

tasks in the first population, but rather, we also include the MCT of individuals in the population to define the priority level of 

these tasks. We have found that the proposed algorithm has a better average total system utilization, total system tasks 

visibility compared with Genetic (G) and EDF algorithms. We have also found that this improvement becomes more and more 

effective with the increase of problem size.  
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1. Introduction 

Real time systems do not only care about correct results 
of jobs. In fact, DeadLine time (DL) is a critical 
constraint to any task. Every task should have a 
Maximum Computational Time (MCT) that is needed 
before reaching that given DL [10]. Scheduling jobs in 
realtime systems is thus an NP-problem [22]. 

One of the static multi processor scheduling 
problems is processor number, where multi processor 
system that includes heterogeneous set of processors 
with different specifications. Such systems can process 
the task or job with different execution time [10]. 
Considering dependency between these tasks and 
minimizing the probability of having deadlocks, are all 
objectives of scheduling that can have Earliest Deadline 
First (EDF) and Shortest Computation Time First 
(SCTF) met [1].  

Genetic Algorithms (GAs) or evolutionary 
algorithms are random search techniques that are based 
on the evolutionary ideas of natural selection. GAs  can 
be applied on the problem of scheduling in real time 
multi processor tasks and enhance the GA operations to 
reach better optimal solutions to this problem. 
 

2. The Reflective Process 

2.1. CPU Tasks Scheduling  

Multi processor systems have evolved from the single-

processor   systems   to   support   multiprogramming 

which aims to keep some processes running at all times. 

In single-processor system, only one process (task) 
allocates the CPU and the other processes (tasks) 
should wait until the currently running process 
finishes the Computational Time (CT) that it needs. 
Although, sometimes this process may need to do 
some I/O operations, the CPU will be idle as the 
process does the I/O operation, this should 
significantly reduce the CPU utilization and reduce the 
served process in time period (that is the throughput of 
the system) [8]. 

The main goal of multiprogramming is to protect 

CPU from processes which reserve CPU all the time. 

In such systems, all processes should be loaded into 

the main memory, if the CPU is occupied by another 

process, the new-fresh-process shall wait for the 

operating system to take the CPU from the running 

process and give it to the waiting processes that wait 

in the ready queue [8, 24]. 
CPU scheduler is part of the operating system and 

is responsible for managing the allocation of the CPU 
among active processes [23]. 

The problem of CPU scheduling belongs to the NP-
Hard problems. In fact, the scheduling algorithm can 
significantly affect the CPU utilization [7], therefore, 
many scheduling algorithms have been proposed in 
literature. 

 

2.2. Real Time Systems 

Real-time systems are applied and currently used in 
many areas of our every-day life such as defense, 
scientific research, transportation, management, 
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network communication, meetings through a web video 
and/or audio etc., [12, 14]. 

Processes scheduling to resources in real time 
systems face many challenges. The most important of 
these challenges are:  

1. Large Search Spaces: Generally, the scheduling 
means assigning N tasks to one of M resources in 
specific order. This means that there are   
possibilities to make orderings of the N tasks on M 
resources. Even if there is only one resource in the 
system there will be different orderings of the N 
tasks [19]. 

2. Dynamically Changing Problems: Almost all tasks 
running in a real time system constantly receive 
updates. These tasks vary in their level of priority. 
This adds complexity to the problem of scheduling 
in hand [19]. 

3. A Variety of Constraints: There are two types of 
constraints in scheduling problems. The first type is 
called “hard” and the second is called ‘soft’. Hard 
constraints are the ones which should be satisfied for 
the schedule to be considered legal, while soft 
constraints are essentially preferable [19]. 
 

2.3. Multi Processor Real Time Scheduling 

In some applications, using a single-processor is not 

enough to work typically as it should, so many 

problems such as long response time, low throughput 

etc., will appear in such systems.  
Sometimes, there is a need to have multi processor 

system in which we distribute the computational load 
efficiently among the available CPU's. For that, it is 
necessary to divide the entire task into subtasks and to 
properly arrange the order of the execution of these 
subtasks [15]. 

Multi processor systems provide suitable 
environment and are more powerful to run real time 
applications than uniprocessor systems. That’s why 
scheduling in multi processor system has been an active 
field of research. 

In such systems, every task in the multi processor 
system works in a way, that makes it look like a 
uniprocessor scheduling, centralized multiprocessor 
scheduling and distributed scheduling [12]. 

There are complicated load calculations in multi 
processor real-time scheduling. The scheduling in 
multiprocessor system is not only to sort tasks, but also 
to allocate them to processors. This means that 
scheduling algorithms in multi processor systems are 
much more complicated than those of uniprocessor 
[12].  

There are two strategies in multi processor 
scheduling: Global scheme, and division scheme. In 
global scheduling scheme, real-time tasks are run on 
different processors every time. Tasks can be 
preempted before their implementation and be 
transferred among different processors. In division 
scheduling, a task is run on the same processor in 
different times. All tasks are assigned to processors by 
task allocation algorithm in advance [16]. 

2.4. Dynamic vs. Static Multi Processor 

Scheduling 

There is a difference between dynamic and static multi 
processor scheduling. While dynamic scheduling deals 
with jobs when they arrive at the scheduler and can 
deal with changing the numbers of processors, in static 
scheduling, however, all necessary information about 
the jobs and processors should be known before 
scheduler runs an algorithm. For example, the 
scheduler should know the Running times (RN). This 
means that after some fixed time, the algorithm will be 
re-executed. Also, in static scheduling, the number of 
the processors available in the system is assumed to be 
known as well as the number of tasks to be scheduled 
[9]. 

 

2.5. Problem Specifications 

The most important thing in real time CPU scheduling 
is to make response time to the given process, which 
requests a CPU to be as short as possible. 

Real time CPU scheduler should serve the 
processes before their DLs are reached. Also, it should 
be clear to the CPU scheduler that serving the process 
after its DL is expired will be meaningless because it 
was out of time. 

Every process has mainly three characteristics. The 
first is the process Arrival Time (AT): That is, the 
time when the process entered the ready queue. The 
second is the process CT: That is, the fixed period of 
time that process needs to be executed on resource. 
The third is the process DL time: That the process 
should finish the CT before reaching that DL [8]. 
Figure 1 describes the process characteristics. 

According to the above three characteristics, any 
process in ready queue should comply with the 
following relations 0 < AT < DL and CT < DL – AT. 

 

 
Figure 1. Characteristics of processes. 

 

3. Literature Review 

In the last few years, a number of papers were 
published that cover the real time system scheduling 
using GA. 

Agarwal et al. [2] a group of researchers developed 
a new technique, based on a GA depends on the 
principles of evolution found in nature for finding an 
optimal solution. GA is based on three operators: 
Natural selection, crossover and mutation. In this 
technique GA use static scheduling to find optimal 
solution which proved to be efficient to find optimal 
solution more than Heterogeneous Earliest Finish 
Time (HEFT) with same length of problem size 
focusing on the quality of solution and effect of 
mutation probability on the performance of GA. 
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In [1] a group of researchers proposed GA to 
generate dynamic real time tasks scheduling system 
improve visibility than  EDF and SCTF. The purpose of 
this scheduling algorithm is to enhance the utilization 
of the processors as it depends on the earliest DL first 
to sort the tasks first population. In the researchers 
approach, the GA consist of the following steps: 

1. Generate a task queue.  

2. Sort the tasks in the increasing order of their DLs.  

3. Select a suitable number of tasks for a fixed 

chromosome size.  

4. Generate chromosomes for the population.  

5. Sort the genes in each chromosome based on DL.  

6. Determine the fitness value of each chromosome in 

the population.  

7. Sort the chromosomes within the population 

depending on fitness value.  

