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1. Introduction 

Boolean Satisfiability (SAT) solvers have become 

powerful enough to solve many practically relevant 

problems and they are currently used in numerous 

industrial tools for circuit and software verification. 

Building upon this success, the research community has 

begun to consider the more general, but also more 

complicated Quantified Boolean Formula (QBF) 

domain. This allows researchers to encode problems 

encountered in black box or partial circuit verification, 

bounded model checking and AI planning more 

naturally and compactly than in SAT. However, since 

QBF problems are generally more difficult (PSPACE-

Complete vs. NP-Complete), they require dedicated 

algorithms and increased computation power to solve 

relevant instances [15]. In this context, the use of 

different heuristic and especial algorithms is a possible 

and interesting solution. 
In fact, nearly all effective QBF solvers are found on 

Davis, Putnam, Logemann and Loveland (DPLL) 
algorithms [6] the main factor affect the efficiency of 
algorithm is the choice of branch variable. For this 
reason, the researcher adopt various approach to decide 
the branch choice, such as random method, walksat 
heuristic and survey propagation [9, 29]. This paper 
highlights this problem and provides new heuristic 
algorithm to improve the branch choice within the 
DPLL algorithm framework. We use the graph 
structure to research QBF solving, some QBF which 
have a Small World (SW) network structure are very 
difficult to resolve [22, 23]. For the purpose of 
improving the solution efficiency for this particular 
type of formula, we develop a heuristic Small World 
Optimization Search (SWOS) algorithm to seek the 
optimal variable and then we adopt the optimal variable 
as the branch variable. To our best knowledge, it is the 

first time to research the special QBFs having the SW 
network topological structure. 

The paper is structured as follows: Section 2 will 
start with a description of the QBF problem and how 
QBF solvers work (section 2.1 and 2.2). In section 3 
we introduce our solving architecture for QBFs. In 
section 4 we introduce the heuristic SWOS algorithm 
for branch choice. In section 5 we give some technical 
details and experimental results about our 
implementation. Section 6 will conclude this paper 
and giving some future research directions. 
 
2. Preliminaries 

2.1. Overview of the QBF Problem 

There are many ways to encode a QBF problem [15] 
but, in our context, they are defined in Conjunctive 
Normal Form (CNF). A problem in CNF form starts 
with a variable definition. The variable definition 
quantifies each variable (either existentially or 
universally) and assigns each variable to a specific 
quantification level. Once the variable definition is 
complete, a set of clauses is given that defines the 
problem. More formally, a QBF is an expression of 
the form:  

                     ( )1 1 2 2 n nφ=Q z Q z … Q z Φ  n³0   

Here, every Qi(1≤ i≤ n) is a quantifier, either 
existential ∃ or universal ∀, z1, …, zn are distinct sets 
of variables and Φ is a propositional formula. Q1 z1, Q2 
z2, …, Qn zn is defined as the prefix and Φ, the 
propositional formula would contain a set P of clauses. 
While a variable is defined as an element of P, an 
occurrence of that variable or its negation in a clause 
is referred to as a literal. In the following, the literal 
l is defined as the negative occurrence of the variable 
|ɭ| in P and ɭ is the positive occurrence. In the 

(1) 



Solving QBF with Heuristic Small World Optimization Search Algorithm                                                                                 371 

 

 

following, we also, use true and false as abbreviations 
for the empty conjunction and the empty disjunction, 
respectively. For example, an entire problem definition 
might be as follows: 

    
{ } { } { }
{ } { }

y1 2 2 2

1 2

y1 2

x x y x x
x y x

x y x

∃ ∀ ∃
∨ ∨ ∧ ∨ ∧

∧ ∨ ∧ ∨

  
 
  

       

We say that (1) is in CNF when Φ is a conjunction of 

clauses, where each clause is a disjunction of literals as 

shown in Equation 2 and that Equation 1 is in 

Disjunctive Normal Form (DNF) when Φ is a 

disjunction of cubes, where each cube is a conjunction 

of literals1. We use constraints when we refer to 

clauses and cubes indistinctly. We also define: 

1. The level of a variable zi, to be 1+the number of 

alternations Qj zj, …, Qj+1 zj+1 in the prefix with j≥ i 

and Qj≠Qj+1. 

