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Abstract: Software testing is an activity to find maximum number of errors which have not been discovered yet with optimum 
time and effort. As the software evolves the size of the test suite and grows with new test cases being added to the test suite. 
However, due to time and resource constraints rerunning all the test cases in the test suite is not possible, every time the 
software is modified, in order to deal with these issues, the test suite size should be manageable. In this paper a novel 
approach is presented to select a subset of test cases that exercise the given set of requirements with for data flow testing. In 
order to, express the effectiveness of the proposed algorithm, both the existing Harrold Gupta and Soffa (HGS) and Bi-
Objective Greedy (BOG) algorithms were applied to the generated test suites. The results obtained from the proposed 
algorithm were compared with the state-of-art algorithms. The results of the performance evaluation, when compared to the 
existing approaches show that, the proposed algorithm selects near optimal test cases that satisfy maximum number of testing 
requirements without compromising on the coverage aspect. 
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1. Introduction 
Software testing is a vital activity in the development 
of software to find bugs as early as possible. The 
objective of software testing is to detect faults in the 
program and therefore, provide more assurance for 
customers on the quality of the software. Any software 
that is developed and put into use may be subjected to 
addition or modification of existing features. With a 
tremendous number of possible test cases available as 
software evolves, testers have no means to control the 
size of the test suite. The literature survey [10, 12] 
throws light upon the fact that software testing 
consumes a greater chunk of the development cost. 
With software projects also being subjected to time and 
resource constraints, ways to address test suite 
reduction has become a topic of interest among 
researchers. During test case generation or after 
creating the test suite, the effectiveness of the test 
process can be improved if a minimal subset of test 
cases could be determined to exercise all the test 
requirements as the original test suite. Apparently, the 
lesser the number of test cases, the lesser time it takes 
to test the program which consequently reduces the 
computational effort of running the entire test suite.  

However, another important issue to be addressed 
during test suite reduction is the coverage aspect. Also, 
coverage-based reduction techniques should ensure 
that majority of the execution paths of the given 
program  are  exercised. The  general  implication from 

 
the previous research work [15, 18] is that test case(s) 
that do not add to the coverage of a test suite are more 
likely to be ineffective in satisfying the specified 
requirements. From the literature survey it can be 
inferred that test suite reduction approaches 
significantly reduce the size of the test suite [2, 3, 16]. 
However, how far the reduced test suite obtained 
satisfies the test metric(s) under consideration is an 
important issue to be addressed. In fact some potential 
drawbacks observed in test suite reduction survey 
involves random selection of test case in the event of a 
tie (two or more test cases satisfying the same set of 
requirements), complex mathematical operation for test 
suite reduction, quality of test case(s) [7, 14] etc., 
Thus, the trade-off between coverage and optimal test 
case selection is vital in test suite reduction. 

In this paper a new algorithm for Test Suite 
Reduction called Coverage Based Test Suite Reduction 
(CBTSR) has been proposed. The contributions of this 
paper include the following:  

• Identifying an optimal representative test set 
comprising of test cases which are related to the 
given testing objective. 

• Applying data flow testing to generate test cases and 
requirements to examine the physical structure of 
the program and locate sub-paths traversed by 
variables. 

• Using the proposed CBTSR algorithm for test suite 
reduction. 
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• Performing a set of empirical studies on ten subject 
programs. Then comparing the relative performance 
and effectiveness of the proposed reduction 
algorithm with the state-of-art Harrold Gupta and 
Soffa (HGS) [7] and Bi-Objective Greedy (BOG) 
[14] algorithms. 

The rest of the paper contents are organized as follows: 
Section 2 describes the problem statement. In section 3 
a detailed outlook of the proposed test suite reduction 
algorithm and section 4 describes the results and 
discussion. Finally section 5 presents the concluding 
remarks. 

2. Test Suite Reduction Problem 
According to the definition of test suite problem given 
[7, 10]:  

• A test suite T of test cases {t1, t2, t3,…, tn}, known as 
universal test suite. 

• A set of testing requirements {r1, r2,…, rm} that must 
be covered to provide the desired coverage for the 
program under consideration. 

• Subsets {T1, T2,…Tm} of T known as test sets where 
each test set is associated with ri, such that any one 
test case(s) belonging to Ti satisfies ri. 