8. Apply GA operators for a number of iterations.  

9. Choose the best chromosome. 
  

A better performance is obtained by using GA with the 

heuristic. The percentage of tasks that are feasible is 95 

percent and above Abraham et al. [1]. 
ManChon et al. [18] a group of researchers proposed 

new Real-Time system scheduler based on Genetic 
Algorithm (GART) by applying DP-Wrap technique 
trying to reduce the overhead due to preemption and 
migration by rearranging the schedule so as to increase 
the duration between preemption , this approach answer 
two questions. First, what is the best heuristic? Second, 
is the same heuristic best for all real-time systems? The 
experimental results explained that this algorithms can 
produce the best heuristic for all the systems 
considered. 

Rashtbar et al. [21] a group of researchers developed 
new Hybrid technique depends on GA based on 
neighborhood search and tabu search for performing 
Task Scheduling (HGTS). This technique focuses on 
the results quality and execution time of algorithm, it 
produce of appropriate task schedule by spending less 
execution time since, there should be a balance between 
solution space and execution time of algorithm. 

Dandass [5] has developed a new hybrid technique 
depending on List Scheduling (LS) with a GA for 
constructing non-preemptive schedules for soft real-
time parallel applications. This technique consist ot two 
phases: First one depends on hybrid GA and LS 
approach is used to construct a preliminary schedule 
based on a fixed estimate of task execution times. In 
second phase the preliminary schedule consummated in 
the first phase is converted into a stochastic schedule by 
using PDF operations wich improve shorter schedules 
than two popular LS approaches for a majority of 
sample problems. 

Ceyda and Ercan [3] a group of researchers have 
applied a GA from multi-layer multiprocessor task 
scheduling and introduce a new crossover operator. 
Where this new crossover compared to PMX crossover 
which is proofed to be the best performing crossover 
technique. 

Zhu et al. [25] a group of researchers have put 
forward a task scheduling algorithm based on self-
adjusting GA and grid computing to schedul 
heterogeneous collections of remote is essentially to 
distribute N interdependent tasks to resources. 
Generating a fitness function throught weighted least 
connection algorithm then generating a new 
population of individuals through genetic operation 
(reproduction, crossover, mutation) where this 
approach reduce task complete time. The result here is 
more ideal than other scheduling algorithms. 

Pooranian et al. [20] a group of researchers have 
developed a novel task scheduling based on hybrid 
GA and GELS algorithm. This technique have solved 
grid scheduling problem and minimize missed tasks. 
In this approach every chromosome represents visible 
solution, and move (pick) solution after GA operation 
that better than current solution using purpose function 
(fitness function) and some of advantage of GLES 
algorithm in random search. This algorithm proved 
that can decreases the number of missed tasks more 
than other algorithms. 

Ilavarasan and Thambidurai [11] a group of 
researchers have proposed a new task scheduling for 
distributed heterogeneous computing system namely 
GATS. This tasks provide optimal results for acyclic 
graph, where the performance of this algorithm 
(schedule length, speedup and efficiency) compared 
with existing algorithms such as CPOP, HEFT and 
PSGA where the final result show that the GATS 
substantially outperforms these algorithms. 

Man and Sai [17] a group of researchers have 
proposed a new static scheduling approach for 
heterogeneous systems using GA. That depends on 
tasks executing on a number of heterogeneous 
processors to reduce the energy consumption. The 
simulation result show that this approach reduce the 
energy consumption more than other three algorithm 
namely EDF, longest-time-first and simulated-
anealing by an estimated 20% to 90% under different 
system configurations. 

Daoud and Kharma [6] a group of researchers have 
proposed a new approach namely (GS) which uses a 
customized GA. This approach is to produce high-
quality tasks schedules for Heterogeneous Distributed 
Computing Systems (HeDCSs) and compare the terms 
of average schedule length, speedup and efficiency in 
the HEFT algorithm and the DLS algorithm where GS 
significantly outperforms the traditional scheduling 
algorithm. 

Cheng and Huang [4] present a GA-based approach 

with a feasible energy function that generate good-

quality schedules due the crossover and mutation 

operators. 
Kazem et al. [13] a group of researchers have 

presented a GA for scheduling the independent tasks 
in isochronal soft real-time systems. The suggested 
algorithm is a TUF based scheduling algorithm that its 
objective is maximizing the sum of utilities attained 
by jobs. Different experiments indicate that the 
proposed GA has not only high stability, but also high 
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convergence. Experiments also show that the proposed 
GA produces schedules that the total utility accrued by 
the system is high. 

4. Implementation of Previous Attempts 

Enhancing Real Time Multi Processor 

Using Genetic Algorithm 

As we mentioned before, many of researches on multi 
processors tasks scheduling using GA were initiated.

Next, we will focus on the heuristics algorithm such 
as EDF and we will compare the results with GA. The 
feedback that we got will produce a new enhancement 
for the GA, the complexity of system can be measured 
by the CPUs number. 

Some systems may contain few of CPUs (small 
systems) and heterogeneous CPUs (large systems) 
where some algorithms can be applied efficiently on 
small systems and can’t deal with large systems 
effectively. The complexity of system depends on the 
number of CPUs but, it depends on the size of the 
problem as well (number of tasks). 

We will discuss the utilization and visibility of CPUs 
that can be found through EDF and GA to find optimal 
solution. 

The GA has the iteration number to make an 
enhancement for the current optimal solution when 
applying GA operations, but this process will requir 
longer time. The relation between the GA iteration and 
execution time of the algorithm is a direct proportion, it 
means when the iteration number for GA is increased, 
we will get better optimal solution, but the algorithm 
will take more time to be executed. However, keep in 
mind that the time is a very important 
time system. 

4.1. Our Simulator 

In this phase, a simulator is built using 
Visual Basic.NET (MVB.NET) and external toolkit 
called devexpress. This simulator is used to describe 
the difference between the EDF and GA and to 
represent the parameter as Figures 4-1 (e.g. total system 
utilization) where we can see the effects of changing 
some of GA operation on the optimal solution. This 
simulator got most functions in GA. The input to our 
simulator are: Number of processor, number of 
processes (tasks) where it will be scheduled on 
processor. Simulator takes the RN to generate random 
tasks which its AT should be less than or equal to the 
RN. The iteration number will repeat the genetic 
operation N times. This simulator can take two 
techniques to sort the first populations. The crossover 
type (an input to our simulator) describes two types of 
crossover while. 

Our simulator supports three kinds of replacement 
methods. The child chromosomes that are generated 
after applying GA operations will be replaced by their 
parents to proof the following factors (we will discuss 
them later): 

1. Total fitness function is best.  
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processors tasks scheduling using GA were initiated. 

we will focus on the heuristics algorithm such 
as EDF and we will compare the results with GA. The 

roduce a new enhancement 
, the complexity of system can be measured 

Some systems may contain few of CPUs (small 
systems) and heterogeneous CPUs (large systems) 
where some algorithms can be applied efficiently on 
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We will discuss the utilization and visibility of CPUs 
and GA to find optimal 

The GA has the iteration number to make an 
enhancement for the current optimal solution when 
applying GA operations, but this process will requir 
longer time. The relation between the GA iteration and 

algorithm is a direct proportion, it 
means when the iteration number for GA is increased, 
we will get better optimal solution, but the algorithm 
will take more time to be executed. However, keep in 

 factor in the real 

In this phase, a simulator is built using Microsoft 
(MVB.NET) and external toolkit 

called devexpress. This simulator is used to describe 
the difference between the EDF and GA and to 

1 (e.g. total system 
utilization) where we can see the effects of changing 

eration on the optimal solution. This 
The input to our 

umber of processor, number of 
processes (tasks) where it will be scheduled on 

to generate random 
should be less than or equal to the 

RN. The iteration number will repeat the genetic 
operation N times. This simulator can take two 
techniques to sort the first populations. The crossover 
type (an input to our simulator) describes two types of 

Our simulator supports three kinds of replacement 
methods. The child chromosomes that are generated 
after applying GA operations will be replaced by their 
parents to proof the following factors (we will discuss 

2. Each chromosome fitness function is best. 
3. Ignore fitness, just replace. 

The simulator supports the following selection 
methods: 

1. Randomly.  
2. Incrementally.  
3. Random and incremental. 

This simulator can change the fitness fu
evaluate the chromosome, where there are three types 
of fitness function:   

1. Chromosome visibility.   
2. Chromosome utilization and visibility.     
3. Chromosome utilization. 
 
4.2. Earliest Deadline First

Algorithms 

In this section, we will discuss how the optimal 
solution will be affected when some of GA operations 
are changed in the same problem. Suppose that we 
have the following problem: 18 tasks
equals to 60ns, we will use 
find the best algorithm. 
 

