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three clustering algorithms that obtain balanced clusters for homogeneous clustered with minimized communication cost. 
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1. Introduction 

Understanding the functionality of large software 
systems is a difficult job because of their inherent 
complexity. So, the system can be broken down into 
smaller pieces that are easier to comprehend and to 
manipulate. Software clustering is a very important 
facility since, it helps identify the subsystems that have 
related functionality and are somehow independent 
from the other parts of the system. Therefore, the 
starting point in the process of distributing the objects 
(or tasks) is to identify the clusters that constitute the 
software system [31]. The interdisciplinary nature of 
clustering is evident through its vast literature which 
includes many clustering problem formulations and 
even more algorithms. Basically, the two main 
approaches to clustering are hierarchical clustering and 
partitioning clustering [24, 25]. A hierarchical 
clustering is necessary here to model the distinct 
abstraction levels of the object oriented software [1]. 
The hierarchical clustering allows the designer to 
overcome the complexity of modeling a large 
application with multiple levels of abstraction and 
large numbers of interacting objects. This modeling 
framework helps the system designer to derive the 
information required to construct a software 
application that meets a set of performance 
requirements. In a Distributed Object Oriented (DOO) 
application, method invocation is the only 
communication pattern between objects within an 
application. An important step in designing DOO 
systems is to decide upon object locations. There are 
two main issues concerning clustered architectures. The 
first one is the communication between clusters. The 
second issue is the workload balance. Both of them 
depend greatly on the technique used to distribute the 
program instructions. This distribution should 
minimize the communication needs between remote  

locations [7]. However, it may be necessary to use 
tools to allow analysis of the communication patterns 
among objects in order to, take the right decision. 
However, it is scarcely to link together a collection of 
distributed and cost-effective in the form of a cluster 
[6]. The Class Dependency Graph (CDG), as shown in 
Figure 1 is usually used to create a suggested grouping 
of subsystems that are convenient for guiding the 
allocation of the subsystems to the targeted distributed 
environment [24, 33, 37]. 

 
Figure 1. The clustering step of the restructuring approach. 

Besides that, it is also important to obtain even 
clusters with equal, or nearly equal, computation 
requirements. Workload is referred to as the amount of 
processing that the computer has been given to perform 
at a given time. The workload consists of some amount 
of programming running in the computer and usually 
some number of users connected to and interacting 
with the computer’s applications [34]. 

Load balancing is a technique to distribute workload 
evenly across two or more computers, network links, 
CPUs, hard drives, or other resources, in order to, get 
optimal resource utilization, maximize throughput, 
minimize response time and avoid overload. The 
problem of load balancing continues to raise 
interesting challenges to researchers. The operating 
systems and distributed application design must 
include solutions for solving it. Cluster analysis has 
been the most popular statistical technique for dividing 
the workload into workload classes. Workload 
management enables workload distribution to provide 
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optimal performance for users and applications. 
Workload transfer is done once the node fails as the 
load balancer connects to the nodes works like a pulse 
that monitors the performance of each node. With a 
predetermined interval, the load balancer will check 
each node and alert the network administrator in case 
one node fails.  

Balancers in load balancing cluster have the ability 
to transfer the workload to other nodes to avoid further 
delay of operation [6]. Clustering pushes the functions 
of an application to be faster or ensures data 
availability’s faster transfer. An ideal clustering form 
to ensure stability is load balancing. Clustering by load 
balancing is basically a form of connection between 
computers (referred to as nodes in clustering) where in 
the workload is evenly distributed. Although, a single 
computer could provide the same operations, the 
hardware capability of a single computer or a node will 
never be enough to handle massive data requests and 
processing. However, multiple computers are 
connected together to harness each processing power. 
By sharing the workload, the processing time is 
increased and massive data requests and processes 
could be possible [21, 28]. 

Load balancing clusters provide a more practical 
system for business needs. As the name implies, that 
system entails sharing the processing load as evenly as 
possible across a cluster of computers. The 
differentiating factor in this case is the lack of a single 
parallel program that runs across these nodes. Each 
node server in that type of cluster, in most cases, is an 
independent system running separate software. 
However, there is a common relationship between the 
nodes either in the form of direct communications 
between the nodes or through a central load balancing 
server that controls each node’s load. Usually, a 
specific algorithm is used to distribute that load. This 
load could be in the form on application load or 
network load that needs to be balanced [35]. 