2. The level of a literal ɭ is the level of |ɭ|. 

3. The level of the formula 1 is the level of z1. 

4. So for example, in Equation 2, x2 is existential and is 

quantified on level 1, y is universal and is on level 2, 

x1 is existential and is on level 3. 

QBF solvers are interested in answering the question of 

whether or not Equation 1 ϕ expresses a true or false 

assertion, i.e., whether or not ϕ is true or false. The 

reduction of a CNF formula Φ by a literal ɭ is the new 

CNF Φ|ɭ which is Φ with all clauses containing ɭ 

removed and
 ¬

ɭ the negation of ɭ, removed from all 

remaining clauses. For example, let ϕ=∀xz∃y(ӯ, x, 

z)˄( x , y)), then ϕ|x=∀z∃y(ӯ, z). The semantics of a 

QBF can be defined recursively in the following way: 

1. If Φ is the empty set of clauses then ϕ is true. 

2. If Φ contains an empty clause then ϕ is false. 

3. ∀vϕ is true if both ϕ|v and ϕ|¬v are true. 

4. ∃vϕ is true if at least one of ϕ|v and ϕ|¬v is true. 

In this paper, we only study the formula with 

conjunctive normal form. 

 

2.2. QBF Solver 

The sequential QBF solvers usually apply one single 

algorithm to resolve the whole formulae set at runtime. 

There are many sequential QBF solvers [18, 21]. Most 

solvers like QuBE, yQuaffle and sSolve are in principal 

based on the DPLL algorithm [2, 6, 10, 11, 20]. Others, 

like Quantor or Nenofex [4, 12] try to resolve and 

expand the formula until no universally quantified 

variables remain. This allows them then to send their 

remaining, existentially quantified problem to a SAT 

solver. This works well on many problems, but it can 

result in an explosion with respect to the size of the 

formula. On the other hand, solvers like sKizzo [3] do 

the opposite of Quantor [1] and use symbolic 

skolemization to eliminate all the existentially 

quantified variables in the formula. Some so-called 

incomplete solvers are also based on stochastic search 

methods and they can be very effective in solving 

some categories of problems, but are not able to prove 

the value of unsatisfiable formulas. A few alternative 

algorithms for QBF are emerging, e.g., and-Inverter 

Graphs. Their usage in QBF satisfiability algorithms 

have been explored at least in [19]. Finally, AQME 

[21] is a portfolio of solvers considered and the best 

one is selected using machine learning techniques 

[25]. In the parallel solving domain, there exist three 

implementations of parallel solvers for the problem of 

validity of QBF: PQSOLVE, PaQube and QMiraXT 

[8, 15, 16]. 

2.3. SW Network 

In mathematics, physics and sociology, a SW network 

is a type of mathematical graph in which most nodes 

are not neighbors of one another, but most nodes can 

be reached from every other by a small number of 

hops or steps. Specifically, a SW network is defined to 

be a network where the typical distance L between two 

randomly chosen nodes (the number of steps required) 

grows proportionally to the logarithm of the number 

of nodes N in the network, that is [27]:  

L log N∝  

To formalize the notion of a SW, Watts and Strogatz 
define the clustering coefficient and the characteristic 
path length. The path length is the number of edges in 
the shortest path between two nodes. The 
characteristic path length L is the path length averaged 
over all pairs of nodes. The clustering coefficient is a 
measure of the cliqueness of the local neighborhoods. 
For a node with k neighbors, then at most k(k-1)/2 
edges can exist between them (this occurs if they form 
a k-clique). The clustering of a node is the fraction of 
these allowable edges that occur. The clustering 
coefficient C is the average clustering over all the 
nodes in the graph. 

Watts and Strogatz define a SW graph as one in 
which L≥ Lrand and C>>Crand where, Lrand and Crand are 
the characteristic path length and clustering coefficient 
of a random graph with the same number of nodes n 
and edges e. Rather than this simple qualitative test, it 
might be useful to have a quantitative measure of 
“small worldliness”. We can then compare the 
topology of different graphs. To this end, we define 
the proximity ratio µ as the ratio of C/L normalized by 

Crand/Lrand. In graphs with a SW topology, the 
proximity ratio µ>>1. By comparison, the proximity 
ratio µ is unity in random graphs and small in regular 
graphs like lattices. 

