
The International Arab Journal of Information Technology, Vol. 12, No.1, January 2015 17

A Greedy Approach for Coverage-Based Test Suite
Reduction

Preethi Harris1 and Nedunchezhian Raju2

1Faculty of Information Technology, Sri Ramakrishna Engineering College, India
2Faculty of Computer Science and Engineering, Sri Ranganathar Institute of Engineering and

Technology, India

Abstract: Software testing is an activity to find maximum number of errors which have not been discovered yet with optimum
time and effort. As the software evolves the size of the test suite and grows with new test cases being added to the test suite.
However, due to time and resource constraints rerunning all the test cases in the test suite is not possible, every time the
software is modified, in order to deal with these issues, the test suite size should be manageable. In this paper a novel
approach is presented to select a subset of test cases that exercise the given set of requirements with for data flow testing. In
order to, express the effectiveness of the proposed algorithm, both the existing Harrold Gupta and Soffa (HGS) and Bi-
Objective Greedy (BOG) algorithms were applied to the generated test suites. The results obtained from the proposed
algorithm were compared with the state-of-art algorithms. The results of the performance evaluation, when compared to the
existing approaches show that, the proposed algorithm selects near optimal test cases that satisfy maximum number of testing
requirements without compromising on the coverage aspect.

Keywords: Software testing, test cases, test suite, requirements, coverage and adequacy criterion.

Received April 2, 2012; accept August 26, 2012, published online April 17, 2014

1. Introduction
Software testing is a vital activity in the development
of software to find bugs as early as possible. The
objective of software testing is to detect faults in the
program and therefore, provide more assurance for
customers on the quality of the software. Any software
that is developed and put into use may be subjected to
addition or modification of existing features. With a
tremendous number of possible test cases available as
software evolves, testers have no means to control the
size of the test suite. The literature survey [10, 12]
throws light upon the fact that software testing
consumes a greater chunk of the development cost.
With software projects also being subjected to time and
resource constraints, ways to address test suite
reduction has become a topic of interest among
researchers. During test case generation or after
creating the test suite, the effectiveness of the test
process can be improved if a minimal subset of test
cases could be determined to exercise all the test
requirements as the original test suite. Apparently, the
lesser the number of test cases, the lesser time it takes
to test the program which consequently reduces the
computational effort of running the entire test suite.

However, another important issue to be addressed
during test suite reduction is the coverage aspect. Also,
coverage-based reduction techniques should ensure
that majority of the execution paths of the given
program are exercised. The general implication from

the previous research work [15, 18] is that test case(s)
that do not add to the coverage of a test suite are more
likely to be ineffective in satisfying the specified
requirements. From the literature survey it can be
inferred that test suite reduction approaches
significantly reduce the size of the test suite [2, 3, 16].
However, how far the reduced test suite obtained
satisfies the test metric(s) under consideration is an
important issue to be addressed. In fact some potential
drawbacks observed in test suite reduction survey
involves random selection of test case in the event of a
tie (two or more test cases satisfying the same set of
requirements), complex mathematical operation for test
suite reduction, quality of test case(s) [7, 14] etc.,
Thus, the trade-off between coverage and optimal test
case selection is vital in test suite reduction.

In this paper a new algorithm for Test Suite
Reduction called Coverage Based Test Suite Reduction
(CBTSR) has been proposed. The contributions of this
paper include the following:

• Identifying an optimal representative test set
comprising of test cases which are related to the
given testing objective.

• Applying data flow testing to generate test cases and
requirements to examine the physical structure of
the program and locate sub-paths traversed by
variables.

• Using the proposed CBTSR algorithm for test suite
reduction.

18 The International Arab Journal of Information Technology, Vol. 12, No.1, January 2015

• Performing a set of empirical studies on ten subject
programs. Then comparing the relative performance
and effectiveness of the proposed reduction
algorithm with the state-of-art Harrold Gupta and
Soffa (HGS) [7] and Bi-Objective Greedy (BOG)
[14] algorithms.

The rest of the paper contents are organized as follows:
Section 2 describes the problem statement. In section 3
a detailed outlook of the proposed test suite reduction
algorithm and section 4 describes the results and
discussion. Finally section 5 presents the concluding
remarks.

2. Test Suite Reduction Problem
According to the definition of test suite problem given
[7, 10]:

• A test suite T of test cases {t1, t2, t3,…, tn}, known as
universal test suite.