The objective of test suite minimization problem is to 
find the representative set (reduced test suite) Trs that 
exercises the same set of requirements as those 
exercised by the original test suite T.   

2.1. Background 

The problem of finding the representative set is 
equated to the set-cover problem [10]. The set-cover 
problem has been shown to be NP complete [7] in 
HGS algorithm. Nevertheless, there has been some 
research work [7, 14] in the area of computing 
optimally-minimized test suites. Most of the other 
research works in test suite minimization have 
however relied on heuristics for computing near-
optimal solutions [2, 3, 11, 16, 17]. Several approaches 
have been proposed in literature [1, 2, 4, 7, 8, 9, 11, 14, 
16, 17] for addressing test suite reduction issues. In 
practice test suite reduction approaches generally focus 
on removing obsolete and redundant test cases from 
the universal test suite [14]. The objective of test suite 
minimization in software testing is to retain the most 
effective test cases only [14, 15]. Further, these test 
cases should be capable of satisfying the most number 
of test requirements and consequently also expose the 
faults in existence. Along with the test suite reduction 
techniques, usage of coverage aspects is also vital. 
Coverage criteria [7, 8, 9, 11] such as branch coverage, 
statement coverage, data flow coverage, MC/DC and 
call stack coverage to name a few, exercise greater 
assurance to the quality, reliability and stopping rules 
[4, 5, 6, 12, 18] for test engineers. 

HGS algorithm proposed by Harrold et al. [7] has 
drawn a lot of attention towards test suite reduction. 
This algorithm uses the concept of cardinality (number 
of occurrence of a test case in each test set) to reduce 
the test suite size. It begins the test suite minimization 
process by selecting singleton test cases (test cases 
with cardinality one) and proceeds to the next higher 
cardinality test cases. Similarly the recently proposed 
BOG algorithm by Saeed and Alireza [14] uses 
complex matrix operations to reduce the test suite size. 
However, a potential drawback of the HGS algorithm 
is the random selection of test cases during test suite 
reduction in the event of a tie. Further, in BOG 
algorithm the orders in which test sets are subjected to 
reduction adversely affect the values of the 
representative set. Hence, from the literature survey it 
is quite apparent that there is a need for research work 
to focus on issues arising while optimizing the test 
suite size. In the next section the CBTSR algorithm is 
described with an example. 

3. Test Suite Reduction Algorithm 
3.1. Related Concepts 
The number of requirements R may be finite or 
infinite. However, from a pragmatic point of view, it is 
assumed that R is finite. For each requirement, ri⊂ R, 
there is a test case tj in the input domain that satisfies 
it. As a result, a finite test suite T also exists. The 
variables m and n are used to denote the size of R and 
T, respectively. The Boolean matrix A of size nm ×  is 
used to describe the satisfaction relation between 
requirements and test sets such that ∀ ri∈R and ∀ tj∈T 
Equation 1:   

                  i j
ij

1         if  r  is  covered  by  t
a =

0         otherw ise

⎫⎧⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 

Where, for i = 1, 2, …, m and j = 1, 2, …, n.  

The sum vector S represents the count of all “1” in the 
ith row of aij. The representation of vector S is denoted 
in Equation 2: 
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Thus, the sum vector values can be further simplified 
and represented as in Equation 3:  

                               }{ iS = c ,i 1 to m →  

Where, n
j =1i ijc = a∑  

In the process of test suite reduction, the mapping f: 
T→R can be defined as a Boolean function. The 
coverage relationship expressed as a requirement 
matrix can be considered as the satisfaction 
relationship among test requirements and test cases in 

(1)

(3) 

(2)
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the optimal representative set selection problem. Thus, 
the boolean function simplification problem can be 
equated to the optimal representative set selection 
problem.  