3. Solving Architecture 

3.1. Problem Model 

Given a QBF ϕ on the set of variables Z={z1, ..., zn}, 
its gaifman graph has a vertex set equal to Z with an 
edge (z, z') for every pair of different elements z, z'∈ Z 

(2) 
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that occur together in some clause of ϕ. A scheme for a 
QBF ϕ having prefix P is a supergraph (Z, E) of the 
gaifman graph of ϕ along with an ordering z1', ..., zn' of 
the elements of Z such that: 

1. The ordering z1', ..., zn' preserves the order of P, i.e., 

if i< j then zj' comes after zi' in P. 

2. For any zk', its lower numbered neighbors form a 

clique, that is, for all k , if i< k, j< k, (zi', zk')∈E and 

(zj', zk')∈E, then (zi', zj')∈E [20, 23]. 

In Figure 1, we show the gaifman graph 

corresponding to the structure of Equation 3. The graph 

is comprised of five nodes and there is an edge between 

all the variables occurring together in some clause of 3.  
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Figure 1. Gaifman graph of the QBF (3). 

 Pulina et al. [21, 23] found there are some formulas 

families are very difficult to solve, at least by search-

based solvers. The author investigated this phenomenon 

by studying the purely propositional structure of the 

gaifman graphs of these formulas, with respect to the 

original formulas, these graphs have an increased 

clustering coefficient C and a decreased average path 

length L, i.e., these formulas have SW topology, in a 

propositional sense. This means that there are clusters 

of densely connected variables, with occasional cross-

cluster connections. It is an important conclusion that 

the more the structure of the formula resembles a SW, 

the more it is difficult to solve [5]. 

The reason for this phenomenon is explained in [26, 

27]. In a graph with a SW topology, nodes are highly 

clustered yet the path length between them is small. 

Such a topology can make search problems very 

difficult since local decisions quickly propagate 

globally. It shows that graphs associated with many 

different search problems have a SW topology and that 

the cost of solving such search problems can have a 

heavy tailed distribution. The strategy of randomization 

and restarts appears to eliminate these heavy tails. A 

novel restart schedule in which the cutoff bound is 

increased geometrically appears particularly effective. 

In this paper, we develop a heuristic SWOS 

algorithm to seek the optimal variable in gaifman 

graphs and then we adopt the optimal variable as the 

branch variable, then we can use the DPLL algorithm 

framework to solve the formulas. In this way, we can 

improve the solve efficiency to some extent. 

3.2. Solving Algorithm Framework 

The DPLL algorithm is the most efficient algorithm in 

SAT solving domain. At the present time, almost all 

the QBF solver is designed on the base of DPLL 

algorithm. The basic framework of DPLL algorithm 

for solving QBF problem is showed in Algorithms 1 

[6, 29]. 

In Algorithms 1, Cϕ is the empty clause, C∀ is the 

clause composed of universal literals, ɭv is the literal 

corresponding to the variable v, ɭ∃ is a set of existential 

literals, ɭ∀ is a set of universal literals, Q.E|v=true is the 

formula set through assigning a true value to variable 

v, Q.E|v=fulse is the formula set through assigning a false 

value to variable v. In the preprocess stage, the DPLL 

algorithm uses some inference rules, such as pure 

literal rule, unit literal rule to simplify the QBFs, thus, 

we can decide whether the conditions for terminating 

the algorithm is satisfied. If the formula set is empty 

after simplification, the original formula is satisfiable; 

otherwise, if the formula set contains the empty clause 

or contains a clause composed by universal literals 

merely, the original formula is unsatisfiable. If we can 

not decide whether the original formula is satisfiable 

or unsatisfiable, then we split the and/or tree according 

to the variable constraint by the outermost layer 

quantifier, in this way, we get two formula collection 

Q.E|v=true and Q.E|v=fulse If the variable which we choose 

to split the and/or tree is an existential literals, the 

original formula is satisfiable at least one of Q.E|v=true 

and Q.E|v=fulse is satisfiable. If the variable which we 

choose to split the and/or tree is a universal literals, 

the original formula is satisfiable only if both Q.E|v=true 

or Q.E|v=fulse are satisfiable. From the procedures of 

DPLL algorithm, one of the key factor affecting the 

entire algorithm efficiency is how to choose an 

appropriate variable for splitting the and/or tree. 