• A set of testing requirements {r1, r2,…, rm} that must
be covered to provide the desired coverage for the
program under consideration.

• Subsets {T1, T2,…Tm} of T known as test sets where
each test set is associated with ri, such that any one
test case(s) belonging to Ti satisfies ri.

The objective of test suite minimization problem is to
find the representative set (reduced test suite) Trs that
exercises the same set of requirements as those
exercised by the original test suite T.

2.1. Background

The problem of finding the representative set is
equated to the set-cover problem [10]. The set-cover
problem has been shown to be NP complete [7] in
HGS algorithm. Nevertheless, there has been some
research work [7, 14] in the area of computing
optimally-minimized test suites. Most of the other
research works in test suite minimization have
however relied on heuristics for computing near-
optimal solutions [2, 3, 11, 16, 17]. Several approaches
have been proposed in literature [1, 2, 4, 7, 8, 9, 11, 14,
16, 17] for addressing test suite reduction issues. In
practice test suite reduction approaches generally focus
on removing obsolete and redundant test cases from
the universal test suite [14]. The objective of test suite
minimization in software testing is to retain the most
effective test cases only [14, 15]. Further, these test
cases should be capable of satisfying the most number
of test requirements and consequently also expose the
faults in existence. Along with the test suite reduction
techniques, usage of coverage aspects is also vital.
Coverage criteria [7, 8, 9, 11] such as branch coverage,
statement coverage, data flow coverage, MC/DC and
call stack coverage to name a few, exercise greater
assurance to the quality, reliability and stopping rules
[4, 5, 6, 12, 18] for test engineers.

HGS algorithm proposed by Harrold et al. [7] has
drawn a lot of attention towards test suite reduction.
This algorithm uses the concept of cardinality (number
of occurrence of a test case in each test set) to reduce
the test suite size. It begins the test suite minimization
process by selecting singleton test cases (test cases
with cardinality one) and proceeds to the next higher
cardinality test cases. Similarly the recently proposed
BOG algorithm by Saeed and Alireza [14] uses
complex matrix operations to reduce the test suite size.
However, a potential drawback of the HGS algorithm
is the random selection of test cases during test suite
reduction in the event of a tie. Further, in BOG
algorithm the orders in which test sets are subjected to
reduction adversely affect the values of the
representative set. Hence, from the literature survey it
is quite apparent that there is a need for research work
to focus on issues arising while optimizing the test
suite size. In the next section the CBTSR algorithm is
described with an example.

3. Test Suite Reduction Algorithm
3.1. Related Concepts
The number of requirements R may be finite or
infinite. However, from a pragmatic point of view, it is
assumed that R is finite. For each requirement, ri⊂ R,
there is a test case tj in the input domain that satisfies
it. As a result, a finite test suite T also exists. The
variables m and n are used to denote the size of R and
T, respectively. The Boolean matrix A of size nm × is
used to describe the satisfaction relation between
requirements and test sets such that ∀ ri∈R and ∀ tj∈T
Equation 1:

 i j
ij

1 if r is covered by t
a =

0 otherw ise

⎫⎧⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

Where, for i = 1, 2, …, m and j = 1, 2, …, n.

The sum vector S represents the count of all “1” in the
ith row of aij. The representation of vector S is denoted
in Equation 2:

1n

2n

m n

a
a

s =
:
a

∑⎡ ⎤
⎢ ⎥∑⎢ ⎥
⎢ ⎥
⎢ ⎥
∑⎣ ⎦

Thus, the sum vector values can be further simplified
and represented as in Equation 3:

 }{ iS = c ,i 1 to m →

Where, n
j =1i ijc = a∑

In the process of test suite reduction, the mapping f:
T→R can be defined as a Boolean function. The
coverage relationship expressed as a requirement
matrix can be considered as the satisfaction
relationship among test requirements and test cases in

(1)

(3)

(2)

A Greedy Approach for Coverage-Based Test Suite Reduction 19

the optimal representative set selection problem. Thus,
the boolean function simplification problem can be
equated to the optimal representative set selection
problem.