4.2.1. Earliest Deadline First

Figure 2-a shows the result that came using EDF 
algorithm with system visibility 0.67, this system 
executes only 67% tasks. 

             

a) Total system tasks visibility 
     using EDF algorithm. 

                                        

c) Total system visibility using 

Figure 2. EDF algorithm results

We got this result because all tasks are arranged in 
task queue by their DL, as the task with the lowest 
will be executed first on CPU. However, this 
algorithm ignores AT and MCT for each task.

For example, assume that we have two tasks to be 
scheduled, T1 and T2. These tasks have DLs equals to 
7 and 8, MCTs equals to 1 and 5, ATs equals to 3 and 
1 and the current time in CPU is zero. In this case the 
CPU starts with task T1 because its DL here is less 
than T2, the CPU will stay idle until CT equals to
Task T1 will be scheduled and will finish at time
MCT. After T1 finishes, the CT equals to 4, then the 
CPU will try to execute T2 but time 
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Each chromosome fitness function is best.  
Ignore fitness, just replace.   

The simulator supports the following selection 

Random and incremental.  

This simulator can change the fitness function to 
evaluate the chromosome, where there are three types 

Chromosome visibility.    
Chromosome utilization and visibility.      
Chromosome utilization.  

Earliest Deadline First vs. Genetic 

In this section, we will discuss how the optimal 
solution will be affected when some of GA operations 
are changed in the same problem. Suppose that we 

the following problem: 18 tasks, 3 CPUs and RN 
equals to 60ns, we will use GA and EDF algorithms to 

Earliest Deadline First Algorithm 

shows the result that came using EDF 
algorithm with system visibility 0.67, this system 

               

b) Total system utilization 
   using EDF algorithm. 

 

Total system visibility using GA. 

EDF algorithm results. 

We got this result because all tasks are arranged in 
, as the task with the lowest DL 

will be executed first on CPU. However, this 
algorithm ignores AT and MCT for each task. 

For example, assume that we have two tasks to be 
d, T1 and T2. These tasks have DLs equals to 

7 and 8, MCTs equals to 1 and 5, ATs equals to 3 and 
1 and the current time in CPU is zero. In this case the 
CPU starts with task T1 because its DL here is less 
than T2, the CPU will stay idle until CT equals to 3. 
Task T1 will be scheduled and will finish at time CT + 

. After T1 finishes, the CT equals to 4, then the 
CPU will try to execute T2 but time CT + MCT is, 
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obviously, greater than the DL of T2. As a result, we 
end up ignoring T2 and that will decrease
system visibility and utilization because CPU will stay 
idle until CT reaches the AT of T1. 

This will effect the CPU utilization as it's value will 
become 75% as shown in Figure 2-b. 

4.2.2. Genetic Algorithm 

If we are trying to solve a problem using 
chromosome visibility is the fitness function to judge 
the single level crossover operation (the probability to 
make mutation is 0%), the result will be as follows:
Figure 2-c shows the total system visibility when using 
GA which equals to 72%. 

We got this result because all tasks are arranged in 
first population by their DL. The task with the lowest 
DL got the priority to be executed first on CPU.
the first population, the genetic operations will b
excuted randomly (crossover and selection) and it will 
use the fitness function to calculate the CPU visibility 
for the new chromosome, if it was better than the oldest 
one then it will be replaced with the new chromosome 
ignoring the MCT and AT for each task.

Figure 3-a shows the total system CPU utilization 
average is 80% and this could be a result of the first 
population sorted by tasks DL with ignoring the MCT 
and AT for each task. CPUs visibility c
represented in Figure 3-b where CPU No. 1, 2 and 3 
execute 4,5 and 4 tasks in sequence. 

                        
a)  Total system utilization 

               using GA. 
        b) CPUs visibility using 

Figure 3. System utilization and CPUs visibility 
  

The GA is a random search which means it may 
have another solution. This solution could be better 
than the current one.  

Figure 4-a represents this behavior when system 
utilization equals to 83%. Figure 4-b shows the CPUs 
visibility produced by GA where CPU No:  0, 
is 5, 5 and 3 tasks in sequence. 

    
        a) Total system utilization    

            using GA. b) CPUs visibility using 

Figure 4. System utilization and CPUs visibility 

 

4.3. Genetic Algorithm Crossover Operation 

The genetic operations are: Selection
mutation. The simulator ignores the probability of 
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obviously, greater than the DL of T2. As a result, we 
end up ignoring T2 and that will decrease the total 
system visibility and utilization because CPU will stay 

This will effect the CPU utilization as it's value will 

If we are trying to solve a problem using GA and the 
chromosome visibility is the fitness function to judge 
the single level crossover operation (the probability to 
make mutation is 0%), the result will be as follows: 

bility when using 

We got this result because all tasks are arranged in 
. The task with the lowest 

got the priority to be executed first on CPU. After 
the first population, the genetic operations will be 
excuted randomly (crossover and selection) and it will 
use the fitness function to calculate the CPU visibility 
for the new chromosome, if it was better than the oldest 
one then it will be replaced with the new chromosome 

task. 
shows the total system CPU utilization 

average is 80% and this could be a result of the first 
with ignoring the MCT 

and AT for each task. CPUs visibility can be 
where CPU No. 1, 2 and 3 

 

CPUs visibility using GA. 

visibility at 80%. 

The GA is a random search which means it may 
have another solution. This solution could be better 

represents this behavior when system 
shows the CPUs 

produced by GA where CPU No:  0, 1 and 2 

 

CPUs visibility using GA. 

visibility at 83%. 

Genetic Algorithm Crossover Operation  

Selection, crossover and 
mutation. The simulator ignores the probability of 

mutation operation and it focuses on selection and 
crossover operation and how these operations affect 
the optimal solution. 

 
a) Total system visibility using       

     multi-point crossover 

     operation  through GA. 

c) CPUs visibility using multi-point crossover operation through GA

Figure 5. Two types of crossover operations.
 

There are two types of crossover operations, GA 
will try to solve the last problem (3 
applying multi point crossover operation using GA.

Figure 5-a represents the total system visibility 
72% which is the same result as in the single point 
crossover operation. Figure 
system utilization is 85%. Figur
for each CPU, where CPU No. 0, 1 and 2 can execute 
the total number of tasks 5, 4 and 4 in sequence .

The closed results that we got from the single point 
and multi point crossover operations are produced 
because of the population so

5. Priority Genetic Algorithm 

The GA guarantees more visibility of tasks than EDF 
algorithm as we mentioned in the previous chapter. 
But, we need to demonstrate the impact of sorting first 
population on the optimal solution in a diffe
that the normal GA uses.  

We will find an alternative task DL to sort the first 
population and see the new effect on the optimal 
solution where there may be probability to increase 
the total system visibility and utilization in optimal 
solution. 

 

5.1. Enhance Genetic Algorithm

 If the property of task MCT is mixed with DL to sort 
first population, the following equation (
MCT)*DL) calculates the new task property called 
Priority (P). After sorting the first population by 
priority of tasks we call this algorithm 
Algorithm (PGA). The output of the previous problem 
that mentioned in section 4 shown in the next figure
Figure 6-b shows the system visibility increased 
beyond the EDF and equal the GA which is 72% 
while Figure 6-b shows the system utiliza
gives 93% and Figure 6-c 
that gives CPU No: 0, 1 and 2 values 
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mutation operation and it focuses on selection and 
crossover operation and how these operations affect 

 
 b) Total system utilization using  

     multi-point crossover 

     operation through GA. 

 
point crossover operation through GA. 