We design the SW algorithm for solving Small 

World_QBF (SW_QBF) algorithm on the base of 

DPLL algorithm, the algorithm framework is showed 

in Algorithms 2. The notations of the SW_QBF 

algorithm are same to the DPLL algorithm. Cϕ denotes 

the empty clause, C∀ denotes the clause composed all 

by universal literals, Q.E|v=true is the formula set 

through assigning a true value to variable v, Q.E|v=false 

is the formula set through assigning a false value to 

variable v. In the preprocess stage, the SW_QBF 

algorithm uses some pure literal rule to simplify the 

QBFs. In the branch selection stage, SW_QBF 

algorithm adopts the SWOS algorithm as the heuristic 

(SWOS_Choosevariable()), it determines the branch 

variable through providing the global information, 

reduces the searchspace, thereby decreases the 

algorithm’s rollback times, we will introduce the 

y1 

y2 

x3 x2 

x1 

(3) 
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SWOS algorithm in chapter 4. In the branch process 

stage, we apply the conflict reasoning rules to infer the 

QBFs, this procedure will produce three return value, 

they are respectively conflict, satisfaction and 

undetermined. If the original formula E has false value 

on the current assignment, the algorithm returns 

conflict, then continue the conflict driven learning. If 

the original formula E has true value on the current 

assignment, the algorithm returns satisfaction, then 

continue the satisfiability directed implication learning. 

If the value of formula E can not be determined on the 

on the current assignment, the algorithm returns 

undetermined, then continue the branch selection. In 

this stage, we use some reasoning technology such as 

conflict driven learning and satisfiability directed 

implication learning to decrease the searchspace, 

accelerate the problem solving.  

• SubFunction  DPLL(Q.E) 

Algorithms 1: DPLL algorithm 

1. Preprocess (Q.E). 

2. if  E=Ø then return SAT. 

3. if (CØ∈ E)∨( Call∀∈ E) then return UNSAT. 

4. v←choosevariable(Q.E). 

5. if (ɭv∈ ɭ∃) 

6.     then return DPLL(Q.E|v=true) or DPLL(Q.E|v=false) 

7. if (ɭv∈ ɭ∀) 

8.     then return DPLL(Q.E|v=true) and  DPLL(Q.E|v=false) 

• SubFunction  SW_QBF(Q.E) 

Algorithms 2: Solving QBF with SWOS algorithm 

1. preprocess(Q.E). 

2. if ( E = ∅ ) then return SAT. 

3. if (CØ∈ E)∨( Call∀∈ E) then return UNSAT. 

4.      result=deduce(); 

5. if (result=conflict) 

6.      then analyze_conflict(). 

7. if (result=satisfaction) 

8.      then analyze_satisfaction(); 

9.      v←SWOS_Choosevariable(Q.E). 

10.  if (ɭv∈ ɭ∃) 

11.      then return SW_QBF(Q.E|v=true) or SW_QBF(Q.E|v=false) 

12.  if (ɭv∈ ɭ∀) 

13.      then return SW_QBF(Q.E|v=true) and SW_QBF(Q.E|v=false) 

 

4. Branch Variable Choice Based on SWOS 

Algorithm 

We can explain the basic thinking of branch choice 

(subfunction SWOS_Choosevariable) which is based 

on SWOS algorithm as followed [28]. 

We adopt the gaifman graph showed in Figure 1 to 

indicate the structure of QBFs, each variable is the node 

in SW network. We apply the SWOS algorithm in the 

SW network, assign the variable group in improved SW 

structure, each variable individual can get more 

information from other individual, in this way and thus, 

we can achieve the goal which seeks the optimal branch 

variable. We take the variable found in searching each 

time as the branch variable chosen at that time. 

4.1. Algorithm Analysis 

In the process of our algorithm, there are three type of 
variable, they are respectively discoverer variable, 
pursuer variables and patrolman variables. 

In each iterative searching, the variable individual 
which has the optimum fitness in variable group is 
chosen as the discoverer variable, other variables are 
divided into pursuer variables and patrolman 
variables. In our SW search algorithm, each variable 
individual has it own angle of aspect, and the angle of 
aspect will be updated in very iteration. The 
discoverer variable and patrolman variables 
implement the mechanism of angle searching. The 
discoverer variable inspects three position variables 
nearby itself through rotating its searching angle, thus, 
it is expecting finding a better place. The patrolman 
variables choose a random orientation to execute a 
local search through rotating its searching angle 
randomly, thus it increases the diversity of variables 
group. The pursuer variables do not implement the 
mechanism of angle searching, but it close with the 
discoverer variable directly. 