3.2. CBTSR Algorithm

The algorithm CBTSR shows the generation of the
reduced test suite through simple mathematical
operations. In the algorithm the following assumptions
were made: Let n denote the number of test cases in a
test set and m denote the number of test requirements.
The other related issues are: Each test set Ti consists of
test cases corresponding to a requirement. The
reduction process in the proposed CBTSR approach
begins with the construction of test case requirement
matrix ‘A’. This matrix maps the test cases with the
testing requirements. An association between a test
case and requirement is indicated by one or zero
otherwise. In the matrix each ith row denotes the
requirement coverage and each jth column denotes the
test case overlap with the requirement(s). The
algorithm first includes all the test cases tjs that occur
as a single element in the test set Tis (singleton test
case), to the temporary set Ts. Then:
Algorithm 1: CBTSR

Input: Test cases in the given test sets along with requirements.
Test Sets: T1,T2, ...,Tm.
Associated requirements: r1,r2,..., rm
Test cases: t1,t2,...,tn.
Output: Reduced test suite.
 Trs a representative set of T1, T2,…,Tm.
Begin
{
A: is a boolean matrix, 1-covered and 0 – uncovered.
sel_tc:= {}: selected test cases returned by the subroutine
select_optimal()
list_t: list of test cases
list_r: list of requirements
Ts:={}: selected singleton test cases
Ttemp:={}: temporarily selected test cases
algorithm CBTSR
{
 Begin
 list_t : =all tj ∈ T //Contains all the test cases
 list_r : =all ri ∈ R //Contains all the requirements construct
 the matrix A; //matrix denoting relationship between
 requirements and test cases

 for each ri do
 construct the vector S //Vector consisting of sum of
 the elements from row 1..m of matrix A
 Ts := ∪ Ti; //Assign test set(s) with row sum= 1
 to the temporary set Ts
 update list_t:= remove all tj selected;
 // Update by removing all the marked test cases
 update list_r:= remove all ri selected;
 //Update by removing all the marked requirements

 endfor
 //Consider unmarked requirements where i→1 to m and
select the
 Corresponding test set

 for each Ti such that there exists ri do
 sel_tc=select_optimal(list_r, list_tc);
 //Invoke the subroutine by passing the list of test
 cases and requirements

 update list_t:= remove all tj selected;
 // Update by removing all the marked test cases
 update list_r:= remove all ri selected;
 //Update by removing all the marked requirements
 Ttemp := ∪ { sel_tc}; // distinct test cases with
 highest coverage value

 endfor
 Trs = Ttemp ∪ Ts // union of all distinct optimal test cases
 end
}
end CBTSR

Subroutine 1: select_optimal (list_r,list_t)

/*selects test sets to be included in the representative set */
Input: unmarked test cases and requirements
Output: Representative set
S: integer vector denoting number of requirements covered by a
test sets
T: test set with highest coverage value
max(): returns S vector row(s) having highest sum value
 Begin
 {
 reconstruct the vector S; // sum of requirements covered
 by test cases
 if max(S) > 0
 return (T=max(S)); // return the row with the highest
 value to the variable sel_tc
 else
 return; // return to the main program
 }
 end
}
end select_optimal

The corresponding occurrences of the requirements ris
and test cases tjs in the test case requirement matrix are
then reset to the value zero as represented in Equations
4 and 5. Equation 4 resets all the elements in column
‘j’ to the value zero and Equation 5 resets all the
elements in row i to the value zero. This is followed by
removing the test case and requirement from the lists:
list_t and list_r. Then, the subroutine select_optimal()
is recursively called to select the remaining test cases:

 jA All,t = 0⎡ ⎤⎣ ⎦

 iA r = 0⎡ ⎤⎣ ⎦

Another subroutine max() when invoked returns the
row(s) with the maximum test case(s) covering the
given requirement, from the vector S. The tjs marked in
row(s) returned are added to another temporary set
Ttemp. Again the corresponding requirement ris and tjs
are reset to the value zero and the details of the same
are also updated in the lists. The algorithm recursively
selects test cases and updates the test case requirement
matrix and lists containing the selected test
cases/requirements, until the vector S returns value(s)
greater than zero. Finally, the distinct test cases in Ttemp
are combined with test cases in Ts to generate the
representative set Trs. The worst case run time for the
proposed algorithm CBTSR constitutes the time to
mark the test case requirement matrix ().o n • m
Computing the vector S and selecting test case(s) to be

(4)

(5)

20 The International Arab Journal of Information Technology, Vol. 12, No.1, January 2015

B8

B7
B6

B5

B1

B3 B2

B4

n:=

:=n
:=n
n:=

Statement

:=n

:=n :=n

Statement

added to the representative set requires m(m +1)O
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

Under these assumptions the complexity of the
proposed algorithm becomes ()2O m .