3.2. CBTSR Algorithm 

The algorithm CBTSR shows the generation of the 
reduced test suite through simple mathematical 
operations. In the algorithm the following assumptions 
were made: Let n denote the number of test cases in a 
test set and m denote the number of test requirements. 
The other related issues are: Each test set Ti consists of 
test cases corresponding to a requirement. The 
reduction process in the proposed CBTSR approach 
begins with the construction of test case requirement 
matrix ‘A’. This matrix maps the test cases with the 
testing requirements. An association between a test 
case and requirement is indicated by one or zero 
otherwise. In the matrix each ith row denotes the 
requirement coverage and each jth column denotes the 
test case overlap with the requirement(s). The 
algorithm first includes all the test cases tjs that occur 
as a single element in the test set Tis (singleton test 
case), to the temporary set Ts. Then:  
Algorithm 1:  CBTSR                         

Input: Test cases in the given test sets along with requirements. 
Test Sets: T1,T2, ...,Tm.  
Associated requirements: r1,r2,..., rm  
Test cases: t1,t2,...,tn.  
Output: Reduced test suite. 
 Trs a representative set of T1, T2,…,Tm. 
Begin 
{ 
A: is a boolean matrix, 1-covered and 0 – uncovered. 
sel_tc:= {}: selected test cases returned by the subroutine 
select_optimal() 
list_t: list of test cases 
list_r: list of requirements 
Ts:={}: selected singleton test cases  
Ttemp:={}: temporarily selected test cases  
algorithm CBTSR 
{ 
   Begin 
          list_t : =all tj ∈  T //Contains all the test cases 
          list_r : =all ri ∈  R //Contains all the requirements construct  
          the matrix A; //matrix denoting relationship between 
          requirements and test cases  

  for each ri do 
                  construct the vector S //Vector consisting of sum of  
                  the elements from row   1..m of matrix A 
                 Ts :=  ∪  Ti;    //Assign test set(s) with row sum= 1  
                to the temporary set Ts 
                update list_t:= remove all tj selected;   
              // Update by removing all the marked test cases 
              update list_r:= remove all ri selected; 
             //Update by removing all the marked requirements   

 endfor 
           //Consider unmarked requirements where i→1 to m and 
select the 
           Corresponding  test set 

 for each  Ti such that there exists ri do 
               sel_tc=select_optimal(list_r, list_tc); 
               //Invoke the subroutine by passing the list of test 
               cases and requirements 

               update list_t:= remove all tj selected;   
                  // Update by removing all the marked test cases 
                 update list_r:= remove all ri selected;   
                 //Update by removing all the marked requirements 
                 Ttemp := ∪ { sel_tc}; // distinct test cases with  
                 highest coverage value 

 endfor 
          Trs =  Ttemp ∪ Ts // union of all distinct optimal test cases 
     end  
} 
end CBTSR 

Subroutine 1:  select_optimal (list_r,list_t) 

/*selects test sets to be included in the representative set */ 
Input: unmarked test cases and requirements 
Output: Representative set 
S: integer vector denoting number of requirements covered by a 
test sets  
T: test set with highest coverage value 
max(): returns S vector row(s) having highest sum value 
   Begin 
      { 
          reconstruct the vector S; // sum of requirements covered  
          by test cases 
          if  max(S) > 0 
              return (T=max(S)); // return the row with the highest  
              value to the variable sel_tc 
          else 
              return; // return to the main program 
       } 
    end  
}  
end select_optimal 
 

The corresponding occurrences of the requirements ris 
and test cases tjs in the test case requirement matrix are 
then reset to the value zero as represented in Equations 
4 and 5.  Equation 4 resets all the elements in column 
‘j’ to the value zero and Equation 5 resets all the 
elements in row i to the value zero. This is followed by 
removing the test case and requirement from the lists: 
list_t and list_r. Then, the subroutine select_optimal() 
is recursively called to select the remaining test cases: 

                                         jA All,t = 0⎡ ⎤⎣ ⎦  

                                            iA  r  = 0⎡ ⎤⎣ ⎦  

Another subroutine max() when invoked returns the 
row(s) with the maximum test case(s) covering the 
given requirement, from the vector S. The tjs marked in 
row(s) returned are added to another temporary set 
Ttemp. Again the corresponding requirement ris and tjs 
are reset to the value zero and the details of the same 
are also updated in the lists. The algorithm recursively 
selects test cases and updates the test case requirement 
matrix and lists containing the selected test 
cases/requirements, until the vector S returns value(s) 
greater than zero. Finally, the distinct test cases in Ttemp 
are combined with test cases in Ts to generate the 
representative set Trs. The worst case run time for the 
proposed algorithm CBTSR constitutes the time to 
mark the test case requirement matrix ( ).o n • m  
Computing the vector S and selecting test case(s) to be 

(4)

(5)
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. 