In this paper, we introduce three algorithms for 
clustering the objects into number of clusters to match 
the existing hardware named: Hierarchical and K-
Partitioning, Hierarchical and K-Medoids and Double 
K-Medoids. These algorithms aim to cluster the 
distributed objects into present numbers of clusters 
considering two main issues: Minimizing the 
communication between clusters and achieving the 
workload balance of the clusters. These algorithms, 
through simulation results, proved to obtain better 
performance than the existing clustering algorithms. 

This paper is organized as follows. This section 
provides the introduction. Section 2 describes the 
previous clustering techniques. Section 3 includes the 
three proposed algorithms for clustering distributed 
objects. Section 4 discusses the system cost model; 
communication and workload costs. Simulation results 
and their analysis are covered in section 5. The 
conclusion of the paper summarizes the work 
presented. Finally, a list of references used in the 
research is given.   

2. Previous Work in Clustering 

2.1. K-Partition Algorithm 

K-Partition (or K-means) algorithm is based on an idea 
to obtain k clusters, split the set of all points into two 
clusters, select one of these clusters to split the set of 
points into two clusters, select one of these clusters to 
split and so on, until k clusters have been produced. 
Therefore, all points in a given subset are closest to the 
same center. The calculated cluster center Vi (i∈{1, 2, 
..., K})  is the mean of the objects points in cluster i. K-
Means cluster analysis uses Euclidean distance to 
compute the distances. The K-Partition algorithm has 
the following important properties: 

• It is efficient in processing large objects sets.  
• It often terminates at a local optimum.  
• The clusters have spherical shapes. 
• It is sensitive to noise. 

The main problem of K-Means algorithm is the 
random initialization of centers [2, 3, 4, 10, 11, 22, 24, 
27]. Following is the summary of the K-Partition 
algorithm. 

Algorithm 1: K-Means algorithm 

Given the objects set X and the number of clusters C, 1< C< N.  

Initialize with random cluster centers chosen from the objects 

set. 

Repeat for iteration l=1, 2,… 

Step 1: Compute the square distances N is the number of object      

             points. 

( ) ( )
T

k k i k iD = x - v  x - v  

Step 2: Select the points for a cluster with minimal distances  

             belong to the cluster. 

Step 3: Calculate cluster centers. 

                   until          ( )

N
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j = 11
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∑
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m ax  V - V  ¹0∏  

                         end 

2.2. K-Medoids Algorithm 

K-Medoids and K-Partition algorithms both attempt to 
minimize squared error, the distance between points 
labeled to be in a cluster and a point designated as the 
center of that cluster. In contrast to K-Partition, K-
Medoids choose object points as centers. The main 
difference between K-Partition and K-Medoids stands 
in calculating the cluster centers: The new cluster 
center is the nearest object point to the mean of the 
cluster points.  

Algorithm 2: K- Medoids algorithm 

Given the objects set X and choose the number of clusters C, 1< 

C< N.  

Initialize with random cluster centers chosen from the objects 

set X.  

Repeat for iteration l=1, 2, … 

Step 1: Compute the square distances. 
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k k i k iD = (x - v ) (x - v ) Where,1 k c,1 k N≤ ≤ ≤ ≤  

Step 2: Select the points for a cluster with minimal distances  

             belong to the cluster. 

Step 3: Calculate cluster centers. 

( )

iN

i
j = 11

i

x

V =i
N

∑
 

Step 4: Choose the nearest objects point to be the cluster  

             center.  

 ( ) ( )
2* T

ik k i k i

*
D = x - v x - v *  and        

( )
( )

* 2* 1 *

i ik i ix = argm in D ; v = x  

      Until      ( ) ( )n 1 i -1

k =1
m ax b  V - V  ¹0∏  

      End. 

2.3. Double K-Clustering (D-K Partition) 
Algorithm 

D-K Clustering algorithm uses the K-Partitioning 
algorithm twice. In the first time, the original CDG 
will be clustered according to the number suggested by 
the recursive clustering algorithm. In the second time, 
the K-Partitioning algorithm will be used again to 
group the resultant clusters and form the MCG. These 
steps are illustrated in Figure 2 [17, 18]. 

 

Figure 2. The steps of the D-K Partition Algorithm. 

2.4. Hierarchical Algorithm 

Hierarchical clustering techniques belong to a second 
category of clustering methods, however used as a 
method for grouping different signals. Hierarchical 
clustering builds a cluster hierarchy or in other words, 
a tree of clusters, also known as a dendrogram. 
Investigation based on Euclidian distance measures. 