3.3. Concept Illustration

With a majority of programs written to handle data,
variable utilization becomes vital. In such scenarios,
the concept of data flow testing can be used to examine
the variables. It includes the definition and assignment
of variable(s) throughout the program. The paths from
points where each variable is defined to points where it
is referenced are called definition-use pairs or DU-
pairs.

The test cases are generated based on all possible
flow of data from the declaration to the assignment.
Similarly the DU-pairs obtained are used as a criterion
to assess the coverage of requirements by the
representative set, Trs.

To illustrate the proposed CBTSR algorithm and the
state-of-art algorithms like HGS and BOG, a
hypothetical program is listed below:
Program 1: Odd_Even

1. program odd_even
2. var n
3. input(n)
4. if (n>0)
5. print (“Number positive”+n)
6. else
7. print (“Number negative”+n)
8. neg_no=n
9. n=num_convert(neg_no)
10. print “Natural Number determined”
11. if (n%2==0)
12. print (“Number even”+n)
13. else
14. print (“Number odd”+n)
15. print “Type of Number determined”
16. End program

The test cases are generated based on all possible flow
of data from the declaration to the assignment.
Similarly the DU-pairs obtained are used as a criterion
to assess the coverage of requirements by the
representative set. In the control flow graph Figure 1
the statements of the form ‘n:=’ represents definition
of n and ‘:=n’ uses of the variable n. Through data
flow analysis the DU-pairs are generated to serve as
requirements for testing the odd/even program. For the
program odd_even, there are two defining nodes in
Statements 3, Statement 9 and six usage nodes in
Statements: 4, 5, 7, 8, 11, 12, 14, thus, leading to four
DU-paths as indicated in Table 1.

From the values in Table 1, every execution path is
considered to be analogous to a test case. From the
DU-paths the corresponding DU-pairs are tabulated as
indicated in Table 2. These DU-pairs serve as bench
marks for constructing the test sets Ti with the
associated test cases tj. Table 2 depicts the test sets for

the sample program considered. Thus, the universel
test suite T={t1, t2, t1, t2, t3, t4, t1, t3, t2, t4, t3, t4, t3, t4, t3,
t4} was generated for the sample program considered.

Figure 1. Control Flow Graph for odd_even program.

Table 1. Testing information obtained through data flow analysis.

S.no Testcase,tj Execution path DU-pair(s) in the
execution path

1 t1 B1,B2,B4,B5,B6,B8 (B1,B2) (B1,B5)(B1,B6)
2 t2 B1,B2,B4,B5,B7,B9 (B1,B2) (B1,B5) (B1,B7)
3 t3 B1,B3,B4,B5,B6,B8 (B1,B3) (B3,B5) B3,B6)
4 t4 B1,B3,B4,B5,B7,B8 (B1,B3) (B3,B5) B3,B7)

Table 2. Test sets generated for the DU pairs.

S.no Test Sets,
Ti

DU-pair Test cases in Ti

1 T1 (B1,B2) {t1,t2}
2 T2 (B1,B5) {t1,t2, t3,t4}
3 T3 (B1,B6) {t1,t3}
4 T4 (B1,B7) {t2,t4}
5 T5 (B1,B3) {t3,t4}
6 T6 (B3,B5) {t3,t4}
7 T7 (B3,B6) {t3}
8 T8 (B3,B7) {t4}

The reduction process for the proposed CBTSR,
HGS and BOG algorithms begins with the construction
of test case requirement matrix as in Figure 2. In the
matrix A, each row represents the requirement ri and
each column the test case tj.

1 1 0 0
1 1 1 1
1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1
0 0 1 0
0 0 0 1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 2. Initial test case requirement matrix for the sample
program.

A Greedy Approach for Coverage-Based Test Suite Reduction 21

In the proposed CBTSR algorithm, from the vector
S row 7 and row 8 have a row count of one. These
rows represent singleton test cases with cardinality one
that corresponds to DU pair (B3, B6) and (B3, B7).
These DU pairs are represented by test cases t3 and t4.
The two test cases are selected into the temporary set
Ts. The lists: list_t and list_r are updated by removing
these test cases and requirements. The rows 7 and 8
covering the requirements and the columns
representing test cases t3 and t4 are reset to zero in the
test case requirement matrix. Then the function
select_optimal() is invoked. This determines the row
count of the test case requirements matrix, followed by
recomputing the values of the vector ‘S’. Then, the
maximum value is determined from the vector ‘S’,
which is correlated with the requirement and the
corresponding test cases satisfying the requirements.
The test cases are then added to the temporary set Ttemp
and the process iterates till the vector ‘S’ contains
values greater than zero. Finally, the values of
temporary sets Ts and Ttemp are combined to generate
the representative set consisting of {t1, t2, t3, t4}.