Under these assumptions the complexity of the 
proposed algorithm becomes ( )2O m . 

3.3. Concept Illustration 

With a majority of programs written to handle data, 
variable utilization becomes vital. In such scenarios, 
the concept of data flow testing can be used to examine 
the variables. It includes the definition and assignment 
of variable(s) throughout the program. The paths from 
points where each variable is defined to points where it 
is referenced are called definition-use pairs or DU-
pairs. 

The test cases are generated based on all possible 
flow of data from the declaration to the assignment. 
Similarly the DU-pairs obtained are used as a criterion 
to assess the coverage of requirements by the 
representative set, Trs. 

To illustrate the proposed CBTSR algorithm and the 
state-of-art algorithms like HGS and BOG, a 
hypothetical program is listed below: 
Program 1: Odd_Even 

1. program odd_even 
2. var  n 
3. input(n) 
4.    if (n>0) 
5.       print (“Number positive”+n) 
6.    else 
7.       print (“Number negative”+n) 
8.       neg_no=n 
9.       n=num_convert(neg_no) 
10.       print “Natural  Number determined” 
11.   if (n%2==0) 
12.       print (“Number even”+n) 
13.   else 
14.       print (“Number odd”+n) 
15.       print “Type of Number determined” 
16. End program 

The test cases are generated based on all possible flow 
of data from the declaration to the assignment. 
Similarly the DU-pairs obtained are used as a criterion 
to assess the coverage of requirements by the 
representative set. In the control flow graph Figure 1 
the statements of the form ‘n:=’ represents definition 
of n and ‘:=n’ uses of the variable n. Through data 
flow analysis the DU-pairs are generated to serve as 
requirements for testing the odd/even program. For the 
program odd_even, there are two defining nodes in 
Statements 3, Statement 9 and six usage nodes in 
Statements: 4, 5, 7, 8, 11, 12, 14, thus, leading to four 
DU-paths as indicated in Table 1. 

From the values in Table 1, every execution path is 
considered to be analogous to a test case. From the 
DU-paths the corresponding DU-pairs are tabulated as 
indicated in Table 2. These DU-pairs serve as bench 
marks for constructing the test sets Ti with the 
associated test cases tj. Table 2 depicts the test sets for 

the sample program considered. Thus, the universel 
test suite T={t1, t2, t1, t2, t3, t4, t1, t3, t2, t4, t3, t4, t3, t4, t3, 
t4} was generated for the sample program considered. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Figure 1. Control Flow Graph for odd_even program. 
 
Table 1. Testing information obtained through data flow analysis. 

S.no Testcase,tj Execution path DU-pair(s) in the 
execution path 

1 t1 B1,B2,B4,B5,B6,B8 (B1,B2) (B1,B5)(B1,B6) 
2 t2 B1,B2,B4,B5,B7,B9 (B1,B2) (B1,B5) (B1,B7) 
3 t3 B1,B3,B4,B5,B6,B8 (B1,B3) (B3,B5) B3,B6) 
4 t4 B1,B3,B4,B5,B7,B8 (B1,B3) (B3,B5) B3,B7) 

 
Table 2. Test sets generated for the DU pairs. 

S.no Test Sets, 
Ti 

DU-pair Test cases in Ti 

1 T1 (B1,B2) {t1,t2} 
2 T2 (B1,B5) {t1,t2, t3,t4} 
3 T3 (B1,B6) {t1,t3} 
4 T4 (B1,B7) {t2,t4} 
5 T5 (B1,B3) {t3,t4} 
6 T6 (B3,B5) {t3,t4} 
7 T7 (B3,B6) {t3} 
8 T8 (B3,B7) {t4} 

The reduction process for the proposed CBTSR, 
HGS and BOG algorithms begins with the construction 
of test case requirement matrix as in Figure 2. In the 
matrix A, each row represents the requirement ri and 
each column the test case tj.  