Two types of crossover operations.  

There are two types of crossover operations, GA 
will try to solve the last problem (3 CPU, 18 tasks) by 
applying multi point crossover operation using GA. 

represents the total system visibility 
72% which is the same result as in the single point 
crossover operation. Figure 5-b shows that the total 
system utilization is 85%. Figure 5-c shows visibility 
for each CPU, where CPU No. 0, 1 and 2 can execute 
the total number of tasks 5, 4 and 4 in sequence . 

The closed results that we got from the single point 
and multi point crossover operations are produced 
because of the population sorted by tasks’ DL .  

5. Priority Genetic Algorithm  

The GA guarantees more visibility of tasks than EDF 
algorithm as we mentioned in the previous chapter. 

we need to demonstrate the impact of sorting first 
population on the optimal solution in a different way 

We will find an alternative task DL to sort the first 
population and see the new effect on the optimal 
solution where there may be probability to increase 
the total system visibility and utilization in optimal 

Enhance Genetic Algorithm 

If the property of task MCT is mixed with DL to sort 
first population, the following equation (P=(DL-

) calculates the new task property called 
Priority (P). After sorting the first population by 
priority of tasks we call this algorithm Priority Genetic 

(PGA). The output of the previous problem 
4 shown in the next figures. 

shows the system visibility increased 
beyond the EDF and equal the GA which is 72% 

shows the system utilization that 
 shows the CPUs visibility 

1 and 2 values equals to 4, 4 
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and 5 in sequence. This optimal solution is better than 
the EDF and GA. The reason behind that will be 
discussed in the next example.  

             
     a) Total System visibility         

          using PG algorithm. 

    b) Total system utilization

         using PG algorithm.

 
c) CPUs visibility using PG algorithm

Figure 6. System visibility using PG algorithm

Suppose that two tasks T1 and T2 have DLs 7 and 8, 
MCTs 1 and 5, ATs 3 and 1 in sequence and the current 
time in CPU is 0. In this case the scheduler will 
calculate the priority through the equation 
MCT)*DL. This gives P values that equals to 
24, respectively. The scheduler then starts with the task 
T2 because its P is less than T1 so it will start first, the 
CPU will stay idle until CT equals to 1 and the CT will 
be equals to CT+MCT for T2. After finishing with T2, 
the CT will be equals to 6, the CPU will execute T1, 
where DL for T1>CT, CT>AT and also
T1≤ DL for T1. As a result, the system utilization and 
visibility will be increased because the CPU will not be 
idle until CT reaches the AT of T1.  

It is concluded from above that the effect of sorting 
first population on optimal solution could be noticed, 
but we should remember that the GA operations are 
consisted of selection, crossover and mutation that are 
repeated for N time (iteration).  

Increasing iteration in GA may be produce
optimal solution but, this depends on available time that 
can repeat the GA operations. In other words, GA could 
reach the optimal solution that PGA reached by 
increasing the iteration. 

              
a) Total system utilization        

     using PG algorithm. 
b) CPUs visibility using PG 

     algorithm

Figure 7. New optimal solution results

Figures 7-a and 7-b shows the new optimal solution, 
where Figure 7-a shows the total system utilization 
increasing and reaches 94% and Figure 
CPUs visibility that gives CPU No: 0,1 and 2 values 
equals to 4, 4 and 5 in sequence. 
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. This optimal solution is better than 
. The reason behind that will be 

 
system utilization 

PG algorithm. 

 
CPUs visibility using PG algorithm. 

using PG algorithm. 

have DLs 7 and 8, 
, ATs 3 and 1 in sequence and the current 

time in CPU is 0. In this case the scheduler will 
calculate the priority through the equation P=(DL- 

. This gives P values that equals to 42 and 
, respectively. The scheduler then starts with the task 

ecause its P is less than T1 so it will start first, the 
CPU will stay idle until CT equals to 1 and the CT will 

for T2. After finishing with T2, 
the CT will be equals to 6, the CPU will execute T1, 

and also CT+MCT for 
for T1. As a result, the system utilization and 

visibility will be increased because the CPU will not be 

It is concluded from above that the effect of sorting 
first population on optimal solution could be noticed, 
but we should remember that the GA operations are 
consisted of selection, crossover and mutation that are 

Increasing iteration in GA may be produces a better 
this depends on available time that 

can repeat the GA operations. In other words, GA could 
reach the optimal solution that PGA reached by 

 
CPUs visibility using PG   

algorithm 

solution results. 

shows the new optimal solution, 
shows the total system utilization 

Figure 7-b shows the 
CPUs visibility that gives CPU No: 0,1 and 2 values 

Before explaining the effect of GA operation on 
optimal solution, we should discus
function that takes the responsibilty to accept or refuse 
the new chromosome. In all previous examples, we 
assumed that the total fitness function is already 
specified to accept new chromosomes, then the 
previous optimal solutions resulted as

Table 1 shows the optimal solutions when we 
change the fitness function to be single for problem 
consists of 18 tasks, 3 processors, the RN is supposed 
to be equals to 20 ns and the total number of iteration 
for repeating the genetic operation is 
the single fitness means every chromosome after 
crossover operation selected by its fitness value, if this 
fitness is equal to or greater than the older one, it will 
be accepted in the population, and if any other value 
of fitness is less than the oldest chromosome, the new 
chromosome will be ignored

 

Table 1. CPUs visibility using PG algorithm

 Genetic Algorithm GA

 Try 1 Try 2 
 Utilization Visibility Utilization Visibility

Total 

chromos

ome 

fitness 

85% 72% 80% 72%

Single 

chromos

ome 

fitness 

75% 67% 75% 67%

 Priority Genetic Algorithm PGA

 Try 1 Try 2 

 Utilization Visibility Utilization Visibility

Total 

chromos

ome 

fitness 

93% 72% 93% 72%

Single 

chromos

ome 

fitness 

90% 56% 90% 56%

 

From the previous table, the average of utilization 
decreased from 82% to 75% after updating the fitness 
function and visibility decreased from 72% to 67% 
using GA, also when using PGA the average of 
system utilization decreased from 83% to 80% and the 
average of system visibility from 72% to 56%, 
however, the fitness function can be used to enhance 
the GA.  

In the next sections, the effects of fitness function 
will be considered to produce optimal solution and to 
try the best fitness function that maximize
solution. 

In this chapter, there are three methods to accept 
new chromosomes in population and take them in 
algorithm consideration, these methods are: 

1. New Total Fitness Value 
parent chromosomes  fitness value wil
compared with the new total fitness value of child 
chromosomes, if it was greater or equal to the 
oldest value, it would accept the new chromosomes 
to be in the population, in this case the oldest one 
will be deleted. 

2. New Single Fitness Value Best
for the new chromosomes here should be greater 
than or equal to the oldest value for each 
chromosome to be accepted in the  population, if 
any fitness value for the new chromosomes is less 
than the oldest fitness value, the new chromosomes 

Based Approach                                565                                

Before explaining the effect of GA operation on 
optimal solution, we should discuss the fitness 
function that takes the responsibilty to accept or refuse 
the new chromosome. In all previous examples, we 
assumed that the total fitness function is already 
specified to accept new chromosomes, then the 
previous optimal solutions resulted as shown. 

Table 1 shows the optimal solutions when we 
change the fitness function to be single for problem 
consists of 18 tasks, 3 processors, the RN is supposed 

ns and the total number of iteration 
for repeating the genetic operation is 100 ns, where 
the single fitness means every chromosome after 
crossover operation selected by its fitness value, if this 
fitness is equal to or greater than the older one, it will 
be accepted in the population, and if any other value 

n the oldest chromosome, the new 
chromosome will be ignored. 