In the HGS algorithm the cardinality of all the eight
test sets i.e two, four, two, two, two, two, one, one are
computed. Then, test sets with cardinality one
(singleton test cases) are added to representative set
i.e, t3 and t4. This was followed by marking the
occurance of these test cases in the test sets, T2, T3, T4,
T5, T6, T7 and T8. The algorithm, then proceeds with the
next higher cardinality which is two. The only test set
available is {t1, t2}. Since, there is a tie involved, the
first test case t1 in the test set T1 was chosen at random
into the representative set.

In the BOG algorithm, the test case requirement
matrix is constructed and multiplied by its transporsed
matrix to generate the multipled matrix. The maximum
value of the diagonal element in the multiplied matrix
is five. Then, the sum of the elements in the ith row of
the multiplied matrix, except for the diagonal element
is computed. From this computation the test case with
the maximum value is determined as t3 and place in a
list called maxList. Similarly the test case with the
minimum value is determined as t1 and place in a list
called minList. Both the maxlist and minlist values are
then subjected to intersection operation to determine if
there were any common values. As there are no
common values, a subroutine to determine the optimal
test case is invoked. This subroutine returns the test
case to the representative set as t1. Then, the diagonal
elements of the multiplied matrix are updated for
unselected test cases. This process iterates and finally
the representative set generated consists of {t1,t3,t4,t5}.

The results from Table 3 show that when HGS
algorithm is used, one DU-pair (B1, B7), which
determines if the natural number is odd was not
selected in the representative set Trs. Further the test
cases selected into the representative set, obtained
using BOG algorithm also did not select the DU-pair

(B1, B7). Hence, the actual objective to determine
whether a positive number is odd or even could only be
partially tested using the test cases in the representative
set, of both HGS and BOG algorithms Table 3.
However, retesting the sample program using the test
cases in the representative set Trs of the proposed
CBTSR algorithm provides the desired coverage of all
DU-pairs Table 3 and also satisfies all the requirements
to determine whether a number is odd or even.

Table 3. Representative set obtained for odd/even program.

Algorithm(s) |T| |DU| Trs
DU-pair(s) Not covered by

The representative Set

HGS
16

8

{t1,t3,t4} (B1,B7)
BOG {t1,t3,t4} (B1,B7)

CBTSR {t1,t2,t3,t4} None

The next section describes the metrics used to
analyse the resultant representative set and analysis of
results using the proposed CBTSR and state-of-art
algorithms.

4. Experiments and Analysis
An empirical study was conducted to evaluate the
proposed CBTSR algorithm and state-of-art
algorithms, using ten program units each consisting of
11 to 24 lines of coding that cover a wide range of
applications. The program description along with the
lines of coding is shown in Table 4. The selection of
test cases was done using Rapps and Weyuker data
flow criterion [13]. Each program considered for
experimentation used DU-pair(s) that were hand-
instrumented. All the test suite reduction approaches
considered in this work had been implemented using
Java.

Table 4. Description of program units.

Program No. Program Name LOC #DU-Pairs
Pgm 1 Odd_Even 14 4

Pgm 2 Num_Digits 14 5
Pgm 3 Calc_cost 12 5
Pgm 4 Compute_1 16 5
Pgm 5 Valid Pin 18 5
Pgm 6 Sum_Digits 13 5
Pgm 7 Max_Val 17 6
Pgm 8 Prime_Num 20 6
Pgm 9 Prod_Discount 19 7
Pgm 10 Triangle_type 14 7

The following test metrics are used to determine the
performance of the proposed CBTSR approach and
state-of-art algorithms:

• The percentage of Requirement Coverage (RCov)
is defined in Equation 6:

Where, | Rtot | denotes the total number of test
requirements under consideration during test selection
and |Rcov| is the number of requirements satisfied by

cov

tot

| R |RCov = × 100
| R |

(6)

22 The International Arab Journal of Information Technology, Vol. 12, No.1, January 2015

the test cases in the representative set. Higher RCov
means better requirement coverage by the
representative set Trs.