Strategies for hierarchical clustering generally fall 
into two types: 

• Agglomerative: This is a “bottom-up” approach 
where each observation starts in its own cluster and 
pairs of clusters are merged as one move up the 
hierarchy.  

• Divisive: This is a “top-down” approach where all 
observations start in one cluster and splits are 

performed recursively as one move down the 
hierarchy.  

Both methods suffer from their inability to perform 
adjustments once the splitting or merging decision is 
made. Advantages of hierarchical clustering include: 

• Embedded flexibility regarding the level of 
granularity. 

• Ease of handling of any forms of similarity or 
distance. 

• Consequently, applicability to any attributes types. 

Hierarchical clustering initializes a cluster system as a 
set of singleton clusters (Agglomerative case) or a 
single cluster of all objects (Divisive case) and 
proceeds iteratively with merging or splitting of the 
most appropriate clusters until the stopping criterion is 
achieved. The appropriateness of clusters for merging/ 
splitting depends on the similarity/ dissimilarity of 
clusters elements. 

To merge or split subsets of points rather than 
individual points, the distance between individual 
points has to be generalized to the distance between 
subsets. Such derived proximity measure is called a 
linkage metric. The type of the linkage metric used 
significantly affects hierarchical algorithms, since, it 
reflects the particular concept of closeness and 
connectivity [3, 4, 5, 8, 9, 15, 19, 22, 24, 25, 26]. 

2.4.1. Agglomerative Hierarchical Method 

Agglomerative hierarchical techniques are starting 
with individual objects as clusters; merge the two 
closest clusters until only one cluster remains. There 
are three definitions of the closeness between two 
clusters: Single-link, complete-link and average-link. 
     The single-link similarity between two clusters is 
the similarity between the two most similar instances, 
one of which appears in each cluster. The complete-
link similarity is the similarity between the two most 
dissimilar instances, one from each cluster. The 
average-link similarity is a compromise between the 
two [5, 9, 24]. 

Algorithm 3: Agglomerative hierarchical method 

Step 1: Compute the linkage metrics. 

Step 2: Merge the closest two clusters. 

Step 3: Update the linkage metrics. 

Step 4: Repeat. 

Step 5: Until only one cluster remains. 

Agglomerative methods start with individual objects 
and group them together to form larger and larger 
classes. The algorithm terminates when all objects are 
combined to one class. At every stage one wants the 
two similar classes to be amalgamated. The most 
established amalgamated techniques viewed as special 
cases of the general agglomerative algorithm. The 
dissimilarity between newly amalgamated class 
measures: 

Start  

Input: CDG, NN  

Output: CCDG 

Output: CCDG  

Output: MCG 

Recursive Clustering Algorithm  

K-Partition Algorithm (CDG), CN) 

K-Partition Algorithm (CCDG), NN) 

End 

CN>NN 

Output: No. of Cluster 
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Here a, b and c are coefficients corresponding to a 
particular linkage. This formula expresses a linkage 
metric between the union of the two clusters and the 
third cluster in terms of underlying components. The 
Lance-Williams formula has an utmost importance 
since, it makes manipulation with dis(similarity) 
computationally feasible.  

Linkage metrics-based hierarchical clustering 
suffers from time complexity. Under reasonable 
assumptions, such as reducibility condition (graph 
methods satisfy this condition), linkage metrics 
methods have O(N2) complexity. Despite the 
unfavorable time complexity, these algorithms are 
widely used [3, 4, 7, 15]. 

3. The Proposed Algorithms 

3.1. Hierarchical and K-Partitioning (H-K 
Partition) Algorithm 

The most popular algorithms are Hierarchical 
algorithm and K-Partitioning algorithm. We present a 
hybrid approach to combine the merits of the two 
classic approaches and discard disadvantages. 
Hierarchical clustering builds a cluster hierarchy or, in 
other words, a tree of clusters, also known as a 
dendrogram. Investigation is based on Euclidian 
distance measures. 

The dendrogram will be the input to the K-Partition 
algorithm which will cause splits moving down the 
dendrogram. The K-Partition algorithm will perform 
Splits Cluster Graph (SCG) at first. However, in some 
cases we need to Merge the Cluster Graph (MCG) to 
determine the number of available nodes. As shown in 
Figure 3, we defined this number of nodes as NN and 
cluster nodes as CN. The output of this step will be 
groups whose numbers equal to the number of 
available clusters in the distributed system.  

 
Figure 3. The steps of the H-K Partitioning algorithm. 