CPUs visibility using PG algorithm. 

Genetic Algorithm GA 

Try 3 Average 

Visibility Utilization Visibility Utilization Visibility 

72% 81% 72% 82% 72% 

67% 75% 67% 75% 67% 

Priority Genetic Algorithm PGA 

Try 3 Average 

Visibility Utilization Visibility Utilization Visibility 

72% 93% 72% 93% 72% 

56% 90% 56% 90% 56% 

From the previous table, the average of utilization 
decreased from 82% to 75% after updating the fitness 
function and visibility decreased from 72% to 67% 
using GA, also when using PGA the average of 
system utilization decreased from 83% to 80% and the 

rage of system visibility from 72% to 56%, 
however, the fitness function can be used to enhance 

In the next sections, the effects of fitness function 
will be considered to produce optimal solution and to 
try the best fitness function that maximize the optimal 

In this chapter, there are three methods to accept 
new chromosomes in population and take them in 
algorithm consideration, these methods are:  

Total Fitness Value is Best: In this method, the 
parent chromosomes  fitness value will be 
compared with the new total fitness value of child 
chromosomes, if it was greater or equal to the 
oldest value, it would accept the new chromosomes 
to be in the population, in this case the oldest one 

Single Fitness Value Best: The fitness value 
for the new chromosomes here should be greater 
than or equal to the oldest value for each 
chromosome to be accepted in the  population, if 
any fitness value for the new chromosomes is less 
than the oldest fitness value, the new chromosomes 
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will never be considered in the algorithm.
3. Do Not Care Fitness Value: The couple of new 

chromosomes enter the population and delete the 
oldest one every time after the crossover operation, 
in this case the fitness value will be ignored. 

 

5.2. Genetic Algorithm Operation 

The proposed algorithm will ignore the probability of 
mutation operation and it focuses on the selection and 
crossover operations. 
  

5.2.1. Multi Point Crossover Operation 

Genetic Algorithms 

When the scheduler uses the PGA in the same problem

(18 tasks, 3 CPUs), it will produce optimal solution 

with total system visibility equals to 67% as shows in 

Figure 8-a, total system utilization equals to 94% as in 

Figure 8-b and the CPU visibility for CPU No: 0, 1, 2 

are 4, 3 and 5 in sequence as in Figure 8
 

                        
  a) Total system visibility using 

multi-point crossover 

operation through PGA. 

 b) Total system utilization

    multi-point 

    operation through PGA.
 

 

 

 

  

 

 

         
 

c) CPUs visibility using multi-point crossover operation through PGA.

Figure 8. Optimal solution using PGA

This result shown in Figures 8-a

because the first population is sorted by the task 

priority that is combination of main task property 

(MCT and DL) the result came out equals or less than 

the result that came out from the single point crossover 

operation, therefore, the proposed algorith

ignore the multi point crossover operation.

 

5.2.2. Selection Operation 

Selection is one of the genetic operations that is 

responsible for determining the parent chromosome to 

enhance it by using crossover operation. In proposed 

method (PGA), there are three types to select the 

desired chromosomes:  

• Random Selection: This technique depends on 

random number that represents chromosomes 

number where the minimal one is zero (0) and the 

maximum one is the number of chromosomes 

subtract one (1)  represented  in  following 
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will never be considered in the algorithm. 
The couple of new 

chromosomes enter the population and delete the 
oldest one every time after the crossover operation, 
in this case the fitness value will be ignored.  

Genetic Algorithm Operation  

The proposed algorithm will ignore the probability of 
mutation operation and it focuses on the selection and 

Multi Point Crossover Operation vs. Priority 

the PGA in the same problem 

(18 tasks, 3 CPUs), it will produce optimal solution 

with total system visibility equals to 67% as shows in 

, total system utilization equals to 94% as in 

and the CPU visibility for CPU No: 0, 1, 2 

8-c. 

 
system utilization using  

point crossover 

operation through PGA. 

point crossover operation through PGA. 

using PGA. 

a, 8-b and 8-c 

because the first population is sorted by the task 

priority that is combination of main task property 

(MCT and DL) the result came out equals or less than 

the result that came out from the single point crossover 

refore, the proposed algorithm PGA will 

ignore the multi point crossover operation. 

Selection is one of the genetic operations that is 

responsible for determining the parent chromosome to 

enhance it by using crossover operation. In proposed 

method (PGA), there are three types to select the 

technique depends on 

random number that represents chromosomes 

number where the minimal one is zero (0) and the 

maximum one is the number of chromosomes 

following  equation 

 0≤ Random≤ number of ckomosomes

• Incremental Selection: 

method selects chromosomes based on the iteration 

number, where in iteration number zero (0) will 

select couple of chromosomes zero, one (0,

in the next iteration it will be in (1,

chromosomes until GA iteration is complete. 

• Incremental and Random 

selection method depends on merging the previous 

two types of selection, where the couple of 

chromosomes can be selected depending on 

iteration number and random

iteration number zero (0) will select chromosome 

zero (0) and random chromosome selected 

randomly from population by equation

Random≤ number of ckomosomes

The previous problem (18 tasks, 3 CPUs) will be 

resolved in different selecti

Table 2 represents the optimal solutions for GA and 

PGA that can be produced. 
 

Table 2. Affects the type of selection operation on optimal 
solutions. 

 Genetic Algorithm GA

Try 1 Try 2

 Utilization Visibility Utilization Visibility

Random 82% 72% 84% 

Incremental 75% 67% 75% 

Random and 

Incremental 
81% 72% 80% 

 Priority Genetic Algorithm PGA

Try 1 Try 2

 Utilization Visibility Utilization Visibility

Random 93% 72% 93% 

Incremental 90% 56% 90% 

Random and 

Incremental 
92% 72% 94% 

 

The reason behind this result that we got in the 

incremental selection is the small search space, where 

the random is better than incremental but

sections it will fail because the space of search will 

become bigger and it is hard to find the optim

solution randomly in a large search space.
 

5.3. Fitness Function  

It's a function that calculates the weight of the current 

solution to decide if it's better than the previous 

solution. There are no rules for determining how the 

fitness function calculates this weight (value) but

should focus on ability to find optimal solution, if the 

proposed method aims at increasing the system 

visibility, the fitness function should calculate the 

visibility for each chromosome within the population 

before and after crossover operation is being done.

The fitness function that is used in this chapter so 

far to increas the visibility of the system. In this 

section the PGA uses two new types of fitness 

function as follows: 

• Chromosome Visibility:

function here depends on the total tasks that can 

finish the execution MCT

UV
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number of ckomosomes-1. 

 This type of selection 

method selects chromosomes based on the iteration 

number, where in iteration number zero (0) will 

select couple of chromosomes zero, one (0, 1) and 

in the next iteration it will be in (1, 2) 

chromosomes until GA iteration is complete.  

Incremental and Random Selection: This type of 

selection method depends on merging the previous 

two types of selection, where the couple of 

chromosomes can be selected depending on 

iteration number and random number where in 

iteration number zero (0) will select chromosome 

zero (0) and random chromosome selected 

randomly from population by equation 0≤ 

number of ckomosomes-1.  

The previous problem (18 tasks, 3 CPUs) will be 

resolved in different selection operations type, where 

2 represents the optimal solutions for GA and 

 

the type of selection operation on optimal 

Genetic Algorithm GA 

Try 2 Try 3 Average 

Visibility Utilization Visibility Utilization Visibility 

72% 83% 72% 83% 72% 

67% 75% 67% 75% 67% 

72% 83% 72% 81% 72% 

Priority Genetic Algorithm PGA 

Try 2 Try 3 Average 

Visibility Utilization Visibility Utilization Visibility 

72% 93% 72% 93% 72% 

56% 90% 56% 90% 56% 

72% 92% 72% 93% 72% 

reason behind this result that we got in the 

incremental selection is the small search space, where 

the random is better than incremental but, in the next 

sections it will fail because the space of search will 

become bigger and it is hard to find the optimal 

solution randomly in a large search space. 