It is supposed that the i
th
 variable individual in the 

group is pursuer variables when the algorithm 
implements the k

th 
iteration, then the location update 

method of variable i is explained in Equation 4: 

                    ( )
k +1 k k k

i i 3 p i
X =X + r X - X                         

In Equation 4, 
k

i
X is the current location of variable 

individual I, 
k 1

i
X

+
is its location after update, r3 is a 

random number which distributes uniformly ranged 
from 0 to 1. In our algorithm, the pursuer variables 
have the largest number in the variables group, so the 
update mechanism of pursuer variables affects the 
algorithm performance mostly. 

  In this paper, we introduce the influence of 

distance on communication into the small world 

model, i.e., one variable node decide the probability P 

of adding the edge through considering the distance 

between itself and other variable. At the same time, 

the value of P will increase with the increment of 

iteration times. In this paper, the value of P decreased 

as an exponential function with the increment of 

distance among the variable nodes, simultaneously, 

the value of P increases linearly with increment of 

iteration times. 

In swarm intelligence algorithm, we look on the 

variable group as a network, each variable is a node in 

the network. These variable nodes implement co-

learning and coevolution through sharing information 

each other, in this way, the variable group achieves the 

collective goal. Just like the animal hunting in reality, 

the animal which join the hunting not only pay 

attention to the discoverer, but also watch the other 

individual’s behavior in its view. In this mode, it has a 

(4) 
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great probability to watch the surrounding companion, 

at the same time, it also has a smaller probability to 

watch the distant companion. So, we make use of this 

idea in our search algorithm. 

It is supposed that we implement searching in a 

group having M variable in an N-Dimension Space, at 

the Kth computation, the i
th
 variable is pursuer variables. 

At first, we compute the probability k

i
p which decide 

whether to connect with other variables according to 

the current iteration times and the distance between 

itself and other variables, the pursuer variables choose 

its conjoint variable according to ,k

ip thus it can 

constitute the neighborhood with itself. The 

probability k

i
p connecting variables i and j is showed as 

follows Equation 5: 

( ) ( )

k

k ij

ij 1

max

1

Disk
p = w * + 1 - w exp

MaxInt l

                        

In Equation 5, MaxInt  is the maximum iteration time, 
k

ij
Dis  is the Euclidean distance between variables i and 

j, w1 is a weight coefficient (0≤ w1 ≤1), ɭmax is the 

maximum step-size in search, ɭmax can be computed in 

Equation 6: 

 ( )
n

2

max z z
z =1

l = U - L = U - L∑  

In Equation 6, Uz is the upper bound of the z 

dimension’s border and Lz is the corresponding lower 

bound. 
Because the small world requires 0≤ 

k

ijp ≤1, we can 
know from Equation 5, each item in the expressions is 
nonnegative, so 0≤ ,k

ijp when k=MaxInt and 0,k

ijDis = k

ij
p  

has the maximum value w1+(1-w1)=1, so our algorithm 
model satisfies the requirement of small world network. 

In our algorithm, the pursuer variable connects to a 
certain number of other variables in accordance with 
the improved small world model in very iteration, in 
this way it structures its neighborhood, then it choose 
the variable which has the best fitness as the local 
optimum variable. The pursuer variable refers 
simultaneously the local optimum and global optimum. 

It supposed that in the k
th
 iteration, the local 

optimum variable in the neighborhood of the i
th
 

individual variable is ,k

iLbest the value of 
k

iLbest is 
.k

liX The improved pursuer variable’s position is 
updated in Equation 7，r4 is a random number which 
uniformly distribute between 0 and 1. 

               ( ) ( )
k +1 k k k k k

i i 3 p i 4 li i
X = X + r X - X + r X - X     

In our algorithm, after the variable updates its position, 
it evaluates the fitness immediately and then compares 
itself with the current global optimum, if the current 
variable’s position is better than current global 
optimum variable; The current global optimum variable 
is replaced. In this way, if the new global optimum 
variable is generated in the process of iteration, the 
variable which has not been updated will receive this 

message and update its position through referring the 
new global optimum variable. 