3.2. Hierarchical and K-Mediods (H-K 

Medoids) Algorithm 

The second hybrid approach is based on the K-
Mediods algorithm rather than the K-Partitioning. 
Hierarchical algorithm is used as first step to prepare 
the dendrogram. Investigation is based on Euclidian 
distance measures. The dendrogram will be the input to 
the K-Mediods algorithm which will cause splits 
moving down the dendrogram. The next step is K-
Medoids algorithms. 

As shown in Figure 4, we defined this number of 
nodes as NN and cluster nodes as CN. The output of 
this step will be groups whose numbers equal to the 
number of available clusters in the distributed system. 
 

 
Figure 4. The steps of the H-K Medoids algorithm. 

3.3. Double K-Medoids  

Double K-Medoids algorithm is using the K-Medoids 
algorithm twice. In the first time, the original CDG 
will be clustered according to the number suggested by 
the recursive clustering algorithm. In the second step, 
the K-Medoids algorithm will be used again to group 
the resultant clusters and to form the MCG. These 
steps are illustrated in Figure 5. 
 

 
 

Figure 5. The steps of the double K-Medoids algorithm. 
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4. System Cost Model 

Each cluster has both communication cost with other 
clusters and workload cost that specifies the total 
workload assigned to it. So, we have to model both 
costs as follows in the next subsections. 

4.1. Communication Cost Between Clusters 

The DOOP model provides an accurate representation 
for the communication activities among nodes in a 
DOO system. It also provides a way to evaluate the 
execution cost of the software modules and their 
related communication activities. The performance 
model consists of two main parts: The execution server 
and the communication server. The execution server 
and its related analysis represents and evaluates the 
execution cost of the software modules that reside on 
each node [6, 18].  

The communication server provides the analysis 
representing the communication activities (including 
objects updating) of this node with other nodes and the 
evaluation process for communication cost. The total 
cost will be the summation of both execution and 
communication costs [38]. In the following, we are 
going to describe in details the model evaluation for 
the communication process. Assume that the overall 
arrival rate to the communication queue λck which is 
given by [18]: 

                    
ck cs cb cuλ = λ + λ + λ  

Where: λcs, λcn and λcu represent the communication 
arrival due to External User Request (EUR), Remote 
Request (RR) and updating objects data on other 
nodes, respectively: 

                    

                      ck s s

cn n n

N

cu Ui cui i1 s i2 n
i =1

 λ = β λ    

                  λ  = β  λ   

λ = λ   λ = P λ + P  λ∑

 

Where, βs and βn are the message multipliers for EUR 
and RR. Let λcui be the arrival rate corresponding to 
objecti data updating. Since, the updating process to an 
objecti occurs due to processing EUR or RR, Pi1 is 
defined to be the probability that objecti is updated due 
to EUR and Pi2 is the probability that objecti is 
modified due to RR. Therefore, the expected 
communication service time for each class will be: 

            s n sui
cs cn ui

m m m
t = ,  t = ,  t =

R R R
   

Where, c, tcs, tcn and tui are the expected 
communication service time for EUR, RR and for 
update requests from objecti. While ms, mn and mui are 
the expected message sizes of EUR, RR and of sending 
objecti updating data and R is the communication 
channel capacity. 

Furthermore, the average communication service 
time for node (k) will be: 

                   
N

ck cs cs cn cn ui ui
i =1

t = P  t + P  t + P  t∑  

Where cs cn ui
cs cn ui

ck cs ck

λ λ λ
P = ,  P =  ,  P =   

λ λ λ
.  

Pcs, and Pcn are the probabilities of activating 
communication service by the external user requests 
and by remote request, respectively. Pui is the 
probability of sending objecti data update to other 
nodes. If we assume that each individual class will be 
allocated to a separate node in the DOOP performance 
model, we can use Equation 3 to compute the average 
cost for communication between a specific class and 
all other classes in the system.  

However, if we further conducted this evaluation on 
the classes in a pair-wise fashion, we can get the 
communication cost between each and every two 
classes within the object oriented distributed system.  

As shown in Figure 6, in CDG each class is 
represented as a vertex and the communication 
between classes is represented by undirected weighted 
edges. For example, an edge between class A and B 
represents a communication activity that exists 
between these two classes due to either data transfer or 
classe’s dependency [1]. The weight of the edge WAB 
represents the cost of that communication activity. If 
no data communication or relationship dependency has 
been recognized in the object oriented application 
between two classes, no edges will connect them in the 
CDG [16, 33]. 

 
Figure 6. A Graph representation for interclass communication. 