• The percentage of test Suite Size Reduction (SSR)
[14, 15] is defined as in Equation 7:

rs| T | - | T |SSR = ×100
| T |

Where, |T| denotes the number of test cases in the
original test suite and |Trs| the number of test cases in
the representative set. Optimal SSR with better RCov
is desirable.

• Test SSR: For the subject program considered, the
size metric was evaluated for the proposed CBTSR
and state-of-art algorithms using Equation 6. From
the results obtained as shown graphically in Figure
4, it could be inferred that CBTSR provided
minimized test suites ranging between 66.67% to
84.62%. Further the average test SSR obtained for
CBTSR was 74.77% which was slightly less than
HGS (79.5%) and BOG (82.9%).

• RCov: The next metric evaluated was the
requirement coverage by the representative sets. The
observations made during experimentation showed
that the requirement coverage was consistently high.
Though the average test SSR was high when using
HGS and BOG algorithms, the average RCov was
marginally less when compared to the proposed
CBTSR approach. Thus, the average values of the
test metrics considered during performance
evaluation for the proposed CBTSR algorithm was
better than the state-of-art algorithms Figure 4.

From the experiments conducted, the observations
made are summarized as follows:

• HGS algorithm focused on the cardinality of test
sets to construct the representative set. In the HGS
algorithm the recursive function for test suite
minimization was invoked atleast once, to break the
ties among equally important test cases. In this
algorithm such recursions slowed down the
minimization process. Further in the case of a tie
between test cases, random test case selection also
altered the coverage of requirements.

• When BOG algorithm was used, the order in which
test sets were assigned for reduction was important.
Further, more computations were also involved in
selecting optimum test cases using the helper
function. Once all the diagonal values of the matrix
became zero the test suite minimization process
stopped though there were other non-diagonal
values. A major bottleneck of this algorithm were
the elaborate computations involved in determining
the test cases to be selected into the representative
set.

• The proposed CBTSR test suite reduction algorithm
removed redundant test cases introduced during

program development and retained only the most
effective test cases that contributed to the
requirement coverage. The test cases that were
retained could also provide the maximum
requirement coverage. From Figure 4 it is quite
apparent that when CBTSR algorithm was used, the
test cases in the representative set Trs satisfied more
number of requirements and thus subsequently
offered better coverage by traversing more DU-
paths in a given program.

100

R
ed

uc
tio

n
in

 T
es

t S
ui

te
 S

iz
e(

%
)

90
80
70
60
50
40
30
20
10
0

Minimum (%) Average (%) Maximum(%)

a) Test suite reduction.

100

R
eq

ui
re

m
ae

nt
 C

ov
er

ag
e

(%
)

90
80
70
60
50
40
30
20
10
0

Minimum (%) Average (%) Maximum(%)

b) Requirement coverage.

Figure 4. Test suite size reduction and requirements coverage
using CBTSR, HGS and BOG algorithm.

5. Conclusions
The contributions of this work focus on improving the
effectiveness of software testing downstream as unit
testing. Although, there has been some existing work
in this area, in the present work attempts have been
made to reduce the size of the test suite using a simple
approach that focuses on the test metrics: Size and
requirement coverage. The proposed CBTSR algorithm
generated a reduced test suite iteratively using simple
matrix operations. The performance evaluations of the
proposed CBTSR approach show that:

1. CBTSR algorithm offered consistently better RCov
than the state-of-art algorithms HGS and BOG.

2. However, the average test SSR of the proposed
CBTSR (74.77%) was marginally less than the
state-of-art algorithms HGS (79.5%) and BOG
(82.9%).

Thus, from the observations made in this work it can
be inferred that CBTSR reduces the size of the test
suite by retaining test cases that offer maximum RCov.
In future this work may be extended for another test
metric to determine the fault detection capability.

References
[1] Agrawal H., “Efficient Coverage Testing using

(7)

A Greedy Approach for Coverage-Based Test Suite Reduction 23

Global Dominator Graphs,” in Proceedings of
ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and
Engineering, Toulouse, France, pp. 11-20, 1999.

[2] Black J., Melachrinoudis E., and Kaeli D., “Bi-
Criteria Models for All-Uses Test Suite
Reduction,” in Proceedings of the 26th
International Conference on Software
Engineering, Edinburgh, UK, pp. 106-115, 2004.