4.2. Algorithm Processes 

The process of the SWOS algorithm can be explained 

as followed: 

• Step l: All the individual variable’s position X and 
search angle ϕ are initialized randomly. The 
algorithm computes the orientation of individual 
variable, give a fitness evaluation to each individual 
variable’s position, get the average fitness R and 
then select the individual which has the best fitness 
as the discoverer variable (optimal variable). 

• Step 2: The algorithm judges whether the terminal 
condition is satisfied, if the terminal condition is 
satisfied, then output the result, if not satisfied, go 
to Step 3. 

• Step 3: Each individual variable in the candidate 

variable group executes the operation followed: 

• Step 3.1: The algorithm judge whether the 
individual variable is a discoverer variable, if it 
is, check three position and then give a fitness 
evaluation to these three position, if a better 
position is found, then jump to the better place, 
otherwise, keep the current position. If the 
discoverer variable does not find a better place 
for continuous α generation’s iteration, then the 
search angle returns the value before 
α generation’s iteration. If discoverer variable 
does find one, then go to step 3.2. 

• Step 3.2: A random number rand between 0 and 
1 is generated for the variable i, if rand < R, then 
the variable i is a pursuer variable, go to step 3.3, 
otherwise, it is a patrolman variable, go to step 
3.5. 

• Step 3.3: The algorithm computes the distance 
k

ij
Dis (j≠i) from variable i to other variable, then 
computes the probability k

ij
P  which decides 

whether variable i connect other variable in the 
current iteration according to the expression (2). 
A random number rand between 0 and 1 is 
generated for the other variable j, if 
rand< ,k

ijP then the variable i connects with the 
variable j. 

• Step 3.4: The variables which are connected with 
the variable i constitute the neighbors of variable 
i. Then, the algorithm selects the variable which 
has the best fitness as the local optimum 
variable .k

iLbest Thus, the variable i updates its 
own position according to the Equation 4, go to 
step 3.6. 

• Step 3.5: The patrolman variable updates its 
position. 

• Step 3.6: The algorithm evaluates the fitness of 

variable i. if the fitness of variable i is superior 

to the current discoverer variable, then the 

variable i is chosen as the new discoverer 

variable. 

• Step 4: Return to step 2. 

(5) 

(6) 

(7) 
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The pseudo code of the SWOS algorithm is showed 

in followed Algorithms 3. 

• SubFunction  SWOS_Choosevariable (Q.E)  

Algorithms 3: Branch selection based on SWOS 

algorithm. 

1. { RandomInitialization(Q.E.X, ϕ ); 

2.    Best=Evaluate(Q.E.X); 

3.    While(No better) 

4.      {  Return discoverer; 

5.         {  if(Q.E.X= discoverer) 

6.             {  While(α ) 

7.                 {  PositionDetection(); 

8.                    Evaluate(Q.E.X); 

9.                    if(better) 

10.                       Go the BetterPosition; } 

11.                   SearchingAngle(α );  } 

12.            rand=Rand(i); 

13.            if(rand<R) 

14.              { Q.Ei= pursuer; 

15.                 (
k

ij
Dis ,

k

ij
P )=Compute(); 

16.                 rand=Rand(j); 

17.                 if(rand<
k

ij
P ) 

18.                    { Connect(i,j); 

19.                      
k

i
Lbest = Evaluate(Neighbor(i)); 

20.                       updatePosition(i); }} 

21.            else 

22.               { Q.Ei= patrolman; 

23.                  updatePosition(i); 

24.                  if(Evaluate(Q.Ei)> discoverer); 

25.                     Q.Ei = discoverer;}}} 

 

5. Experimental Evaluations 

To evaluate our algorithm architecture, we ran few 
preliminary tests on some benchmark of QBFLIB 
(www.qbflib.org). All the experiments that we present 
hereafter ran on a single PC, running the environment is 
Ubuntu-11.10-desktop/GNU Linux. On all test runs the 
CPU time limit was set to 600 seconds. 

In order to compare the solution efficiency, we 
choose three state-of-the-art solvers, namely a hybrid 
solver AQME10, two sequential solvers QuBE7 and 
sKizzo. AQME10 is an adaptive QBF Multi-Engine 
solver; it is robust and efficient than state-of-the-art 
single-engine sequential solvers. QuBE7 is an efficient 
search-based solver for QBFs. Maybe it is the best 
search-based solver. sKizzo is a powerful solver based 
on a new technique, called symbolic skolemization and 
on a related form of symbolic reasoning. This approach 
makes it differ from all the previous QBF solvers. This 
approach makes it differ from all the previous QBF 
solvers. All the solvers run the same benchmarks on the 
same single machine. In our experiments, we ran all the 
solvers with their default settings, i.e., we did not 
attempt to optimize any of their parameters for the 
problem at hand. 