At this point, we propose to use the DOOP model to 
evaluate the time cost for communications that occurs 
between different classes in the object oriented system. 
The computed values are then used as the weights 
assigned to the corresponding edges in the CDG. The 
communication cost between two clusters can be 
computed according to the following equation: 

                              T = W     V ,K iji, j = 1
∑      

Where, i, j the two objects connected located at 
different clusters, v, k, Wij communication cost between 
objects i, j. 

4.2. Cluster Workload Cost 

With commercial supercomputers and homogeneous 
clusters of PCs, static load balancing is accomplished 
by assigning nearly equal tasks to each processor. With 
heterogeneous clusters, the system designers have the 
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option of quickly adding newer hardware that is more 
powerful than the existing hardware. This paper 
assumes using homogenous processors [14, 38]. The 
average workload cost of each cluster can be computed 
by summing the average workload of each object in the 
cluster and dividing it by the total number of objects in 
the cluster. Assuming that the execution time required 
for each object Ti is known, then we can compute the 
average workload cost of the cluster Cj as follows [21]: 

                                
M

i
i = 1

C i

T

 T =
M

∑
 

Where, Ti is the execution time of objecti, M is the 
number of objects in clusterj. 
 

The average workload for the clusters in the system 
can be computed as the summation of average 
workloads of each cluster divided by the number of 
clusters as follows: 

                     
N

i
j = 1

av e rage

C

 T  =
N

∑
 

4.3. Cost Function Development 

One of the main objectives of this work is to improve 
the overall system utilization by distributing and 
balancing the processor time among the execution and 
the communication processes based on the module’s 
needs. Therefore, the overall time cost function 
equation can be written as: 

      
Overall   Cost Workload  Cost Communication  CostT = γ * T + (1 - γ) * T   

Where, TOverallCost is the overall cost of the system, γ is a 
parameter expressing the balance between the two 
parts, whose value is constant that varies between (0 
and 1) and used to distinguish the importance of each 
cost term.  

• TCommunication Cost: Communication cost between 
clusters, which is the part of the cost-function which 
is minimize the inter-processor communication cost 
minimized. 

• TWorkload Cost: Average workload in overall clusters, 
which is minimal when balance the workload of 
processors. 

The performance of clustered architectures relies on 
steering schemes that try to find the best trade-off 
between workload balances and inter communication 
cost in clusters [21]. We have modified the clustering 
algorithms for producingbalanced workload clusters 
first by obtaining the clusters, which have minimum 
communication. Then, we calculate the total workload 
in each cluster. If they are not balanced, we re-cluster 
them. We use the Mean Square Error (MSE) for 
measuring the workload balance. 

4.4. Using MSE to Evaluate the Cluster 

Performancel 

To ensure the balance of the workload assigned to the 
clusters, we first cluster the objects minimizing the 
communication cost between the clusters; Then we 
measure the average workload of each cluster and 
compare it to the average workload for all objects. If 
the cluster’s workload is equal or almost equal (i.e., 
less or greater than it by a certain threshold) to the 
average workload, then we accept this clustering.  

But, when cluster’s workload is far beyond the 
average workload, the clustering algorithm will be 
performed again until the balanced workload clusters is 
reached which gives the least overall MSE. The MSE 
is computed using the following Equation: 

               
N 2

Cj
j =1

(  T  - µ)

Overall  MSE=
N

∑
                    

Where, TCj cluster average workload (computed by 
Equation 7), µ average workload (Taverage) (computed by 
Equation 8), N number of clusters (equals to no. of 
processors in the system). 

5. Simulation Results 

We have created a simulation program using 
MATLAB7.10.0.499 which, given the task and the 
processor graphs, generates mappings and computes 
the total workload time in each cluster and the MSE. 
We have also created a random graph generator and 
random execution time for each object. The 
experiments are aimed to determine the performance of 
the various clustering algorithms when trying to 
achieve the workload balance while achieving the least 
possible communication produced by the clustering.  

We measure the balance of these clusters by 
computing the MSE value. The first group of 
experiments investigates the ability of the various 
clustering algorithms to achieve the balance of the 
workload (in terms of MSE) when clustering different 
number of objects to 3 and 4 clusters. The matrix of the 
CDG was randomly generated with random 
communication values and execution times for all 
objects. We present the results of comparisons between 
the previous clustering algorithms and the three 
proposed algorithms in Figures 7 and 8. 
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Figure 7. MSE% of the clusters workload produced by different 
clustering algorithms at 3 clusters. 
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Figure 8. MSE% of the clusters workload produced by different 
clustering algorithms at 4 clusters. 