1 1 0 0
1 1 1 1
1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1
0 0 1 0
0 0 0 1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Figure 2. Initial test case requirement matrix for the sample 
program. 
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In the proposed CBTSR algorithm, from the vector 
S row 7 and row 8 have a row count of one. These 
rows represent singleton test cases with cardinality one 
that corresponds to DU pair (B3, B6) and (B3, B7). 
These DU pairs are represented by test cases t3 and t4. 
The two test cases are selected into the temporary set 
Ts. The lists: list_t and list_r are updated by removing 
these test cases and requirements. The rows 7 and 8 
covering the requirements and the columns 
representing test cases t3 and t4 are reset to zero in the 
test case requirement matrix. Then the function 
select_optimal() is invoked. This determines the row 
count of the test case requirements matrix, followed by 
recomputing the values of the vector ‘S’. Then, the 
maximum value is determined from the vector ‘S’, 
which is correlated with the requirement and the 
corresponding test cases satisfying the requirements. 
The test cases are then added to the temporary set Ttemp 
and the process iterates till the vector ‘S’ contains 
values greater than zero. Finally, the values of 
temporary sets Ts and Ttemp are combined to generate 
the representative set consisting of {t1, t2, t3, t4}. 

In the HGS algorithm the cardinality of all the eight 
test sets i.e two, four, two, two, two, two, one, one are 
computed. Then, test sets with cardinality one 
(singleton test cases)  are added to representative set 
i.e, t3 and t4. This was followed by marking the 
occurance of these test cases in the test sets, T2, T3, T4, 
T5, T6, T7 and T8. The algorithm, then proceeds with the 
next higher cardinality which is two. The only test set 
available is {t1, t2}. Since, there is a tie involved, the 
first test case t1 in the test set T1 was chosen at random 
into the representative set.  

In the BOG algorithm, the test case requirement 
matrix is constructed and multiplied by its transporsed 
matrix to generate the multipled matrix. The maximum 
value of the diagonal element in the multiplied matrix 
is five. Then, the sum of the elements in the ith row of 
the multiplied matrix, except for the diagonal element 
is computed. From this computation the test case with 
the maximum value is determined as t3 and place in a 
list called maxList. Similarly the test case with the 
minimum value is determined as t1 and place in a list 
called minList. Both the maxlist and minlist values are 
then subjected to intersection operation to determine if 
there were any common values. As there are no 
common values, a subroutine to determine the optimal 
test case is invoked. This subroutine returns the test 
case to the representative set as t1. Then, the diagonal 
elements of the multiplied matrix are updated for 
unselected test cases. This process iterates and finally 
the representative set generated consists of {t1,t3,t4,t5}. 

The results from Table 3 show that when HGS 
algorithm is used, one DU-pair (B1, B7), which 
determines if the natural number is odd was not 
selected in the representative set Trs.  Further the test 
cases selected into the representative set, obtained 
using BOG algorithm also did not select the DU-pair 

(B1, B7). Hence, the actual objective to determine 
whether a positive number is odd or even could only be 
partially tested using the test cases in the representative 
set, of both HGS and BOG algorithms Table 3. 
However, retesting the sample program using the test 
cases in the representative set Trs of the proposed 
CBTSR algorithm provides the desired coverage of all 
DU-pairs Table 3 and also satisfies all the requirements 
to determine whether a number is odd or even. 

Table 3. Representative set obtained for odd/even program. 

Algorithm(s) |T| |DU| Trs 
DU-pair(s) Not covered by 

The representative Set 

HGS  
16 

 
8 

{t1,t3,t4} (B1,B7) 
BOG {t1,t3,t4} (B1,B7) 

CBTSR {t1,t2,t3,t4} None 

The next section describes the metrics used to 
analyse the resultant representative set and analysis of 
results using the proposed CBTSR and state-of-art 
algorithms. 

4. Experiments and Analysis 
An empirical study was conducted to evaluate the 
proposed CBTSR algorithm and state-of-art 
algorithms, using ten program units each consisting of 
11 to 24 lines of coding that cover a wide range of 
applications. The program description along with the 
lines of coding is shown in Table 4. The selection of 
test cases was done using Rapps and Weyuker data 
flow criterion [13]. Each program considered for 
experimentation used DU-pair(s) that were hand-
instrumented. All the test suite reduction approaches 
considered in this work had been implemented using 
Java. 

Table 4. Description of program units. 