Our experiments are to run the solvers on different 
QBF encodings, with the goal of confirming the 
validity of the selection above. In particular, we wish to 
show that the encodings considered are challenging 

enough given the current state of the art and that the 
algorithms featured by the solvers are orthogonal, i.e., 
solvers have complementary abilities across different 
families. 

To prove the effectiveness of our methods, we 
choose the QBFs family counter, C432, Debug, s3271, 
term1 as the test set, they are in the formal verification 
domain. The QBFs made up by encoding of formal 
verification problems represent a reasonably difficult 
test set. Family counter has 88 instances; we only 
describe the experiments result of 10 instances 
because of the space restraint of this paper. Family 
debug has 38 instances, we only choose 10 instance. 

Table 1 is the cumulative CPU time to solve the 
benchmarks family counter (unit is second(s)). 
SMQBF is the solver which applies the SWOS 
algorithm. We can see from the table that our solver 
SMQBF have not much different with other three 
solvers. Two sequential solvers QuBE7 and sKizzo 
spend no time from cnt01 to cnt05, because these 
instances are very easy formula, the sequential can 
resolve them directly. But, AQME10 and our solver 
are hybrid solver, it must spend a little time to run the 
classification algorithm in order to accomplish the best 
algorithm selection. For the more hard formula 
instances cnt09 and cnt10, four solvers all spend much 
time, the time gap is not very obvious. We can see the 
similar result from Table 2. From the above 
benchmarks, we can see the SMQBF is almost as 
strong as QuBE7. But, it is slightly worse than QuBE7 
because QuBE7 apply some top reasoning technology. 

Table 1. Solving time for family counter of domain formal 
verification. 

Instances AQME10 QuBE7 sKizzo SMQBF 

cnt01 0.403 0 0 0 

cnt02 0.2906 0 0 0 

cnt03 0.2956 0 0 0 

cnt04 0.301 0 0 0 

cnt05 0.3166 0 0 0 

cnt06 0.3352 0.02 0.12 0.03 

cnt07 0.3483 0.05 0.34 0.05 

cnt08 0.4656 0.15 0.81 0.16 

cnt09 0.9728 0.63 1.22 0.68 

cnt10 3.27 3.19 5.01 3.21 

Total 6.9987 4.04 7.5 4.13 

Table 2. Solving time for benchmarks of domain formal 
verification. 

Benchmarks AQME10 QuBE7 sKizzo SMQBF 

Counter(10) 6.9987 7.47 7.5 7.56 

C432(8) 6.1362 7.34 6.54 7.68 

Debug(10) 8.345 8.53 8.56 8.67 

s3271(8) 7.829 8.12 8.09 9.32 

term1(8) 7.632 7.96 7.99 8.12 

Total 36.972 39.42 35.22 41.35 

From the above benchmarks, our SMQBF does not 

have an advantage over other solvers. The reason is 

that the above benchmark’s original QBFs structure is 

not close to a small world topology, the structure of 

these formulas is closer to a random world topology. 

An important fact to be mentioned is that the gaifman 
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graphs corresponding to the above formulas encodings 

are sparse. So, the solver apply the SWOS algorithm 

does not exceed other solvers. 

The second experiment detailed in this section is 

carried out on the same computing platforms above, but 

here we focus on the following QBF encodings: 

• Katz: QBFs resulting from the encoding of symbolic 

reachability for industrially relevant circuits (20 

instances) [7]. 

• Tipdiam: QBFs resulting from the encoding of 

symbolic diameter calculation for a variety of 

circuits (40 instances) [13]. 

These two families are the formulas whose gaifman 
graphs have typical small world structure. Some 
relevant features of the above encodings are 
summarized Pulina and Tacchella [23] analyze these 
two families and gets this conclusion. The density 
distribution of these familie’s graph structure can reach 
relatively high values. These two set match the small 
world topology more closely than the above families. 