It's a function that calculates the weight of the current 

solution to decide if it's better than the previous 

solution. There are no rules for determining how the 

calculates this weight (value) but, it 

should focus on ability to find optimal solution, if the 

proposed method aims at increasing the system 

visibility, the fitness function should calculate the 

visibility for each chromosome within the population 

and after crossover operation is being done. 

The fitness function that is used in this chapter so 

far to increas the visibility of the system. In this 

section the PGA uses two new types of fitness 

: The value of the fitness 

function here depends on the total tasks that can 

finish the execution MCT on resource before 
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reaching it is DL and we used this method to solve 

all previous examples. 

• Chromosome Utilization: The value of the fitness 

function here is depending on the CPU utilization 

which represented in this schedule.  

• Chromosomes Utilization and Visibility

of the fitness function in this part is a combination of 

the  previous two types as it depends

chromosome visibility and utilization.
 

 If we try solve a real time multi processor tasks 

scheduling problem consists of 4 CPUs and 40 tasks 

with RN equals to 200 ns and iteration number is 400 

using single point crossover and three types of fitness 

function by EDF, GA and PGA the optimal solution

can be represented as follows. 

Figure 9-a shows that the total system visibility can 

be reached using EDF algorithm where system 

visibility is 82%, total system utilization equals 57% 

represented in Figure 9-b and CPU No: 0, 1, 2 and 3 

can succeed to execute total tasks 7, 9, 8 and 9 in 

sequence as represented in Figure 9-c. 
 

        
      a) Total system visibility        
           using EDF algorithm 

b) Total system utilization
     using EDF 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

    

c) CPUs visibility using EDF algorithm

Figure 9. System results using EDF at 82%.

Table 3. The effect of fitness function on optimal solution using GA 
and PGA. 

 Genetic algorithm 

Try 1 Try 2 Try 3 

 Utilization Visibility Utilization Visibility Utilization Visibility

CPU 

utilization 
60% 82% 58% 82% 57% 

CPU 

visibility 
60% 90% 62% 90% 63% 

CPU 

utilization 

and 

visibility 

62% 88% 63% 88% 63% 

 Priority genetic algorithm 

Try 1 Try 2 Try 3 

 Utilization Visibility Utilization Visibility Utilization Visibility

CPU 

utilization 
63% 82% 66% 82% 65% 

CPU 

visibility 
74% 92% 70% 92% 71% 

CPU 

utilization 

and 

visibility 

72% 92% 72% 92% 70% 

When trying to solve the previous problem (40 tasks,

4 CPUs) using GA and PGA, the optimal solutions for 
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reaching it is DL and we used this method to solve 

The value of the fitness 

function here is depending on the CPU utilization 

 

Visibility: The value 

of the fitness function in this part is a combination of 

the  previous two types as it depends on 

chromosome visibility and utilization. 

If we try solve a real time multi processor tasks 

scheduling problem consists of 4 CPUs and 40 tasks 

ns and iteration number is 400 

using single point crossover and three types of fitness 

unction by EDF, GA and PGA the optimal solutions 

shows that the total system visibility can 

be reached using EDF algorithm where system 

visibility is 82%, total system utilization equals 57% 

and CPU No: 0, 1, 2 and 3 

can succeed to execute total tasks 7, 9, 8 and 9 in 

 

 
system utilization 

using EDF algorithm.   

CPUs visibility using EDF algorithm. 

EDF at 82%. 

The effect of fitness function on optimal solution using GA 

 Average 

Visibility Utilization Visibility 

82% 58% 82% 

88% 62% 89% 

88% 63% 88% 

 

 Average 

Visibility Utilization Visibility 

78% 65% 81% 

92% 72% 92% 

90% 71% 91% 

When trying to solve the previous problem (40 tasks, 

4 CPUs) using GA and PGA, the optimal solutions for 

system visibility and total system utilization generally 

increase. Table 3 above shows optimal solutions that it 

can reach with different types of fitness functions.

It is obvious from Table 

PGA has better optimal solution more than GA in 

different types of fitness function, and it’s noticed that 

the effects of fitness function in optimal solution that 

the algorithm can reach. 
 

5.4. Scheduler Runing Time SRN 

The RT should be known to the scheduler but until 

now RN effects have no result measures. This section 

clarifies what happens to scheduling algorithm if the 

RN is increased. 

The EDF, GA and PGA will re

problem (3 CPUs, 18 tasks and iteration nu

equals to 240) but, suppose that the 18 tasks arrives 

before time equals 200 ns (RN equal to 200), where 

MCT for each task selected randomly is represented 

by the following equation 0<

The EDF algorithm can execute 78% from total 

tasks represented in Figure 

the total system utilization which is equals to 25% and 

Figure 10-c show the tasks that can be executed 

successfully on each processor where CPU No: 0,1 

and 2 execute the total tasks 5,
  

 
      a) Total system visibility      
           using EDF algorithm. 

c) CPUs visibility using EDF 

Figure 10. System results u

From the previous result, we can say that the 

difference between the total system visibility and total 

system utilization is quite large, and that’s because 

EDF algorithm sorts the tasks by its 

CPUs time is wasted by waiting the system time 

reaching the AT for other tasks. 

The GA beats the EDF algorithm which gives 

better optimal solution where the total of system 

visibility increased to reach 78% that represented in 

Figure 11-a, as well as the total system utilization 

increased to reach 25% shown in 

CPU No: 0, 1 and 2 execute the total tasks 5, 4 and 5 

in sequence represented in Figure 
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system visibility and total system utilization generally 

shows optimal solutions that it 

can reach with different types of fitness functions. 

Table 3 that the proposed method 

PGA has better optimal solution more than GA in 

different types of fitness function, and it’s noticed that 

the effects of fitness function in optimal solution that 

Scheduler Runing Time SRN  

should be known to the scheduler but until 

now RN effects have no result measures. This section 

clarifies what happens to scheduling algorithm if the 

The EDF, GA and PGA will re-execute the first 

18 tasks and iteration number 

suppose that the 18 tasks arrives 

ns (RN equal to 200), where 

MCT for each task selected randomly is represented 

0< MCT≤ 30ns. 

The EDF algorithm can execute 78% from total 

Figure 10-a. Figure 10-b represent 

the total system utilization which is equals to 25% and 

show the tasks that can be executed 

successfully on each processor where CPU No: 0,1 

and 2 execute the total tasks 5, 4 and 5. 

 
     b) Total system utilization  
          using EDF algorithm. 

 

CPUs visibility using EDF algorithm. 

results using EDF at 78%. 

From the previous result, we can say that the 

difference between the total system visibility and total 

system utilization is quite large, and that’s because 

EDF algorithm sorts the tasks by its DLs where almost 

wasted by waiting the system time 

for other tasks.  

The GA beats the EDF algorithm which gives 

better optimal solution where the total of system 

visibility increased to reach 78% that represented in 

, as well as the total system utilization 

increased to reach 25% shown in Figure 10-b where 

CPU No: 0, 1 and 2 execute the total tasks 5, 4 and 5 

Figure 10-c. 
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      a) Total system visibility  
          using GA. 

  b) Total system 
      using GA. 

 
c) CPUs visibility using GA. 

Figure 11. System results using 

PGA defeats both EDF and GA, as it guarantees 
more better optimal solution and increase total system 
visibility to reach 89% as shown in Figure 
total system utilization increased to reach 36% as 
shown in Figure 12-b where CPU No: 0, 1 and 2 
execute the total tasks 6,4 and 6 in sequence 
represented in Figure 12-c. 

 

 
a) Total system visibility using   
     PGA. 

b) Total system utilization 
     using PGA

 

c) CPUs visibility using PGA. 