 
We note from these figures that all the algorithms, 

except K-Partition algorithm, from 300 to 420 objects, 
produce almost the same workload MSE results. The 
K-Partition algorithm gives the highest MSE values, 
which means that it is the worst performance 
algorithm.  

On the other hand, the H-K Partition and H-K 
Medoids algorithms, at more than 420 objects, give the 
least workload MSE which means that they are better 
than the other algorithms in achieving the balanced 
clusters at high number of objects. While the D-K 
Partition, D-K Medoids and K-Medoids algorithms are 
the next level in quality.  

In the second group of experiments, we investigate 
the performance of the various clustering algorithms at 
variable number of clusters and fixed number of 
objects. The matrix of the CDG was randomly 
generated with random communication values and 
execution times for all objects. Figures 9, 10 and 11 
give these results. 

From these results we conclude that the K-Partition 
algorithm produces the highest MSE values while the 
H-K Partition, the H-K Medoids clustering algorithms 
produces the least MSE values (about 13% for the 
different number of clusters). In Figure 11, the results 
came to be consistent with the results discussed in the 
case study presented above. 
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Figure 9. MSE% of the clusters workload produced by different 
clustering algorithms at variable number of clusters for 400 objects. 
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Figure 10. MSE% of the clusters workload produced by different 
clustering algorithms at variable number of clusters for 500 objects. 

However, the H-K Medoids, D-K Medoids and D-K 
Partition algorithms gave results close to each other. 
Thus we conclude that, the H-K Partition algorithm 
produce better clusters quality where these clusters 
have both least communication between clusters and 
balanced workload.  
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Figure 11. MSE% of the clusters workload produced by different 
clustering algorithms at variable number of clusters for 550 objects. 

 

The third group of experiments has been built for 
evaluating the performance of the system using the 
overall cost function at different conditions and 
different values of γ using the proposed and the old 
clustering algorithms. 
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b) 300 objects (10 clusters). 
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c) 500 objects (10 clusters). 
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d) 800 objects (10 clusters). 
 

Figure 12. The Overall Cost by different clustering algorithms at 
different values of γ. 
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The fourth group of experiments has been built for 
evaluating the performance of the system using the 
overall cost function at γ=0.5 value using the proposed 
and old clusters algorithms at 3 and 4 clusters as shown 
in Figures 13 and 14. 
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Figure 13. Overall cost function by different clustering algorithms 
at y=0.5 when partitioned to 3 clusters. 
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Figure 14. Overall cost function by different clustering algorithms 
at y=0.5 when partitioned to 4 clusters. 

 
From the results, comparing the proposed clustering 

algorithms with old clustering algorithms in the 
different cases, the simulation results show that a better 
performance can be achieved by the proposed 
algorithms. However, we find that the proposed 
algorithms (H-K Partition algorithm and H-K Medoids 
algorithm) give better results than the other algorithms 
about 5.4% at γ(0 to 0.5).  

However, D-K Partition algorithm and D-K 
Medoids algorithm give the second best out come 
around 3.7% and close to each other from γ=0.6 to 1. 
Behind that, the K-Partition algorithm and K-Medoids 
algorithm give worst results and the K-Partition give 
the worst values. We also, found out that the balance 
causes minimum total cost at γ=0.5. 

6. Conclusions 

Load balancing is a computer networking methodology 
to distribute workload across multiple computers or a 
computer cluster, network links, central processing 
units, disk drives, or other resources, to achieve 
optimal resource utilization, maximize throughput, 
minimize response time and avoid overload. In this 
paper, we presented three different clustering 
algorithms that cluster the distributed objects into a 
given number of clusters. These algorithms aim first to 
minimize the communication cost between the clusters 
and to ensure that these clusters are balanced in terms 
of the workload assigned to each node. 

The results showed that the hierarchical and K- 
Partition algorithm provides the minimum MSE in 
deferent cases. Attention concentrate for most 

important consequence is the dispersion coefficients 
degrade with increasing the number of clusters. For 
their more, the H-K Partition and H-K Medoids 
authenticate the normal distribution.  

We proposed a cost function for enhancing the 
overall system utilization by distributing and balancing 
the processor time between the execution and the 
communication processes in the basis of the module’s 
needs. Next, the experimental results showed that the 
performance of the proposed algorithms: H-K Partition 
and H-K Medoids have the best clustering quality. 
While in the next place comes the D-K Partition and 
D-K Medoids algorithms. 
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