Table 3 is the cumulative CPU time to solve the 
benchmarks family Katz and Tipdiam, it reports the 
number of instance solved by four solvers (Number) 
and the total CPU time spent on such instances (Time). 
A dash on both columns means that the solver does not 
solve any formula. We can see that all the solvers fell 
hard to these two families. They all can’t resolve all the 
formulas. The hybrid solver AQME10 is the best in 
other three solvers, but our solver SMQBF can resolve 
more numerous formulas than AQME10, even it spends 
less time. The largest number of instance solved by 
SMQBF exceed the second about one-third. It proved 
that heuristic SWOS algorithm is very effective in 
branch selection for DPLL split. 

Table 3. Solving time for benchmarks of small world formula 

family. 

Benchmarks 
AQME10 QuBE7 sKizzo SMQBF 

Number Time Number Time Number Time Number Time 

Katz(20) 9 75.65 9 80.76 -- -- 12 70.43 

Tipdiam(100) 78 312.73 75 340.45 65 720.52 85 290.34 

 
From the experimental data, we know that the time 

gap is not very obvious in formulas have random world 
topology. On the contrary, but for the more hard 
formula instances in the formulas have SW topology, 
the solver based on heuristic SWOS algorithm surpass 
other three advanced solvers. It is an important result 
that the more the structure of the instance resembles a 
SW, the more it is difficult to solve-at least by search-
based solvers, but the improved SWOS algorithm can 
optimize the branch selection and accelerate the 
solution process. The search-based solvers also can 
overcome this difficulty and gain the most. Its 
relatively good performances on this dataset indicate 
that SWOS algorithm be the key for efficient reasoning. 

In the third experiment, we use a large test set having 
350 formulas, including Katz, Tipdiam and Formal 
Verification domain problem. Most of them are formula 
having a SW topology. We run the above four solvers 
on this special test set. We record the number of 

instance solved at some time node, i.e., how many 
formulas are solved when time pasts 10s, 100s and 
200s. As shown in Figure 2, the SMQBF is in fact able 
to solve more instances than other solvers, because 
most of the test set is made up of Katz, Tipdiam, etc., 
SW topology formula. At the beginning, SMQBF does 
not show the advantage, however, as time grows, it 
can solve more formula than other solvers. When the 
time pasts 200s, Performance of AQME and QuBE are 
declining, performance of SMQBF is stable growth 
trend. This shows that it has a better robustness. 
Hence, by simply employing SWOS algorithm, it is 
possible to gain an advantage over such sophisticated 
QBF solvers as QuBE in some respects. But, the 
advantage is not obvious, the small improvement in 
the efficiency of SMQBF has to be weighted against 
the performance of QUBE, which shows that the 
internal preprocessing of SMQBF is adding useless 
overhead on these encodings. Such overhead is 
partially reduced by SWOS algorithm. 
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Figure 2. Time scale comparison of several solvers on small world 

topology benchmarks. 

From the above result, it is fair to say that SMQBF 
alone is able to solve a fairly large number of 
instances, and most of these instances are those that 
cannot be solved by search-based solvers in their 
original formulation. It shows how SMQBF can be 
beneficial independently of the algorithm featured by 
the solver and after a branch selection with SWOS 
they are able to solve more hard formulas. The 
improvement is more substantial with search based 
engines rather than variable-elimination ones. This 
explains also, why SMQBF improve the performances 
of search-based solvers more than what happens for 
variable-elimination-based ones. 

6. Conclusions 

In this paper, we use gaifman graph to describe the 

topological structure of the QBF, mainly study the 

formula family with the SW network topology. We 

analyze the traditional DPLL solving algorithm for 

QBF and then we improve the DPLL algorithm and 

propose the solving algorithm framework based on 

SWOS algorithm, we apply this SWOS algorithm to 

determine the order of the DPLL branch variable. Our 

result also proves that SWOS algorithm has a certain 

degree of effectiveness to improve the solving 

efficiency for a particular type of formula. It is 
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valuable as an incomplete solution algorithm for 

search-based solver. The work in the future include the 

more accurate optimization search algorithm for SW 

network and develop more intelligent heuristic 

algorithm to strategic decision and schedule in choose 

the branch variable [24]. On the other hand, it is 

necessary to combine variable elimination and search 

so that they can interleave during the decision process. 

Maybe it can further improve the solution efficiency 

[14, 17]. 
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