[3] Chen T. and Lau M., “Dividing Strategies for the
Optimization of a Test Suite,” Information
Process Letters, vol. 60, no. 3, pp. 135-141,
1996.

[4] Errol L. and Brian M., “A Study of Test
Coverage Adequacy in the Presence of Stubs,”
Journal of Object Technology, vol. 4, no. 5, pp.
117-137, 2005.

[5] Hutchins M., Foster H., Goradia T., and Ostrand
T., “Experiments on the Effectiveness of
Dataflow and Control-based Test Adequacy
Criteria,” in Proceedings of the 16th International
Conference on Software Engineering, Sorrento,
Italy, pp. 191-200, 1994.

[6] Horgan J. and London S., “ATAC: A Data Flow
Coverage Testing Tool for C” in Proceedings of
Symposium on Assessment of Quality Software
Development Tools, New Orleans, Louisiana, pp.
2-10, 1992.

[7] Harrold M., Gupta R., and Soffa M., “A
Methodology for Controlling the Size of a Test
Suite,” ACM Transactions in Software
Engineering and Methodology, vol. 2, no. 3, pp.
270-285, 1993.

[8] Jeffrey D. and Gupta N., “Test Suite Reduction
with Selective Redundancy,” in Proceedings of
the 21st IEEE International Conference on
Software Maintenance, Budapest, Hungary, pp.
549-558, 2005.

[9] Jones J. and Harrold M., “Test-Suite Reduction
and Prioritization for Modified
Condition/Decision Coverage,” IEEE
Transactions on Software Engineering, vol. 29,
no. 3, pp. 195-209, 2003.

[10] Naresh C., Software Testing Principles and
Practices, Oxford University Press, India, 2011.

[11] Offutt A., Pan J., and Voas J., “Procedures for
Reducing the Size of Coverage-Based Test Sets,”
in Proceedings of the 12th International
Conference on Testing Computer Software,
Washington, USA, pp. 111-123, 1995.

[12] Paul A. and Jeff O., Introduction to Software
Testing, Cambridge University Press, 2008.

[13] Rapps S. and Weyuker E., “Selecting Software
Test Data using Data Flow Information,” IEEE
Transactions on Software Engineering, vol.11,
no. 4, pp. 367-375, 1985.

[14] Saeed P. and Alireza K., “On the Optimization
Approach towards Test Suite Minimization,”

International Journal of Software Engineering
and its Applications, vol. 4, no. 1, pp. 15-28,
2010.

[15] Scott M. and Atif Memon, “Fault Detection
Probability Analysis for Coverage-Based Test
Suite Reduction,” in Proceedings of the 21st
IEEE International Conference on Software
Maintenance, Paris, France, pp. 335-344, 2007.

[16] Tallam S. and Gupta N., “A Concept Analysis
Inspired Greedy Algorithm for Test Suite
Minimization,” in Proceedings of the 6th ACM
SIGPLAN-SIGSOFT workshop on Program
Analysis for Software Tools and Engineering,
Lisbon, Portugal, pp. 35-42, 2005.

[17] Xue-ying M., Bin-kui S., Cheng-qing Y., “A
Genetic Algorithm for Test-suite Reduction,” in
Proceedings IEEE International Conference on
Systems, Man and Cybernetics, Hawaii, USA, pp.
133-139, 2005.

[18] Yi W, Manuel O., and Bertrand M., “Is Coverage
a Good Measure of Testing Effectiveness?”
available at: http://se.inf.ethz.ch/people/wei/
papers/is_coverage_a_good_measure_of_testing_
effectiveness.pdf, last visited 2010.

Preethi Harris obtained her BE in
computer science engineering, ME
in software engineering and PhD
in Information Communication
Engineering. Her teaching and
industry experience spans over 15
years. She has published a number of

papers in software testing in National and International
conferences. She has conducted a Faculty Development
Programmes and has also received funds from AICTE,
New Delhi to conduct a seminar.

Nedunchezhian Raju is currently
working as a Principal. He has more
than 20 years of experience in
research and teaching. He obtained
his BE, ME and PhD degrees in
computer science and engineering.
Recently, he has obtained AICTE

grant for conducting research in data mining. His
research interests include knowledge discovery, soft
computing, distributed computing and information
security. He has published 2 books, 45 research journal
papers and 23 conference papers. He is a reviewer for a
few international journals/ conferences. He is also the
life member of ISTE and ACCS.