Figure 12. System results using GA at 89%

 

5.5. Ability of Priority Genetic Algorithm to

Solve Large Scheduling Problem

The following Table 4 shows the ability of simulator to 

solve large scheduling problem consists of 2000 tasks, 

100 processors, RN equals to 400 ns and the total 

number of iteration to repeat the genetic operation is 

8000. 

Table 4. Result of simulater for large scheduling problem

 Chromosome visibility as fitness function replacement 

method is total fitness of chromosome is best

 Utilization Visibility

EDF 55% 86%

GA 62% 92%

PGA 69% 97%

From the Table 4 PGA defeats both EDF and GA, as 

it guarantees more better optimal solution and increase 

total system visibility to reach 97%, and total system 

utilization increased to reach 69%. 
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otal system utilization 

using GA.   

 

results using GA. 

PGA defeats both EDF and GA, as it guarantees 
more better optimal solution and increase total system 

Figure 12-a, and 
total system utilization increased to reach 36% as 

where CPU No: 0, 1 and 2 
te the total tasks 6,4 and 6 in sequence 

 
system utilization  

using PGA. 

 

sing GA at 89%. 

Ability of Priority Genetic Algorithm to 

Large Scheduling Problem 

4 shows the ability of simulator to 

solve large scheduling problem consists of 2000 tasks, 

ns and the total 

number of iteration to repeat the genetic operation is 

for large scheduling problem. 

visibility as fitness function replacement 

method is total fitness of chromosome is best 

Visibility 

86% 

92% 

97% 

4 PGA defeats both EDF and GA, as 

it guarantees more better optimal solution and increase 

total system visibility to reach 97%, and total system 

5.6. Earliest Deadline First 

Priority Genetic Algorithms

In this section we proposed three different real time 

multi processor tasks scheduling problems, we will try 

to solve these problems using the EDF, 

to improve the visibility and utilization for systems. 

The proposed problems consist of the following:  

• Problem 1: This problem consists of 18 tasks, 3 
processors, the RN is supposed to be equals to 20
ns and the total number of iteration for repeating 
the genetic operation is 100

• Problem 2: This problem consists of 40 tasks, 4 
processors, the RN is supposed to be equals to 200
ns and the total number of iteration for repeating 
the genetic operation is 200. 

• Problem 3: This problem consists of 150 
processors, the RN is supposed to be equals to 250
ns and the total number of iteration for repeating 
the genetic operation is 200. 

 

The GA and PGA will shows different optimal 
solutions when use different fitness functions and 
different replacement methods, but assumes that 
genetic and PG algorithm use the incremental and 
random technique as a selection method, the following 
tables explain all results that can be produced. All 
tasks properties supposed to prove the following 
equations: 

1. AT > 0 for any task in population

2. AT < DL. 

3. AT + MCT ≤ DL. 

4. 0< MCT ≤ 30 ns. 

 

5.6.1. Problem 1: 18 Tasks

Table 5. Result for problem 1 using chromosome visibility as 

fitness function and replacement method is total fitness of 
chromosome is best. 

 Problem 1: Chromosome visibility as fitness function replacement method is total 

fitness of chromosome is best 

Try 1 Try 2

 Utilization Visibility Utilization Visibility

EDF 60% 82% 58% 

GA 60% 90% 62% 

PGA 62% 88% 63% 

 

Table 6. Result for problem 1 using chromosome utilization as 

fitness function and replacement method is total fitness of 

chromosome is best. 

 Problem 1: Chromosome utilization as fitness function replacement method is total 

fitness of chromosome is best 

Try 1 Try 2 

 Utilization Visibility Utilization Visibility

EDF 80% 44% 80% 44%

GA 87% 56% 88% 56%

PGA 90% 56% 87% 56%

 

Table 7. Result for problem 1 using chromosome visibility and 

utilization as fitness function and replacement method is total 

fitness of chromosome is best. 

 

 
Problem 1: Chromosome visibility and utilization as fitness function replacement method 

is total fitness of chromosome is best 

Try 1 Try 2 

 Utilization Visibility Utilization Visibility

EDF 80% 44% 80% 44%

GA 87% 56% 90% 56%

PGA 88% 56% 87% 56%

The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014 

Earliest Deadline First vs. Genetic vs. 

Algorithms 

In this section we proposed three different real time 

multi processor tasks scheduling problems, we will try 

to solve these problems using the EDF, GA and PGAs 

to improve the visibility and utilization for systems. 

The proposed problems consist of the following:   

This problem consists of 18 tasks, 3 
processors, the RN is supposed to be equals to 20 
ns and the total number of iteration for repeating 
the genetic operation is 100 ns.  

This problem consists of 40 tasks, 4 
processors, the RN is supposed to be equals to 200 
ns and the total number of iteration for repeating 
the genetic operation is 200.  

This problem consists of 150 tasks, 8 
processors, the RN is supposed to be equals to 250 
ns and the total number of iteration for repeating 
the genetic operation is 200.  

The GA and PGA will shows different optimal 
solutions when use different fitness functions and 

ent methods, but assumes that 
genetic and PG algorithm use the incremental and 
random technique as a selection method, the following 
tables explain all results that can be produced. All 
tasks properties supposed to prove the following 

any task in population.  

Tasks/ 3 Processors 

for problem 1 using chromosome visibility as 

fitness function and replacement method is total fitness of 

visibility as fitness function replacement method is total 

Try 2 Try 3 Average 
Visibility Utilization Visibility Utilization Visibility 

82% 57% 82% 58% 82% 

90% 63% 88% 62% 89% 

88% 63% 88% 63% 88% 

for problem 1 using chromosome utilization as 

fitness function and replacement method is total fitness of 

utilization as fitness function replacement method is total 

Try 3 Average 

Visibility Utilization Visibility Utilization Visibility 

44% 80% 44% 80% 44% 

56% 90% 56% 88% 56% 

56% 87% 56% 87% 56% 

for problem 1 using chromosome visibility and 

utilization as fitness function and replacement method is total 

visibility and utilization as fitness function replacement method 

Try 3 Average 

Visibility Utilization Visibility Utilization Visibility 

44% 80% 44% 80% 44% 

56% 88% 56% 88% 56% 

56% 90% 56% 88% 56% 
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Table 8. Result for problem 1 using chromosome visibility as fitness 

function and replacement method is single fitness of chromosome is 
best. 

 Problem 1: Chromosome visibility as fitness function replacement method is single 

fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 80% 44% 80% 44% 80% 44% 80% 44% 

GA 80% 44% 80% 44% 80% 44% 80% 44% 

PGA 86% 50% 86% 50% 86% 50% 86% 50% 

Table 9. Result for problem 1 using chromosome utilization as 

fitness function and replacement method is single fitness of 
chromosome is best. 

 

 

 

Problem 1: Chromosome utilization as fitness function replacement method is single 

fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 80% 44% 80% 44% 80% 44% 80% 44% 

GA 87% 50% 86% 50% 88% 50% 87% 50% 

PGA 86% 50% 86% 50% 86% 50% 86% 50% 

 

Table 10. Result for problem 1 using chromosome visibility and 

utilization as fitness function and replacement method is single 
fitness of chromosome is best. 

 Problem 1: Chromosome visibility and utilization as fitness replacement method is 

single fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 80% 44% 80% 44% 80% 44% 80% 44% 

GA 80% 44% 80% 44% 80% 44% 80% 44% 

PGA 86% 50% 86% 50% 86% 50% 86% 50% 

 

From the previous six tables, the average of the total 
system utilization and visibility that we got from GA 
and PGA are almost the same. 

5.6.2. Problem 2: 40 Tasks/ 4 Processors 

Table 11. Result for problem 2 using chromosome visibility as 

fitness function and replacement method is total fitness of 
chromosome is best. 