Program No. Program Name LOC #DU-Pairs 
Pgm 1 Odd_Even 14 4 

Pgm 2 Num_Digits 14 5 
Pgm 3 Calc_cost 12 5 
Pgm 4 Compute_1 16 5 
Pgm 5 Valid Pin 18 5 
Pgm 6 Sum_Digits 13 5 
Pgm 7 Max_Val 17 6 
Pgm 8 Prime_Num 20 6 
Pgm 9 Prod_Discount 19 7 
Pgm 10 Triangle_type 14 7 

The following test metrics are used to determine the 
performance of the proposed CBTSR approach and 
state-of-art algorithms: 

• The percentage of Requirement Coverage (RCov)  
is defined in Equation 6: 

 
                                   

 
Where, | Rtot | denotes the total number of test 
requirements under consideration during test selection 
and |Rcov| is the number of requirements satisfied by 

cov

tot

| R |RCov = × 100
| R |

(6)
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the test cases in the representative set. Higher RCov 
means better requirement coverage by the 
representative set Trs. 

• The percentage of test Suite Size Reduction (SSR) 
[14, 15] is defined as in Equation 7: 

rs| T | - | T |SSR = ×100
| T |

 

Where, |T| denotes the number of test cases in the 
original test suite and |Trs| the number of test cases in 
the representative set. Optimal SSR with better RCov 
is desirable. 

• Test SSR: For the subject program considered, the 
size metric was evaluated for the proposed CBTSR 
and state-of-art algorithms using Equation 6. From 
the results obtained as shown graphically in Figure 
4, it could be inferred that CBTSR provided 
minimized test suites ranging between 66.67% to 
84.62%. Further the average test SSR obtained for 
CBTSR was 74.77% which was slightly less than 
HGS (79.5%) and BOG (82.9%). 

• RCov: The next metric evaluated was the 
requirement coverage by the representative sets. The 
observations made during experimentation showed 
that the requirement coverage was consistently high. 
Though the average test SSR was high when using 
HGS and BOG algorithms, the average RCov was 
marginally less when compared to the proposed 
CBTSR approach. Thus, the average values of the 
test metrics considered during performance 
evaluation for the proposed CBTSR algorithm was 
better than the state-of-art algorithms Figure 4.  
 

From the experiments conducted, the observations    
made are summarized as follows: 

• HGS algorithm focused on the cardinality of test 
sets to construct the representative set. In the HGS 
algorithm the recursive function for test suite 
minimization was invoked atleast once, to break the 
ties among equally important test cases. In this 
algorithm such recursions slowed down the 
minimization process. Further in the case of a tie 
between test cases, random test case selection also 
altered the coverage of requirements.  

• When BOG algorithm was used, the order in which 
test sets were assigned for reduction was important. 
Further, more computations were also involved in 
selecting optimum test cases using the helper 
function. Once all the diagonal values of the matrix 
became zero the test suite minimization process 
stopped though there were other non-diagonal 
values. A major bottleneck of this algorithm were 
the elaborate computations involved in determining 
the test cases to be selected into the representative 
set. 

• The proposed CBTSR test suite reduction algorithm 
removed redundant test cases introduced during 

program development and retained only the most 
effective test cases that contributed to the 
requirement coverage. The test cases that were 
retained could also provide the maximum 
requirement coverage. From Figure 4 it is quite 
apparent that when CBTSR algorithm was used, the 
test cases in the representative set Trs satisfied more 
number of requirements and thus subsequently 
offered better coverage by traversing more DU-
paths in a given program.  
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Figure  4. Test suite size reduction and requirements coverage 
using CBTSR, HGS and BOG algorithm. 

5. Conclusions 
The contributions of this work focus on improving the 
effectiveness of software testing downstream as unit 
testing. Although, there has been some existing work 
in this area, in the present work attempts have been 
made to reduce the size of the test suite using a simple 
approach that focuses on the test metrics: Size and 
requirement coverage. The proposed CBTSR algorithm 
generated a reduced test suite iteratively using simple 
matrix operations. The performance evaluations of the 
proposed CBTSR approach show that: 

1. CBTSR algorithm offered consistently better RCov 
than the state-of-art algorithms HGS and BOG.  

2. However, the average test SSR of the proposed 
CBTSR (74.77%) was marginally less than the 
state-of-art algorithms HGS (79.5%) and BOG 
(82.9%).  

Thus, from the observations made in this work it can 
be inferred that CBTSR reduces the size of the test 
suite by retaining test cases that offer maximum RCov. 
In future this work may be extended for another test 
metric to determine the fault detection capability.   
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