 Problem 2: Chromosome visibility as fitness function replacement method is total fitness 

of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 80% 44% 80% 44% 80% 44% 80% 44% 

GA 62% 88% 63% 88% 62% 88% 62% 88% 

PGA 69% 92% 68% 92% 68% 92% 68% 92% 

 

Table 12. Result for problem 2 using chromosome utilization as 

fitness function and replacement method is total fitness of 
chromosome is best. 

 Problem 2: Chromosome utilization as fitness function replacement method is total fitness 

of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 57% 82% 57% 82% 57% 82% 57% 82% 

GA 53% 82% 61% 88% 57% 82% 57% 84% 

PGA 63% 82% 67% 85% 67% 88% 66% 85% 

 

Table 13. Result for problem 2 using chromosome visibility and 

utilization as fitness function and replacement method is total 

fitness of chromosome is best. 

 Problem 2: Chromosome visibility and utilization as fitness function replacement method 

is total fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 57% 82% 57% 82% 57% 82% 57% 82% 

GA 64% 90% 63% 88% 61% 88% 57% 84% 

PGA 68% 92% 71% 92% 71% 92% 70% 92% 

 

Table 14. Result for problem 2 using chromosome visibility as 

fitness function and replacement method is single fitness of 
chromosome is best. 

 Problem 2: Chromosome visibility as fitness function replacement method is single 

fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 57% 82% 57% 82% 57% 82% 57% 82% 

GA 57% 82% 57% 82% 57% 82% 57% 82% 

PGA 67% 88% 67% 88% 67% 88% 67% 88% 

Table 15. Result for problem 2 using chromosome utilization as 

fitness function and replacement method is single fitness of 
chromosome is best. 

 Problem 2: Chromosome utilization as fitness function replacement method is single 

fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 57% 82% 57% 82% 57% 82% 57% 82% 

GA 59% 82% 63% 88% 60% 82% 61% 84% 

PGA 69% 88% 70% 88% 69% 90% 69% 89% 

 

Table 16. Result for problem 2 using chromosome visibility and 

utilization as fitness function and replacement method is single 
fitness of chromosome is best. 

 Problem 2: Chromosome visibility and utilization as fitness function replacement 

method is single fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 57% 82% 57% 82% 57% 82% 57% 82% 

GA 59% 82% 59% 82% 59% 82% 59% 82% 

PGA 67% 88% 67% 88% 67% 88% 67% 88% 

 

The PGA beats the GA in the previous six tables. 

We got the best result from PGA when we’ve used 

chromosome visibility and utilization as fitness 

function and replacement method as total fitness of 

chromosome is best. 

5.6.3. Problem3: 150 Tasks/ 8 Processors 
 

Table 17. Result for problem 3 using chromosome visibility as 

fitness function and replacement method is total fitness of 
chromosome is best. 

 Problem 3: Chromosome visibility as fitness function replacement method is total fitness 

of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 59% 69% 59% 69% 59% 69% 59% 69% 

GA 65% 71% 66% 73% 65% 73% 65% 72% 

PGA 76% 76% 75% 75% 77% 77% 76% 76% 

 

Table 18. Result for problem 3 using chromosome utilization as 

fitness function and replacement method is total fitness of 

chromosome is best. 

 Problem 3: Chromosome utilization as fitness function replacement method is total 

fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 59% 69% 59% 69% 59% 69% 59% 69% 

GA 61% 68% 62% 69% 57% 67% 60% 68% 

PGA 69% 69% 73% 70% 73% 71% 71% 70% 

 

Table 19. Result for problem 3 using chromosome visibility and 

utilization as fitness function and replacement method is total 
fitness of chromosome is best. 

 Problem 3: Chromosome visibility and utilization as fitness function replacement 

method is total fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 59% 69% 59% 69% 59% 69% 59% 69% 

GA 66% 73% 67% 73% 68% 74% 67% 73% 

PGA 75% 74% 76% 75% 73% 74% 75% 74% 

 

Table 20. Result for problem 3 using chromosome visibility as 

fitness function and replacement method is single fitness of 
chromosome is best. 

 Problem 3: Chromosome visibility as fitness function replacement method is single 

fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 59% 69% 59% 69% 59% 69% 59% 69% 

GA 56% 66% 56% 66% 56% 66% 56% 66% 

PGA 71% 72% 69% 71% 71% 72% 70% 71% 
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Table 21. Result for problem 3 using chromosome utilization as 

fitness function and replacement method is single fitness of 

chromosome is best. 

 Problem 3: Chromosome utilization as fitness function replacement method is single 

fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 59% 69% 59% 69% 59% 69% 59% 69% 

GA 62% 70% 63% 71% 61% 71% 62% 71% 

PGA 82% 68% 84% 70% 84% 70% 83% 70% 

 

Table 22. Result for problem 3 using chromosome visibility and 

utilization as fitness function and replacement method is single 

fitness of chromosome is best. 

 Problem 3: Chromosome visibility and utilization as fitness function replacement method 

is single fitness of chromosome is best 

Try 1 Try 2 Try 3 Average 

 Utilization Visibility Utilization Visibility Utilization Visibility Utilization Visibility 

EDF 59% 69% 59% 69% 59% 69% 59% 69% 

GA 56% 66% 56% 66% 56% 66% 56% 66% 

PGA 71% 72% 69% 71% 71% 72% 70% 71% 

 

The PGA beats the GA in the previous six tables. 

We got the best result from PGA when we’ve used 

chromosome visibility as fitness function and 

replacement method as total fitness of chromosome is 

best. 

From the previous tables, The GA defeats the EDF 

algorithm for all supposed systems and the PGA defeat 

both EDF and GA in these systems. These results occur 

because the proposed algorithm focused on the first 

population and how it should be sorted and does not 

stop to sort it by tasks DL where MCT involved into 

calculating additional property represented as P where 

the first population is sorted by it. 

After all, We got the best result from PGA and GA 

when we have used chromosome visibility or visibility 

and utilization as fitness function and replacement 

method as total fitness of chromosome is best. As this 

organize the search space.   

 

6. Conclusion and Recommendations 

At the end, we can say that the EDF, GA and PG 

algorithms are techniques created to solve the real time 

multi processor tasks scheduling problems as genetic 

defeats the EDF algorithm, and the PG defeats EDF and 

GAs. 

The PGA is a random search technique that applies 

some operations to repeat N iterations. These 

operations can be evaluated by fitness function to 

determine the weight of the new child is better than its 

parent. It is worth mentioning that most of algorithms 

ignore the effects of sorting the first population on the 

optimal solution. 
Results prove that, the fitness function has a major 

effect on enhancing the optimal solutions as needed. It 
can be used to improve the system utilization, system 
visibility or both. 

 Table 23 shows the overall average results for the 
discussed three problems. From this table we see that 
suggested algorithm PGA has better performance for 
three discussed cases. 

Table 23. Overall average of optimal solutions for the discussed 

three problems. 

 Problem 1 Problem 2 Problem 3 

 Overall  

utilization 

Overall  

visibility 

Overall  

utilization 

Overall  

visibility 

Overall  

utilization 

Overall  

Visibility 

EDF 58% 82% 80% 44% 59% 69% 

GA 80.83% 56.5% 58.83% 84% 61% 69.33% 

PGA 82.66% 58.3% 67.83% 89% 74.16% 72% 

Finally, we can conclude that PGA and GA give 
better optimal solution using the following parameters 
with the respected values:  

• Fitness function with chromosome visibility or 
visibility and utilization. 

• Selection method with incremental and random.  
• Replacement method with total fitness of 

chromosome is best. 

The performance of the proposed algorithm (PGA) 
may be improved by: 

1. Organizing and increasing the search space, 
through using a combination of incremental and 
random selection operation.  

2. When the SRN is large in system respectively to 
the total task number, if may be better to use EDF 
algorithm because it’s going to give an 
approximately the same result of optimal solution 
that is given by GA and PGA, and the EDF has a 
less complexity. 

3. Combining the PGA with Partially Matched 
Crossover (PMX) may give better results. 
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